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Abstract: Cultivation of woody oil plants in environmentally suitable habitats is a successful
ecological solution for oil development and forest management. In this study, we predicted the
influences of future climate change on the potentially suitable climatic distribution of an important
woody oil plant species (walnut; Juglans regia L.) in China based on given climate change scenarios and
the maximum entropy (MaxEnt) model. The MaxEnt model showed that the minimum temperature of
the coldest month and annual precipitation were the most important determinant variables limiting
the geographical distribution of J. regia. We have found that the current suitable environmental
habitat of J. regia is mainly distributed in central and southwestern China. Results of the MaxEnt
model showed that global warming in the coming half-century may lead to an increase in the area
size of environmentally suitable habitats for J. regia in China, indicating more lands available for
artificial cultivation and oil production. However, those suitable habitat gains may be practically
inaccessible due to over-harvest and urban development, and effective management strategies are
urgently needed to establish those forests. This research will provide theoretical suggestions for
the protection, cultivation management, and sustainable utilization of J. regia resources to face the
challenge of global climate change.
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1. Introduction

Global climate change is occurring at an unprecedented rate. Average temperatures have increased
by 0.85 ◦C in the last century and are predicted to continue to increase by a minimum of 0.3–1.7 ◦C to a
maximum of 2.6–4.8 ◦C by 2100 [1]. Climate has significantly affected the growth and reproduction of
plants and has therefore become a dominating variable determining the geographical distribution of
plant species [2–4]. Due to the threat of global warming, the lack of rational utilization, and the lack
of effective protection on wild plant resources, some important economic plant species have sharply
contracted their geographical distribution, or even gone extinct [5]. Artificial cultivation is one of
the most effective tools to conserve and restore those economically important plants in order to face
the challenge of global climate change [6]. Meanwhile, artificial cultivation will also meet the market
demand for those plant resources [7]. However, successful artificial cultivation of high-quality plants
depends on both good germplasm resources and suitable environmental conditions [8,9]. Accordingly,
identifying the suitable environmental habitats for the target plant species as affected by global climate
change has great economic and ecological value.

Species distribution models (SDMs) are powerful tools to assess the current and future potential
geographical distributions of target species, relying on the statistical correlation between species
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existence and corresponding environmental variables [10–13]. Among SDMs, the maximum
entropy (MaxEnt) model is the most popular one to simulate species distribution based on species
presence-only records, which are usually readily available from digital specimen museums and
published literature [14–16]. The MaxEnt model has been widely used to evaluate the relationship
between species distribution and determinant variables and to predict the response of species
geographical distribution to global climate change [17–20]. Many studies have found that the MaxEnt
model typically outperforms other methods in terms of high predictive accuracy and high tolerance to
extremely small sample size [21–23].

Commonly known as the walnut, Juglans regia L. is a deciduous tree species belonging to the
genus Juglans and family Juglandaceae, and is ranked first among the four nut types in the world [24].
It is widely disseminated in Asia, North and South America, Europe, South Africa, Australia, and
New Zealand [25]. J. Regia originated in China and has a long history of cultivation [26]. Moreover,
China is the largest consumer of vegetable oil in the world, with an annual consumption of 30 million
tons [27]. However, nearly seventy percent of the vegetable oil consumption in China depends on
imports [27]. Accordingly, J. Regia has gained attention as an important local woody oil plant species in
China, which can be used as the raw material to develop the local woody oil industry [28]. Therefore,
it is necessary and important to predict how global climate change will impact the potentially suitable
climatic distribution of J. regia in China.

Here, we predicted the current and future suitable climatic distributions of J. regia given
global climate change using the MaxEnt model. We aimed to (i) explore the relative importance
of environmental variables on the geographical range of J. regia; (ii) evaluate the ecological niches and
environmental tolerance of J. regia; (iii) delineate the environmentally suitable habitat maps for J. regia;
(iv) indicate the habitat change of J. regia responding to global climate change; and (v) ultimately
provide the theoretical basis for protective strategy formulation and cultivation management of this
woody oil plant species.

2. Materials and Methods

2.1. Species Occurrence Records

We collected the specimen records of J. regia from the Chinese Virtual Herbarium (CVH) [29] and
the Global Biodiversity Information Facility (GBIF) [30]. Cultivated records were identified based
on the specimen label and then removed to avoid anthropogenic disturbance. To match the spatial
resolution of environmental variables (~1 × 1 km, detailed below), we performed spatial filtering of
presence points on a 1 km2 grid. Finally, we obtained 543 occurrence points of J. regia in China at a
spatial resolution of 1 km (Figure 1; Appendix A).

2.2. Environmental Variables

We selected 33 environmental variables—16 bioclimatic, 3 topographical, and 14 soil variables—to
model the potentially suitable environmental distribution of J. regia (Table 1). Bioclimatic variables were
downloaded from the global database WorldClim (http://www.worldclim.org/) at a spatial resolution
of 30 arcseconds (ca. 1 × 1 km) [31]. Raster layers in WorldClim were obtained by spatial interpolation
on monthly values of temperature and precipitation ranging over the time period from 1950 to 2000
from numerous weather stations around the world [31]. WorldClim provided 19 bioclimatic variables,
but only 16 variables were used in this study because 3 variables—isothermality (Bio3), precipitation
of the driest month (Bio14), precipitation seasonality (Bio15)—are clearly biased when projected to
past and future scenarios, and thus must be excluded [32,33]. We also extracted the elevation variable
from WorldClim and calculated a topographical variable (i.e., aspect) based on elevation in ArcGIS
10.3 (ESRI, Redlands, CA, USA). Then, the elevation variable was projected in a meter coordinate
system and another topographical variable (i.e., slope) was calculated based on elevation in ArcGIS
10.3. Soil variables were obtained from the Harmonized World Soil Database (HWSD) (http://www.

http://www.worldclim.org/
http://www.iiasa.ac.at/web/home/research/researchPrograms/water/HWSD.html
http://www.iiasa.ac.at/web/home/research/researchPrograms/water/HWSD.html


Forests 2018, 9, 103 3 of 15

iiasa.ac.at/web/home/research/researchPrograms/water/HWSD.html), which contains raster data
layers on key soil properties at the spatial resolution of 30 arcseconds [34].

Table 1. Environmental variables used in this study and their percentage contribution.

Category Variable Description Unit Contribution (%)

Climate

Bio1 Annual Mean Temperature ◦C

Bio2 Mean Diurnal Range (Mean of monthly
(max temp − min temp))

◦C

Bio4 Temperature Seasonality (standard
deviation × 100)

◦C

Bio5 Max Temperature of Warmest Month ◦C 2.0
Bio6 Min Temperature of Coldest Month ◦C 63.9
Bio7 Temperature Annual Range (Bio5 − Bio6) ◦C 7.1
Bio8 Mean Temperature of Wettest Quarter ◦C
Bio9 Mean Temperature of Driest Quarter ◦C
Bio10 Mean Temperature of Warmest Quarter ◦C
Bio11 Mean Temperature of Coldest Quarter ◦C
Bio12 Annual Precipitation mm 12.6
Bio13 Precipitation of Wettest Month mm
Bio16 Precipitation of Wettest Quarter mm
Bio17 Precipitation of Driest Quarter mm
Bio18 Precipitation of Warmest Quarter mm
Bio19 Precipitation of Coldest Quarter mm

Topography
Elevation m 5.1

Slope ◦ 2.8
Aspect rad 0.8

Soil

t_bulk_den Topsoil Bulk Density kg/dm3 0.9
s_bulk_den Subsoil Bulk Density kg/dm3 0.5

t_clay Topsoil Clay Fraction % 1.7
s_clay Subsoil Clay Fraction %

t_gravel Topsoil Gravel Content % 0.3
s_gravel Subsoil Gravel Content % 0.0
t_ph_h20 Topsoil pH (H2O) −log(H+) 0.3
s_ph_h20 Subsoil pH (H2O) −log(H+)

t_esp Topsoil Sodicity (ESP, exchangeable
sodium percentage) % 0.4

s_esp Subsoil Sodicity (ESP, exchangeable
sodium percentage) % 0.2

t_sand Topsoil Sand Fraction % 0.2
s_sand Subsoil Sand Fraction % 0.1
t_silt Topsoil Silt Fraction % 0.5
s_silt Subsoil Silt Fraction % 0.6

The 19 variables selected through the multicollinearity test were used in MaxEnt modeling.

To predict the potentially suitable environmental distribution and suitable habitat change under
future climate change, we collected projected bioclimatic variables from low to high representative
concentration pathways (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) for 2041–2060 and 2061–2080.
We chose the BCC-CSM1.1 (Beijing Climate Centre–Climate System Modelling 1.1; available from
www.worldclim.com) as it is one of the most widely used general circulation models (GCMs) in the
Asia region [35,36]. We assumed that the 3 topographical and 14 soil variables remain unchanged in
the coming 70 years.

http://www.iiasa.ac.at/web/home/research/researchPrograms/water/HWSD.html
http://www.iiasa.ac.at/web/home/research/researchPrograms/water/HWSD.html
www.worldclim.com


Forests 2018, 9, 103 4 of 15
Forests 2018, 9, x FOR PEER REVIEW  4 of 15 

 

 
Figure 1. Spatial distribution of occurrence records of Juglans regia and elevation in China. 

2.3. Correlation Analysis and Principal Component Analysis 

The Pearson correlation coefficients (r) among the 16 bioclimatic variables, 3 topographical 
variables, and 14 soil variables were calculated in ArcGIS 10.3 (band collection statistics tool). If a pair 
of variables were strongly correlated (|r| ≥ 0.8), one of the variables was removed to avoid the 
violation of statistical assumptions and avoid model predictions induced by multicollinearity among 
environmental variables [37,38]. To select the remaining variables, we conducted principal 
component analysis (PCA) to reveal the relative importance of each variable for the potentially 
suitable environmental distribution of J. regia based on its 543 occurrence points. The variables 
showing the higher ecological importance for J. regia were retained in the following analysis. 

2.4. MaxEnt Models 

MaxEnt 3.3.3. was used to project the potentially suitable environmental distribution of  
J. regia [39]. In MaxEnt 3.3.3k, we set the number of random background points as 10,000. We 
randomly selected 80% of J. regia occurrence points to train the MaxEnt model and the remaining 
points to validate the model. Five replicates were run to carry out the MaxEnt model. We used 
Jackknife to evaluate the relative importance of each environmental variable. The area under the 
receiver operating characteristic curve (AUC) was used to estimate the accuracy of the model  
predictions [40,41]. 

The MaxEnt model generated continuous probability values for the presence of J. regia, ranging 
from 0 to 1. To delineate the presence/absence map of J. regia, those continuous probability values 
were converted to the binary prediction (i.e., a pixel is considered as either suitable or not for the 
presence of J. regia) based on a threshold probability value. This threshold probability was 
determined according to the ‘maximum training sensitivity plus specificity’ criterion. This criterion 
optimizes the trade-off between sensitivity and specificity using the training data and, therefore, has 
been recognized as one of the best threshold selection methods [42–44]. This presence/absence map 
was then used to analyze the spatial range changes of J. regia. 

To delineate the pattern of predicted habitat change, we defined ‘habitat gain’ where a habitat 
is not suitable for J. regia under the current climate conditions, but becomes suitable under the future 
climate. If some habitat is suitable for J. regia under the current climate, but no longer suitable under 
the future climate, we called it ‘habitat loss’. If a suitable habitat under the current climate is still 

Figure 1. Spatial distribution of occurrence records of Juglans regia and elevation in China.

2.3. Correlation Analysis and Principal Component Analysis

The Pearson correlation coefficients (r) among the 16 bioclimatic variables, 3 topographical
variables, and 14 soil variables were calculated in ArcGIS 10.3 (band collection statistics tool). If a
pair of variables were strongly correlated (|r| ≥ 0.8), one of the variables was removed to avoid
the violation of statistical assumptions and avoid model predictions induced by multicollinearity
among environmental variables [37,38]. To select the remaining variables, we conducted principal
component analysis (PCA) to reveal the relative importance of each variable for the potentially suitable
environmental distribution of J. regia based on its 543 occurrence points. The variables showing the
higher ecological importance for J. regia were retained in the following analysis.

2.4. MaxEnt Models

MaxEnt 3.3.3. was used to project the potentially suitable environmental distribution of J. regia [39].
In MaxEnt 3.3.3k, we set the number of random background points as 10,000. We randomly selected
80% of J. regia occurrence points to train the MaxEnt model and the remaining points to validate the
model. Five replicates were run to carry out the MaxEnt model. We used Jackknife to evaluate the
relative importance of each environmental variable. The area under the receiver operating characteristic
curve (AUC) was used to estimate the accuracy of the model predictions [40,41].

The MaxEnt model generated continuous probability values for the presence of J. regia, ranging
from 0 to 1. To delineate the presence/absence map of J. regia, those continuous probability values
were converted to the binary prediction (i.e., a pixel is considered as either suitable or not for the
presence of J. regia) based on a threshold probability value. This threshold probability was determined
according to the ‘maximum training sensitivity plus specificity’ criterion. This criterion optimizes the
trade-off between sensitivity and specificity using the training data and, therefore, has been recognized
as one of the best threshold selection methods [42–44]. This presence/absence map was then used to
analyze the spatial range changes of J. regia.

To delineate the pattern of predicted habitat change, we defined ‘habitat gain’ where a habitat is
not suitable for J. regia under the current climate conditions, but becomes suitable under the future
climate. If some habitat is suitable for J. regia under the current climate, but no longer suitable under
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the future climate, we called it ‘habitat loss’. If a suitable habitat under the current climate is still
suitable for J. regia under the future climate, we defined it as ‘unchanged’. The centroids of suitable
habitats were also calculated under current and future conditions, and were helpful as they clearly
show the shift of the suitable habitat responding to global climate change.

3. Results

3.1. Model Evaluation and Variables’ Contribution

We found weak correlations among topographical variables. Therefore, three topographical
variables were retained in the MaxEnt model. The bioclimatic and soil variables showing the higher
ecological importance for J. regia are shown in Tables A1 and A2. Finally, we obtained 19 variables
to be incorporated in the MaxEnt software: maximum temperature of the warmest month (MTWM),
minimum temperature of the coldest month (MTCM), temperature annual range (TAR), annual
precipitation (AP), elevation, slope, aspect, topsoil bulk density (t_bulk_den), subsoil bulk density
(s_bulk_den), topsoil clay fraction (t_clay), topsoil gravel content (t_gravel), subsoil gravel content
(s_gravel), topsoil pH (H2O) (t_ph_h20), topsoil sodicity (ESP, exchangeable sodium percentage)
(t_esp), subsoil sodicity (ESP, exchangeable sodium percentage) (s_esp), topsoil sand fraction (t_sand),
subsoil sand fraction (s_sand), topsoil silt fraction (t_silt), and subsoil silt fraction (s_silt).

The MaxEnt model for J. regia showed a reliable prediction with an AUC of 0.843 (± 0.008), greater
than the 0.5 of a random model. MTCM contributed most to the model, followed by AP and TAR
(Table 1). Those three variables cumulatively contributed 83.6% to the geographical distribution of
J. regia in China. In particular, the cumulative contributions of bioclimatic, topographical, and soil
variables were 85.6%, 8.7%, and 5.7%, respectively.

3.2. Response of Variables to Suitability

Response curves illustrate how the probability of J. regia presence changes as each environmental
variable changes (Figure 2). The habitat suitability of J. regia is hump-shaped with increasing MTCM,
AP, and TAR. We obtained the threshold probability (i.e., 0.31) indicative of J. regia presence based
on the rule of maximum training sensitivity plus specificity. MTCM ranging from –14.8 ◦C to 7.7 ◦C,
AP ranging from 480 mm to 1804 mm, and TAR ranging from 17.7 ◦C to 44.1 ◦C are suitable for the
distribution of J. regia.
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Figure 2. The response curves of three main variables contributing to the habitat suitability
of Juglans regia. (a) Min temperature of the coldest month (◦C); (b) annual precipitation (mm);
(c) temperature annual range (◦C). Dashed lines represent the threshold probability (0.31) indicative of
species presence.

3.3. Current Potentially Suitable Climatic Distribution

The predicted potentially suitable climatic distribution of J. regia based on observed occurrences
and current environmental conditions projected by the MaxEnt model is shown in Figure 3. The results
show that the suitable habitats are primarily located in central and southwestern China, mainly
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including Beijing, Hebei, Ningxia, Shaanxi, Shanxi, Shandong, Henan, Chongqing, Hubei, Yunnan,
Guizhou, southern Liaoning, southern Gansu, and eastern Sichuan.Forests 2018, 9, x FOR PEER REVIEW  6 of 15 
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3.4. Future Potentially Suitable Climatic Distribution

The predicted future potentially suitable climatic distributions of J. regia under RCP 2.6, RCP 4.5,
RCP 6.0, and RCP 8.5 climate change scenarios for 2041–2060 and 2061–2080 are shown in Figure 4.
The results show that the suitable habitats under future climate change scenarios are mainly distributed
in central, southwestern, and northwestern China. For the period of 2041–2060, the suitable habitats
are mainly located in Beijing, Hebei, Ningxia, Shaanxi, Shanxi, Shandong, Henan, Sichuan, Chongqing,
Hubei, Anhui, Yunnan, Guizhou, Hunan, southwestern Liaoning, southern Gansu, and southeastern
Tibet under RCP 2.6, RCP 4.5, and RCP 6.0 (Figure 4a,c,e), and increase considerably in northwestern
and southeastern China (mainly including Xinjiang, Zhejiang, and Jiangxi) under RCP 8.5 (Figure 4g).
For the period of 2061–2080, the area size of suitable habitats for J. Regia continues to significantly
increase in northwestern China (mainly including Xinjiang and the west of Inner Mongolia) under
RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 (Figure 4b,d,f,h). Overall, the area size of suitable habitats for
J. regia gradually increases along the climate scenario gradient (from RCP 2.6 to RCP 8.5) in the period
of 2061–2080 (Table 2).

3.5. Future Changes in the Climatically Suitable Habitat Area

Most (90.6–96.7%) of the suitable habitat area for J. regia under different future climate scenarios
remains unchanged (Figure 5, Table 2). The results show that the suitable habitat area increases in
central and western China (mainly including Xinjiang, southern Inner Mongolia, central Gansu,
northern Shaanxi, northern Shanxi, northern Hebei, southwestern Liaoning, and northwestern
Sichuan), while decreasing a little in southeastern China (mainly including Zhejiang, Fujian, Hunan,
northern Guangxi, and southern Yunnan) (Figure 5). Under RCP 2.6, RCP 6.0, and RCP 8.5, the gain
in suitable habitat area increases from the period of 2041–2060 to the period of 2061–2080 (RCP 2.6:
from 16.8% to 19.8%; RCP 6.0: from 20.5% to 43.7%; RCP 8.5: from 40.6% to 82.5%). Under all future
climate scenarios, the loss of suitable habitat area increases from the period of 2041–2060 to the period
of 2061–2080 (RCP 2.6: from 3.3% to 9.4%; RCP 4.5: from 7.7% to 8.4%; RCP 6.0: from 6.7% to 7.5%; RCP
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8.5: from 4.7% to 8.9%). Thus, the suitable habitat area of J. regia expands along the temporal gradient
(from the period of 2041–2060 to 2061–2080) under both RCP 6.0 and RCP 8.5, while contracting under
both RCP 2.6 and RCP 4.5.Forests 2018, 9, x FOR PEER REVIEW  7 of 15 
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climate scenario; (b) period of 2061–2080 in the RCP 2.6 climate scenario; (c) period of 2041–2060 in the
RCP 4.5 climate scenario; (d) period of 2061–2080 in the RCP 4.5 climate scenario; (e) period of 2041–2060
in the RCP 6.0 climate scenario; (f) period of 2061–2080 in the RCP 6.0 climate scenario; (g) period of
2041–2060 in the RCP 8.5 climate scenario; (h) period of 2061–2080 in the RCP 8.5 climate scenario.
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Figure 5. Changes in the climatically suitable habitat of Juglans regia under different climate change
scenarios around the world. (a) Period of 2041–2060 in the RCP 2.6 climate scenario; (b) period of
2061–2080 in the RCP 2.6 climate scenario; (c) period of 2041–2060 in the RCP 4.5 climate scenario;
(d) period of 2061–2080 in the RCP 4.5 climate scenario; (e) period of 2041–2060 in the RCP 6.0 climate
scenario; (f) period of 2061–2080 in the RCP 6.0 climate scenario; (g) period of 2041–2060 in the RCP 8.5
climate scenario; (h) period of 2061–2080 in the RCP 8.5 climate scenario.
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Table 2. Predicted changes in the climatically suitable habitat area (%) of Juglans regia under different
climate change scenarios around the world.

Future Climate Change Scenario Unchanged Loss Gain Total change (= Gain − Loss) 1

Period of
2041–2060

RCP 2.6 96.7 3.3 16.8 13.4
RCP 4.5 92.3 7.7 25.7 18.0
RCP 6.0 93.3 6.7 20.5 13.7
RCP 8.5 95.3 4.7 40.6 35.8

Period of
2061–2080

RCP 2.6 90.6 9.4 19.8 10.4
RCP 4.5 91.6 8.4 19.2 10.7
RCP 6.0 92.5 7.5 43.7 36.2
RCP 8.5 91.1 8.9 82.5 73.6

1 Positive values indicate suitable habitat area expansion.

3.6. Suitable Climatic Habitat Shift

The centroid of the current suitable habitat for J. regia is located in eastern Sichuan (Figure 6).
Under RCP 2.6, the centroid shifts to a northwestern position by the period of 2041–2060, and then to a
further northwest position by the period of 2061–2080. Under both RCP 6.0 and RCP 8.5, the shift of
the centroid retained this northwest tendency. Overall, the distributional shift of climatically suitable
habitats expressed a northwest tendency along the temporal gradient (from current to the period of
2041–2060 and then to 2061–2080) (Figure 6).
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4. Discussion

This study was the first to explore the impacts of global climate change on the geographical
range and environmentally suitable habitat of the woody oil plant species J. regia in China using
MaxEnt modeling. Evaluating the impacts of global climate change scenarios on the potential
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distributions of economically or ecologically essential species will be helpful to understanding
the relationships between species niches and the corresponding environment, identifying priority
cultivation areas of target species, and setting up effective strategies for species conservation and
resource utilization [45–48]. MaxEnt has been commonly implemented for many species to predict
potential distribution [49–53]. The results show that the MaxEnt model for J. regia provided an AUC
value of 0.843, indicating a reliable prediction, which is consistent with previous studies [54–56].

The MaxEnt model showed that the geographical distribution of J. regia was mostly explained by
bioclimatic variables, while the effects of topographical and soil variables were rather small. Previous
studies have also confirmed the dominant role of climate in the natural distribution of plants [57,58].
Studies on two other cultivated plant species (Scutellaria baicalensis and Tricholoma matsutake) have also
found that topographical and soil variables only had a small effect on their distributions [46,56]. MTCM
and AP were the most important bioclimatic variables determining the geographical distribution of
J. regia and collectively explained 76.5% of the distribution. J. regia can tolerate a cold environment,
but is better suited to humid and warm environments [59]. The habitat suitability of J. regia showed a
hump-shaped pattern along the MTCM gradient because the fruits do not mature properly when the
effectively accumulated temperature is excessively low or high [59]. The suitable habitats of J. regia
predicted under current climate conditions were dominated by humid regions in China (i.e., central
and southwestern China), indicating that J. Regia favors humid environments.

The MaxEnt model has predicted that J. regia is potentially distributed from 75◦ E to 124◦ E, 22◦ N
to 44◦ N in China under current conditions, consistent with previous findings [60]. Our predictions
showed that the potentially suitable climatic distribution of J. regia will expand under all future climate
scenarios, indicating that more suitable habitats will be available for the artificial cultivation of J. regia
in the future. However, J. regia still faces a threat of reduction without proper protection, because the
future abundance of J. regia will greatly rely on human use. On one hand, J. regia will face a potentially
large harvesting probability at different distribution locations, as the market demand of J. regia is rather
great in China due to the rich nutrients and oil provided by J. regia. On the other hand, the area size
of the environmentally suitable habitat available for the cultivation of J. regia will gradually decrease
because of urban development and other social causes. Therefore, future study should incorporate
harvesting, land use change, and biotic interactions in the geographical distribution simulation for
J. Regia. Additionally, future study can use an entropy and mutual information index—an important
concept developed by Shannon in the context of information theory [61]—as an alternative way to
define principal variables assessing J. regia distribution.

Our predictions also show that J. regia has a high risk of habitat loss in the low latitudes under
future climate change, similar to previous findings on bioenergy crops in Europe [62]. More attention
and additional protective measures should be placed on the low latitudes. For example, the Chinese
government should set nature conservation areas covering the suitable habitats, and reduce human
interference in these areas. Our projection reveals that future climate change will cause shifts in
the potentially suitable climatic distribution of J. Regia. However, relatively stable distribution sites
of woody oil plants are essential for the sustainable supply of feedstocks for oil production [63,64].
Therefore, this distribution shift should attract special interest from ecologists.

5. Conclusions

J. regia is an important woody oil plant species, and there is urgent demand for its appropriate
protection and management. In this study, we developed a habitat suitability model based on
the maximum entropy (MaxEnt) theory to evaluate the environmental variables determining the
geographical distribution of J. regia and to predict potentially suitable climatic distributions given
current and future climate conditions. Our results have shown that J. regia will expand its suitable
habitat area size but will face a high risk of habitat loss in the low latitudes in response to global
climate change. These results will be valuable to identifying environmentally suitable sites for the
reintroduction, cultivation, and management of J. regia.
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Appendix A

Table A1. Loading factors of 16 bioclimatic variables used in the principal component analysis.

Variable PC1 PC2 PC3

Bio1 0.282 –0.234 –0.214
Bio2 –0.199 ≈0 –0.276
Bio4 –0.196 –0.374 0.246
Bio5 0.102 –0.491 ≈0
Bio6 0.316 ≈0 –0.171
Bio7 –0.239 –0.325 0.137
Bio8 0.149 –0.444 –0.153
Bio9 0.302 ≈0 –0.248

Bio10 0.152 –0.460 ≈0
Bio11 0.308 ≈0 –0.272
Bio12 0.307 ≈0 0.206
Bio13 0.274 ≈0 ≈0
Bio16 0.293 0.114 ≈0
Bio17 0.239 ≈0 0.526
Bio18 0.279 0.134
Bio19 0.232 ≈0 0.530

PC: principal component calculated from principal component analysis on 16 bioclimatic variables of 543 Juglans regia
occurrence points. Descriptions of these variables are given in Table 1.

Table A2. Loading factors of 14 soil variables used in the principal component analysis.

Variable PC1 PC2 PC3

t_bulk_den –0.389 –0.11 ≈0
s_bulk_den –0.422 ≈0 –0.185

t_clay –0.21 0.341 –0.444
s_clay –0.21 0.341 –0.444

t_gravel ≈0 –0.112 0.137
s_gravel –0.177 ≈0 ≈0
t_ph_h20 –0.343 ≈0 0.301
s_ph_h20 –0.419 ≈0 ≈0

t_esp –0.106 –0.151 0.243
s_esp ≈0 ≈0 0.242

t_sand –0.15 –0.557 –0.142
s_sand –0.263 –0.447 –0.197
t_silt –0.202 0.318 0.468
s_silt –0.321 0.311 0.239

PC: principal component calculated from principal component analysis on 14 soil variables of 543 Juglans regia
occurrence points. Descriptions of these variables are given in Table 1.
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Table A3. Pearson correlation coefficients (r) among four bioclimatic variables calculated using the
Band Collection Statistics tool in ArcGIS 10.3.

Variable Bio5 Bio6 Bio7

Bio6 0.530
Bio7 0.128 –0.773
Bio12 0.286 0.758 –0.673

Table A4. Pearson correlation coefficients (r) among 12 soil variables calculated using the Band
Collection Statistics tool in ArcGIS 10.3.

Variable t_bulk_den s_bulk_den t_clay t_gravel s_gravel t_ph_h20 t_esp s_esp t_sand s_sand t_silt

s_bulk_den 0.415
t_clay 0.181 0.648

t_gravel 0.177 –0.320 –0.277
s_gravel 0.175 0.550 0.341 0.364
t_ph_h20 0.707 0.345 0.108 –0.033 0.023

t_esp 0.083 0.189 0.141 –0.084 0.064 0.305
s_esp 0.058 0.192 0.176 –0.220 –0.020 0.295 0.772

t_sand 0.460 –0.021 –0.451 0.273 –0.027 0.132 –0.051 –0.109
s_sand 0.363 0.748 0.133 –0.175 0.399 0.219 0.127 0.098 0.535
t_silt 0.251 -0.016 0.121 0.017 0.003 0.440 0.057 0.145 –0.534 –0.479
s_silt 0.241 0.732 0.603 –0.311 0.399 0.429 0.197 0.232 –0.522 0.190 0.569
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