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Abstract: Stem size distribution (SSD), which describes tree frequencies in diameter classes within 

an area, has a variety of direct and indirect applications that are critical for forest management. In 

this study, we evaluated which structural characteristics derived from Airborne Laser Scanning 

(ALS) data were best able to differentiate between unimodal and bimodal stands in a managed 

boreal mixedwood forest in Alberta, Canada. We then used wall-to-wall ALS data to predict (for 20 

m-by-20 m grid cells) the parameters of a Weibull SSD in unimodal cells, and a Finite Mixture Model 

(FMM) in bimodal cells. The resulting SSDs were evaluated for their fit to ground plot-measured 

SSDs using an Error Index (EI). We found that the variance of ALS return heights was the best metric 

for differentiating between unimodal and bimodal stands, with a classification accuracy of 77%. 

Parameters of both the Weibull and FMM distributions were accurately predicted (r2 ~ 0.5, Root 

Mean Square Error (RMSE) ~ 30%), and that differentiating for modality prior to estimating SSD 

improved the accuracy of estimates (EI of 49.13 with differentiation versus 51.31 without 

differentiation). Unique to our presented approach is the stratification by SSD modality prior to the 

modelling of distributions. To achieve this, we apply a threshold to an ALS metric that allows SSD 

modality to be distinguished for each cell at the landscape level, and this a priori information is then 

used to ensure that the appropriate distribution is modelled. Our approach is parsimonious and 

efficient, enabling improved accuracy in SSD estimation across diverse landscapes when ALS data 

is the sole data source. 

Keywords: airborne laser scanning; diameter distributions; forest structure; mixture models; forest 

inventory; boreal 

 

1. Introduction 

Forest professionals manage forests using detailed forest inventories based on measurements 

and models characterizing tree dimensions, timber volume, and stand composition [1]. A critical 

component of forest inventories is the stem size distribution (SSD), which represents the relative 

frequency of tree diameters on a given area (e.g. plot or stand; [2]). SSDs are versatile and are useful 

for a range of timber production and ecological monitoring purposes. For example, the SSD can be 

used directly to describe stand attributes such as structure, age, and volume [3–5], or used as inputs 
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to models that can describe product quality [6], forecast growth, or provide information for planning 

and management considerations [7]. To support these information needs, there is increasing interest 

in the capacity to estimate stand-level SSDs over large areas, and to understand patterns of their 

variance—particularly across the diverse species and age gradients that exist in mixedwood stands. 

Mixedwood stands are the most common habitat in the boreal forest, which makes up almost 2 billion 

hectares globally—28% of which is in Canada, representing 78% of the nation’s total forested area [8]. 

Currently, SSDs are usually acquired using field measurements where tree diameters are 

measured on sample plots and classified into diameter classes. The class sizes used can vary 

depending on the plot size, stand characteristics, or the application; however, 2-cm diameter classes 

are most frequently used [9]. SSDs of homogenous stands are typically unimodal, while two or more 

maxima are often observed in heterogeneous stands with more complex structure. Various statistics, 

such as the bimodality coefficient or Hartigan’s dip statistic [10], can be used to assess multimodality 

of SSD. However, it can also be characterized using the ecological characteristics of the stand, 

including if stands are multilayered [11], have high variance in diameters [12], ages [13], or number 

of species [14], or by more complex metrics such as the ratio of stem density to top height (D/H; [15]). 

As stands mature, they do not follow a linear pattern of structural development, making the 

prediction of mature stand structures difficult [16]. Heterogeneity, typically associated with 

multimodal stands, results from ecological legacies and disturbance histories specific to individual 

areas [17]. 

In addition to size class frequencies, SSDs can be summarized using a variety of statistical 

models or probability density functions (PDFs). The most common PDF for characterizing SSDs is 

the Weibull distribution because of its flexibility with a limited number (two) of parameters to predict 

or impute [18]. Fitting PDF parameters to measured diameter at breast height (DBH) values relies on 

optimization techniques such as maximum likelihood estimation (MLE; [19]). Despite the flexibility 

of the Weibull distribution, it is limited to the characterization of stands with unimodal SSD [20]. If a 

SSD of a stand is not unimodal, it should be characterized by a more complex distribution or use a 

nonparametric estimation method such as a Finite Mixture Model (FMM; [15]) or k-Nearest 

Neighbors (k-NN) [21].  

For complete characterization of forest structure, the SSDs of all stands in the area of interest 

need to be estimated or measured. SSDs derived from field measurements are spatially constrained, 

time consuming, and expensive to acquire. Hence, field-based estimates of SSDs alone cannot provide 

the large-area spatial coverage required in a forest management context. A common inventory 

approach to address the limitation in spatial coverage is to use air-photo interpretation, which can 

provide complete spatial coverage of an area. However, this approach is limited to the scale of the 

aerial photography and the expertise of the interpreter, and as a result it is difficult to provide the 

detailed tree-level information required for a SSD. Eid et al. [22], for a spruce/pine forest in Norway, 

determined that photo interpretation provided poorer estimates of stand inventory attributes, such 

as basal area, height, and number of trees, than estimation by other remote sensing methods. They 

found, for example, deviations of 20% for photo-interpreted height, compared to deviations of 12% 

for laser scanning estimates. Inaccurate photo-interpreted estimates were projected to have more than 

three times the loss in the value of a stand when compared to Airborne Laser Scanning (ALS)-based 

estimates. 

These limitations in spatial coverage and accuracy, coupled with increasing financial pressures 

and needs for highly detailed data, are resulting in the increased use of active remote sensing 

technologies for informing forest inventories. ALS has been incorporated into forest inventories 

because it provides very detailed information on forest structure over large spatial extents [23]. It has 

been demonstrated [24] that attributes such as dominant height, mean diameter, stem number, basal 

area, and volume can be adequately estimated using ALS data in combination with a sample of 

ground plots [25,26]. ALS also has been used to characterize SSDs in unimodal stands requiring 

relatively simple estimation techniques [27] and in multimodal stands with more complex procedures 

[21]. However, less has been done to estimate SSDs of boreal mixedwood forests, which can have 

both simple and irregular distributions in neighboring stands, making them more difficult to predict 
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[14], and estimation of stand modality with ALS has been limited to vertical forest structure (e.g. 

[28,29]). In the case of forests varying between unimodal and multimodal SSDs, the thresholds for 

applying different fitting techniques is also poorly understood. Landscape-scale evaluation of 

modality in predicting SSD in mixedwood stands can provide valuable insights into the complexity 

of these forests.  

In this paper, we evaluate the efficacy of ALS metrics to first differentiate plots with unimodal 

and multimodal SSDs and then to predict parameters of those distributions. Using both ground plot 

measurements and ALS estimates of plot structural characteristics (e.g., height or age), we investigate 

the capacity of ALS metrics to distinguish between areas with single or multimodal distributions and 

then apply ALS to predict SSDs with the distribution most appropriate to the characterized 

distribution type. We then compare ALS parameter estimates to fitted parameters and ground 

measured SSDs. Finally, we discuss the applications of this methodology and explain how estimates 

could be predicted across an entire area of interest. 

2. Materials and Methods  

2.1. Study Area 

The study area is an actively managed boreal mixedwood forest near Lesser Slave Lake in 

Alberta, Canada (Figure 1). The area is approximately 700,000 ha in size. Ten tree species were 

present, with white spruce (Picea glauca), black spruce (Picea mariana), trembling aspen (Populus 

tremuloides), and lodgepole pine (Pinus contorta) as the most common. The study area covers three 

natural subregions of Alberta—Central Mixedwood, Lower Foothills, and Upper Foothills. These 

regions receive approximately 600 mm of annual precipitation and have mean summer and winter 

temperatures of 20 °C and −21 °C, respectively [30]. Common disturbances include timber harvesting 

and fires, which are slightly less common than in other forested regions in Alberta. Ecology varies 

from mesic to wetland areas and features some of the most productive timber-producing areas in 

Alberta [28]. 

 

Figure 1. Map of the Slave Lake study area and sample plots (n = 71).  

2.2. Ground Plot Data 

The permanent sample plots (PSPs) employed (Table 1; Figure 1) were a component of the over 

650 PSPs established in Alberta since 1960 [31]. The PSPs were established to help understand the 

stand dynamics in all forest types in Alberta. Measurements included tree height, height to living 
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crown, DBH, species, and crown class for all trees on the plot >7 cm DBH. In addition, cores were 

taken from trees outside of a sample plot to assess the age structure of the stand. The PSPs are fixed-

radius plots with a radius of 11.28 m (400 m2). Measurements in the study area were taken between 

2006 and 2007. Only the PSPs that had 20 or more trees (n = 71) were used in the modeling, in order 

to be effective in predicting parameters for SSD functions that were representative of ground 

measured SSDs [32]. 

Table 1. Summary of plot measurements (n = 71). 

Characteristic Minimum 
1st 

Quartile 
Median 

3rd 

Quartile 
Maximum Mean 

Std. 

Deviation 

Lorey’s Mean 

Height (m) 
6.13 12.71 15.99 19.83 28.39 16.27 4.97 

Quadratic 

Mean 

Diameter (cm) 

3.88 11.00 13.48 17.08 25.42 14.14 4.72 

Age 27.6 53.27 70.19 126.75 197.49 85.34 43.69 

Total Volume 

(m3) 
16.99 154.1 248.2 348.8 809.1 280.83 181.96 

Density (N/ha) 1075 1875 2650 3138 8325 2644 1194.65 

The bimodality coefficient [33] is a statistical approach to assessing a stand’s modality. It has 

also been used in botany [34] and psychology [35] and provides a measure from 0 (perfect 

unimodality) to 1 (perfect bimodality). A critical value of 5/9 (~0.5556) is used to distinguish bimodal 

(>5/9) from unimodal (<5/9) distributions [35]. We applied the bimodality coefficient to 71 PSPs and 

identified 23 (32%) as bimodal and 48 as unimodal with respect to SSD. 

2.3. ALS Data and Metrics  

ALS data were acquired for the study area between 2006 and 2008, with most coverage occurring 

in 2007. The data were collected with an Optech ALTM 3100 sensor flying at a height of either 1250 

m or 1400 m, and scan frequencies of 30 Hz and 33 Hz depending on the year flown (Table 2). The 

result was complete coverage of the study area with an average point density of 1.5 returns/m2.  

Table 2. Airborne Laser Scanning (ALS) acquisition characteristics. 

Characteristic 
Collection Year 

2006 2007–2008 

Sensor Optech ALTM 3100 

Flying Height 1250 m  1400 m 

Flight Speed 160 kts 

Pulse Repetition 

Frequency 
50 kHz 70 kHz 

Scan Frequency 30 Hz 33 Hz 

Scan Angle 50° 

Beam Divergence 0.3 mrad 

Average Point 

Density 
1.5 pts/m2 

ALS data processing began with separating point clouds into ground and non-ground returns 

based on adaptive Triangulated Irregular Network (TIN) models [36]. Next, point clouds were 
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normalized to heights above the ground surface before being clipped to the extent of sample plots. 

Metrics describing the vertical distribution of returns in each plot were calculated based on 

normalized ALS point clouds using FUSION [37] as well as the statistical software R [38] with the 

lidR package [39]. A suite of these metrics was selected to fully characterize the height, variability, 

cover, and structure of the area corresponding to each PSP (Table 3). ALS metrics were separated into 

categories of similar types: height (e.g., height of 50th percentile), cover (e.g., percent above 2 m), 

variance (e.g., standard deviation), and canopy structure (e.g., rumple).  

Table 3. ALS metrics used to predict probability density function (PDF) parameters. 

Metric Description Source Category 

P05 Height of the 5th percentile of returns 
McGaughey 2014 

[37] 
Height 

P25 Height of the 25th percentile of returns 
McGaughey 2014 

[37] 
Height 

P50 Height of the 50th percentile of returns 
McGaughey 2014 

[37] 
Height 

P75 Height of the 75th percentile of returns 
McGaughey 2014 

[37] 
Height 

P95 Height of the 95th percentile of returns 
McGaughey 2014 

[37] 
Height 

Std. Dev. Standard deviation of return heights 
McGaughey 2014 

[37] 

Variability of 

Heights 

Variance Variance of return heights 
McGaughey 2014 

[37] 

Variability of 

Heights 

IQ Interquartile range of return heights 
McGaughey 2014 

[37] 

Variability of 

Heights 

Skewness Skewness of return heights 
McGaughey 2014 

[37] 

Variability of 

Heights 

Kurtosis Kurtosis of return heights 
McGaughey 2014 

[37] 

Variability of 

Heights 

AAD Average absolute deviation of return heights 
McGaughey 2014 

[37] 

Variability of 

Heights 

Median Median of return heights 
McGaughey 2014 

[37] 

Variability of 

Heights 

% First Returns 

Above 2 m 
Percent of first returns above 2 meters 

McGaughey 2014 

[37] 
Cover 

% All Returns 

Above 2 m 
Percent of all returns above 2 meters 

McGaughey 2014 

[37] 
Cover 

0.5 m–2 m Return 

Proportion 
Proportion of returns between 0.5 and 2 m 

McGaughey 2014 

[37] 
Cover 

2 m–5 m Return 

Proportion 
Proportion of returns between 2 and 5 m 

McGaughey 2014 

[37] 
Cover 

5 m–10 m Return 

Proportion 
Proportion of returns between 5 and 10 m 

McGaughey 2014 

[37] 
Cover 

10 m–20 m Return 

Proportion 
Proportion of returns between 10 and 20 m 

McGaughey 2014 

[37] 
Cover 

Rumple Ratio of canopy surface area to plot area 
Kane et al. 2010 

[40] 
Structure 

Filling Ratio 
Proportion of returns in voxels under the 

canopy 

Tompalski 2012 

[41] 
Structure 

VCI 
Vertical complexity index—distribution of 

abundance of returns in specified height bins 

Van Ewijk et al. 

2011 [42] 
Structure 

Vertical Rumple 
Measure of variance of vertical structure as a 

function of filled voxels in point cloud 

Tompalski et al. 

2015 [43] 
Structure 

LAD CV 

Coefficient of variation of leaf area density—

vertical dispersion of foliage density through 

the canopy 

Bouvier et al. 2015 

[44] 
Structure 
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Filling ratio (FR) is a proportion of filled voxels under the canopy [41]. Voxels are volumetric 

pixels—cubic bins of a pre-defined size (e.g. 1 m × 1 m × 1 m), which, when stacked, cover the entire 

three-dimensional extent of the ALS point cloud [45].  

 
𝐹𝑅 =  

𝑉𝑉𝐸𝐺

∑ ∑ 𝐻𝑀𝐴𝑋𝑖𝑗 − 𝐻𝐺𝑖𝑗

𝑗𝑚𝑎𝑥
𝑗=1

𝑖𝑚𝑎𝑥
𝑖=1

 , (1) 

where VVEG is the volume of vegetation (represented as the volume of voxels with returns), 𝐻𝑀𝐴𝑋𝑖𝑗 is 

the maximum voxel height for ij, and 𝐻𝐺𝑖𝑗  is the ground height of point ij (a value of 0 in normalized 

point clouds).  

2.4. Analysis Approach 

Figure 2 summarizes the workflow applied. The measured trees within each ground plot were 

first combined into 2-cm diameter classes and classified as either unimodal or bimodal using the 

bimodality coefficient. Then, various stand characteristics, measured on plots and predicted using 

ALS, were assessed for their ability to identify the plots as either unimodal or bimodal. Once the best 

ALS metric for identification was determined, it was used to categorize plots for estimation of SSD 

parameters by ALS. Field-based SSDs on classified plots were used as response data for prediction 

with ALS metrics. Each of these steps is described in further detail below. 

2.5 Differentiation of Modality in Stem Size Distributions 

Stands classified as multimodal are thought to be highly variable and structurally 

heterogeneous, and this heterogeneity has been quantified in different ways (Table 4). We examined 

how effective each of the characteristics identified in Table 4 were for differentiating between 

unimodal and bimodal SSD using both ground measurements and ALS-derived predictions of the 

five characteristics for differentiation. In an operational context, the use of a single ALS metric would 

be advantageous if it could be used as an effective heuristic to identify unimodal and bimodal grid 

cells, because a single metric would be available wall-to-wall (wherever ALS data is acquired), would 

be generated as a standard preliminary processing step for an area-based approach (described 

below), and would require no ground samples or additional modelling.  

Table 4. Published predictors of multimodal diameter distributions and how they are used to classify 

bimodal plots. DBH, diameter at breast height. 

Differentiation Source Quantified as 

Uneven-aged stands Zhang et al. 2001 [13] Std. dev. of ages (SDA) 

Mixed-species stands Liu et al. 2002 [14] % Dominant species 

Density/Height Ratio Thomas et al. 2008 [15] N/top height (D/H) 

Multilayered Podlaski 2010 [11] 
Std. dev. of heights 

(SDH) 

Varied diameters 
Maltamo and Gobakken 2014 

[12] 

Std. dev. of DBHs 

(SDDBH) 
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Figure 2. Workflow for differentiating bimodal plots and estimating stem size distribution (SSD) 

parameters with ALS. 

First, as a baseline, five ground-measured characteristics were assessed for their ability to 

discriminate unimodal and bimodal plots. Next, using an area-based approach, predictive models 

were developed to estimate each of the five ground-measured characteristics in Table 4 using ALS 

metrics (Table 3) as predictors and the ground-measured characteristics as response variables. 

Models were built using stepwise linear regression, and final models were selected based on 

combinations of up to three metrics (to avoid overfitting) that captured the most variation in the 

sample population. Predictor variables were selected so that those showing a strong correlation (r > 

0.8; [46]) with each other or coming from the same category of descriptors were not included in the 

same model. The accuracy of area-based models for each of the aforementioned characteristics was 

assessed in terms of an adjusted r2 and relative Root Mean Square Error (RMSE) for all sample plots. 

Finally, individual ALS metrics were used to differentiate SSD modality. 

2.6. Accuracy of Modality Differentiation 

Modality differentiation was assessed by determining the overall accuracy of the classification 

that each measure produced. The classification accuracy was defined as the percentage of all PSPs 

that were correctly classified as either unimodal or bimodal. This was assessed for each characteristic 

and ALS metric, and allowed for consistent comparison between structural characteristics and 

individual metrics. A successful classification was defined as a statistically significant improvement 

from no classification (i.e. if we assume all plots are unimodal). The exact binomial test was used to 
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assess the statistical difference between each classification method and the classification of all plots 

as unimodal [47].  

2.7. Predictive Modeling of SSD Parameters Using ALS Metrics 

Once a SSD of a plot was classified as either unimodal or bimodal using the most accurate ALS 

model, a structurally appropriate distribution function was fit to the ground-measured SSD (Figure 

3). As complete data in the study area exists for trees > 7 cm DBH, a truncated Weibull distribution 

was used for describing the SSD in unimodal stands, with the truncation point set at 7 cm [48]. While 

nonparametric imputations such as k-NN and Random Forest have been used to predict SSDs [49], 

these typically require large amounts of samples to be taken [50]. Instead, a Finite Mixture Model 

(FMM), which applies k separate distributions to k components of data that are split at statistical 

breakpoints, where k is the number of modes in the data [14], was used for the bimodal distributions 

(i.e., k = 2). Similar to Thomas et al. [15], separate Weibull distributions were fit using MLE. Once the 

parameters of the appropriate distributions were estimated from the measured DBHs, the parameters 

were used to develop area-based models from the ALS metrics in order to estimate the PDF 

parameters and the SSD across the management area.  

 

Figure 3. Weibull distributions (blue) best fit unimodal stands (left), while more complex 

distributions such as a Finite Mixture Model (green) best fit multimodal stands (right). 

2.8. Evaluation of SSD Parameters Using the Error Index (EI) 

To examine the fit of the ALS-predicted SSD to the original measured tree stem DBHs, the Error 

Index (EI) proposed by Reynolds et al. [51] was used. The EI reports the sum of observed differences 

in each class as a proportion of the number of trees at a site. The EI is a frequently used method of 

evaluating SSD functions, as it allows for comparison across different fitting techniques (e.g., [52]) or 

PDFs (e.g., [32]). Two different EI calculations were used—one to compare fits of ground-measured 

distributions (EIG, Equation 2) and one to compare fits of ALS-estimated distributions (EIALS, Equation 

3): 

 
𝐸𝐼𝐺 =  ∑ 100 |

𝑓𝑅𝐸𝐹 𝑖 − 𝑓𝑃𝐷𝐹 𝑖 

𝑛𝑅𝐸𝐹 𝑖
|

𝑚

𝑖=1

 , (2) 

 
𝐸𝐼𝐴𝐿𝑆 =  ∑ 100 |

𝑓𝑅𝐸𝐹 𝑖

𝑛𝑅𝐸𝐹 𝑖
−

𝑓𝐴𝐿𝑆 𝑖

𝑛𝐴𝐿𝑆 𝑖
|

𝑚

𝑖=1

 , (3) 

where fREFi is the measured frequency in DBH class i, fPDFi is the PDF-derived frequency in DBH class 

i, fALSi is the estimated frequency in DBH class i, nREFi is the total number of measured stems in class i, 

and nALS is the total number of estimated stems in class i. EIALS was determined following Packalén 

and Maltamo [19], with nALS determined using an area-based approach and the same variables used 

for the PDF parameter estimation. Both error indices range from 0, indicating a perfect fit, to 200, 

indicating non-overlapping distributions. 

  



Forests 2018, 9, 95  9 of 15 

 

3. Results 

3.1. Differentiation of Modality in Stem Size Distributions 

Most of the metrics and models were successful in differentiating plots into either unimodal or 

bimodal distributions (Table 5). SDDBH and the SDH had the highest overall classification accuracy 

(70.4% and 67.6%, respectively) of the ground-measured metrics, while the SDA and % dominant 

species had the lowest accuracy (both 59.2%).  

Table 5. Accuracy of bimodal plots classification using ground measurements, ALS predictions, and 

corresponding ALS metrics.  

 Differentiation Overall Accuracy 
ALS Prediction Accuracy 

Adj. r2 % RMSE 

P
lo

t 
D

at
a 

SDA 59.2 - - 

% Dominant Species 59.2 - - 

D/H 64.8 - - 

SDH 67.6 - - 

SDDBH 70.4 - - 

A
L

S
 P

re
d

ic
ti

o
n

s SDA 66.2 0.059 88.4 

% Dominant Species 63.4 0.155 27.3 

D/H 74.7 * 0.600 43.8 

SDH 67.6 0.694 25.7 

SDDBH 74.7 * 0.640 31.2 

A
L

S
 M

et
ri

cs
 

Variance 77.5 * - - 

Kurtosis 46.5 - - 

Canopy Relief Ratio 57.8 - - 

% All Returns >2 m. 63.4 - - 

Filling Ratio 66.2 - - 

Rumple 74.7 * - - 

* indicates a significant improvement from no classification (i.e. assuming all plots are unimodal). SDA is the 

standard deviation of ages, D/H is the density divided by top height, SDH is the standard deviation of ages, 

and SDDBH is the standard deviation of DBH’s. 

Characteristics related to tree size variability (SDH, SDDBH, D/H) were most accurately predicted 

by ALS (Adj. r2 > 0.6), while as expected, characteristics not related to tree dimensions (SD A , % 

dominant species) had poorest predictions (Adj. r2 < 0.2). In terms of their capacity to discriminate 

modality, the best ALS-predicted characteristic was SDDBH (74.7%), while the poorest was % dominant 

species (63.4%). Of the individual ALS metrics used to differentiate modality, the variance of ALS 

return heights was the most accurate (77.5%) and provided the most accurate differentiation overall. 

The variance of ALS return heights was therefore selected for differentiating modality for the 

remainder of the study. 

3.2. Predictive Modeling of SSD Parameters Using ALS Metrics 

The adjusted r2 values for the predicted Weibull and FMM parameters were similar (0.5–0.6) 

with the exception of the unimodal shape parameter and the shape parameter for the second group 

of the FMM (0.3925 and 0.2019, respectively; Table 6). Although each of the metrics in Table 3 was 

used in at least one predictive model, some appeared more frequently than others. The most 

frequently used metrics were P95, Kurtosis, % All Returns Above 2 m, and the Filling Ratio. 
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Table 6. Prediction accuracy of SSD parameters for unimodal (n = 48) and bimodal (n = 23) plots as 

differentiated by ALS. 

Parameter 
Prediction Accuracy 

Adj. r2 % RMSE 

U
n

im
o

d
al

 

Shape 0.3925 23.26 

Scale 0.6271 30.39 

B
im

o
d

al
 Shape1 0.5497 30.25 

Scale1 0.5898 32.86 

Shape2 0.2019 33.93 

Scale2 0.5203 29.81 

% over breakpoint 0.5389 42.91 

3.3. Accuracy of Predicted Distributions 

Using a mixture model on bimodal plots resulted in a higher accuracy than using a unimodal 

distribution on all plots for both ground-measured and ALS-predicted parameters (Table 7; Figure 

4). For ground-measured plots, the mean EIG was 28.20 using mixture models and unimodal 

distributions when appropriate, while only using a unimodal distribution would have resulted in an 

EIG value of 31.24. Similarly, the mean EIALS was 49.13 after differentiating modality, while predicting 

only a unimodal distribution on all plots would have resulted in a mean EIALS value of 51.31. Plots 

deemed bimodal based on ground measurements and ALS predictions had higher mean error values 

than unimodal plots, with a difference of 9.01 between EIG values and 19.35 between EIALS values. 

Table 7. Measured (EIG) and predicted (EIALS) values on sample plots, showing differences in 

unimodal and bimodal plots. 

 

Ground 

estimates 

(EIG) 

ALS 

predictions 

(EIALS) 

Mean EI (unimodal plots) 25.29 42.86 

Mean EI (bimodal plots) 34.30 62.21 

Mean EI (all plots) 28.20 49.13 

Mean EI (unimodal Weibull on all plots) 31.24 51.31 
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Figure 4. Examples of measured and predicted curves following correct and incorrect differentiation 

on four plots. 

4. Discussion 

4.1. Differentiation of Modality in Stem Size Distributions 

The fact that neighboring stands in the boreal mixedwood forest can have vastly different 

structures requires flexible and spatially detailed approaches to SSD estimation. Field campaigns to 

measure SSD across large, diverse, and often remote areas are not feasible given constraints on time 

and resources. In addition, a priori knowledge of an appropriate PDF to use for fitting the SSD would 

be valuable when operating in structurally diverse areas. The methodology outlined in this study 

provides the ability to quickly and effectively characterize diverse forests over large spatial extents 

by providing detailed measures of the vertical distribution of vegetation over large areas using ALS 

data.  

The ground-measured variables best able to differentiate bimodal distributions were those 

relating to tree sizes, such as SDH and SDDBH. This is consistent with estimating SSD, which represents 

the variation in tree DBH. If a stand has highly variable tree sizes, there will be a correspondingly 

large variance in DBHs and heights, likely reflecting in a multimodal SSD. Age variability and species 

mixtures provided less accurate differentiations, as maturing stand structure depends more on 

disturbance trends and ecological legacies than species or age differences [16,17].  

Likewise, the most accurate ALS predictions of plot characteristics came from those related to 

tree size. This was expected, as ALS metrics best characterize physical structure and have more 

difficulty in estimating intrinsic characteristics such as the age or species of a tree. While attributes 

such as the percent dominant species and the SD of ages can be used to classify bimodal plots at the 

ground level, they are not predicted very accurately with ALS, which limits their use at an operational 

capacity. The variance of ALS heights performed the best in classifying bimodal plots and was chosen 

as the preferred determinant of modality in this study. This metric is commonly calculated as part of 

the standard suite of ALS metrics generated from software packages such as LAStools [53] and 

FUSION [37]. Consequently, it is easily generated, accessible, and readily interpretable as a heuristic 

for distinguishing modality. While alternative approaches to modality characterization could include 
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logistic regression or other modeling techniques, the parsimony, consistency, and transferability of a 

single metric makes our approach more applicable in other study areas and research. Further work 

could investigate more detailed ALS-based stratification of the study area to appropriately model 

other forest characteristics in addition to SSD. 

4.2. Predictive Modeling of SSD Parameters Using ALS Metrics 

The parameters of the Weibull and FMM distributions were predicted well using ALS-derived 

metrics. Thomas et al. [15] predicted Weibull and FMM parameters using ALS in a similar study area 

and achieved similar or slightly more accurate results for parameter predictions. However, their 

study first stratified by species and structural groups and predictive models included up to seven 

variables, whereas we used no more than three input variables in our models and did not stratify by 

species groups. Applying predictions across the landscape using the approach of Thomas et al. [15] 

would require the availability of reliable species information at the same spatial resolution as the ALS 

data, which can be difficult or expensive to acquire. Likewise, the current capacity of ALS does not 

allow for accurate and spatially detailed species characterization, making stratification by species 

often not feasible.  

There was a large difference in prediction accuracy among parameters of the same model. Given 

the pulse density of our ALS data and the number of sample plots that were available, it was difficult 

to accurately predict all five FMM parameters, and these distributions had a wide range of resulting 

curves. In a few cases, the resulting distribution was one that imprecisely characterized the ground-

measured SSD. However, ALS data with higher point densities should be able to capture more 

variation within sample plots and more accurately characterize bimodal plots.  

4.3. Accuracy of Predicted SSDs 

The aforementioned discrepancies in prediction accuracy of SSD parameters likely compounded 

the errors of distributions fitted to ALS data. Thus, the mean EIALS value for bimodal plots was slightly 

higher than that for unimodal plots. However, the methodology used in this study produced more 

accurate results in terms of both EIG and EIALS than if all plots had been classified as unimodal. The 

difference in EIALS values was relatively low for predicted distributions and slightly higher for 

measured distributions; this suggests that the accuracy of a predicted SSD decreases with decreasing 

parameter prediction accuracy. Thomas et al. [15] did not report EI values; however, a study by 

Tompalski et al. [43] reported similar EIALS values to those reported herein when predicting SSD for 

unimodal distributions. Tompalski et al. [43] scaled EI values by 0.5 while we used 100 (Equation 3). 

When correcting for this difference in scale, our mean EIALS values were slightly more accurate than 

those reported by Tompalski et al. [43], whose mean value was 71.6. 

4.4. Model Application 

Unless a stand is small or completely homogeneous, a single plot-level SSD will likely not be 

representative of SSD for the stand [54]. Therefore, techniques for the aggregation of predictions from 

cell-level SSD are necessary to generate a stand-level SSD. One such approach involves summing 

predicted SSDs from each grid cell composing a delineated stand [55]. More complex approaches 

involve multidimensional scaling [56], in which an estimator can be used for extrapolation to larger 

units, or segmenting areas into smaller units such as microstands, which are areas grouped by similar 

ALS-predicted attributes such as volume and height [57]. If stand-level predictions are the desired 

result, a final aggregation step should be used to scale up from cell-level predictions; however, this 

was beyond the scope of the current study and SSD predictions remained at the cell level. 

5. Conclusions 

The structurally complex SSDs that exist in the boreal mixedwood forest should be fit with 

correspondingly complex distribution models. The difference in structures among stands requires 

detailed, landscape-level information to guide the fitting and modeling process. In order to meet the 
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scope and detail needed for accurate forest management decisions, we used ALS as a means of 

differentiating and predicting SSD parameters in a boreal mixedwood forest. The differentiation step 

allowed us to fit structurally appropriate SSDs to respective stands and allowed for more robust 

characterizations of SSD than using a single model for the entire study area. For forest professionals 

who rely on detailed stand-level information, differentiating bimodal areas and their subsequent 

characterization by FMMs should provide insights into stand characteristics that would lead to more 

informed decisions and more accurate understanding of stand structure in complex habitats. 
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