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Abstract: Accurate in situ leaf area index (LAI) estimates of forest plots are required to validate
currently-used LAI map products. Woody-to-total area ratio (α) is a crucial parameter in converting the
plant area index estimates of forest plots obtained by optical methods into LAI. Although optical methods
for estimating the α of forest canopy have been proposed, their performance has never been assessed.
In this study, five Larix gmelinii Rupr. forest plots with contrasting plot characteristics (i.e., tree age, tree
height, management activities, stand density, and site conditions) were selected. The performance of two
commonly used optical methods, namely, multispectral canopy imager (MCI) and digital hemispherical
photography (DHP), in estimating the α of L. gmelinii forest plots was evaluated by using the reference
α of the selected forest plots. The reference α of forest plots was measured via destructive method by
harvesting two or three representative trees in each plot. Large variations were observed amongst the
reference α of the selected forest plots (ranging from 0% to 56%). These α were also highly correlated
with the site conditions and management activities in these plots. The effective α (αe) or α estimated
using the leaf-on and leaf-off periods MCI or DHP images with or without consideration of the clumping
effects of canopy element and woody components were 1.57 to 4.63 times the reference α in the five plots.
The overestimation of α or αe was mainly caused by the preferential shading of woody components by the
shoots in the leaf-on canopy. Accurate α estimates for the L. gmelinii forest plots with errors of less than
20% can be obtained from MCI when the clumping effects of canopy element and woody components
are considered in the estimation.

Keywords: woody-to-total area ratio; plant area index (PAI); leaf area index (LAI); woody area
index (WAI); digital hemispherical photography; multispectral canopy imager; clumping effect;
forest canopy

1. Introduction

Leaf area index (LAI) is typically used in many models to describe vegetation–atmosphere
interactions as crucial variable controlling processes, such as photosynthesis, respiration, and rain
interception [1]. LAI is defined as half of the total green leaf area per unit of the flat ground area [2,3].
LAI can be measured in situ and retrieved from remote sensing images. In situ LAI measurements
usually provide LAI estimates at the plot scale (e.g., 20 × 20–100 × 100 m). By contrast, LAI maps
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provide LAI estimates at the regional, national and global scales. Over the past two decades, several
commonly used LAI map products have been published, including CYCLOPES [4], GLOBCARBON [5],
GLASS [6], MODIS [7], and GEOV1 [8]. However, several studies highlighted huge differences amongst
these products [9–12]. Therefore, accurate and reliable in situ LAI measurements are needed to assess
and improve the accuracy of these products and for them to match the accuracy requirements of
several applications, such as the Global Climate Observing System (GCOS). The GCOS has specified
that LAI map product values must be within 20% of in situ LAI measurements and be improved to
within 5% for future applications [1,13].

Methods for estimating in situ LAI measurements can be categorized into direct and indirect methods.
On the one hand, direct methods are time consuming, laborlabor-intensive and can sometimes be
destructive to canopies [14]. On the other hand, indirect methods are widely used for estimating in situ LAI
of vegetation canopies due to their high efficiency, low cost, and nondestructiveness [15]. Amongst these
methods, the optical ones are most commonly used, including digital hemispherical photography (DHP),
LAI-2000/LAI-2200 (Li-Cor, Lincoln, NE, USA), tracing radiation and architecture of canopies (TRAC) (3rd
Wave Engineering, Winnipeg, Manitoba, Canada), HemiView (Dynamax, Houston, TX, USA), SunScan
(Delta-T Devices, Cambridge, UK), multispectral canopy imager (MCI) [14], and multiband vegetation
imager (MVI) [15]. In situ LAI measurements can be estimated based on the gap fraction or radiation
attenuation measurements collected by using optical methods. For forests, the gap fraction or radiation
attenuation measurements collected by optical methods include the contribution of leaves or shoots and
woody components (e.g., stems, branches, flowers, and fruits). Therefore, the estimates derived from
indirect methods are plant area index (PAI) instead of LAI. PAI is the sum of LAI and woody area index
(WAI). Optical methods require a parameter called woody-to-total area ratio (α = WAI/PAI) [16] to
convert PAI into LAI.

The direct method estimates the α of forest canopies by directly measuring the α of several
representative trees in the plots via destructive methods [16]. However, this method is labor-intensive
and time-consuming and has been rarely used in practice [14]. The indirect methods for estimating the
α of forest canopies mainly include optical methods, such as LAI-2000/LAI-2200 [17,18], DHP [19,20],
MCI [14], and MVI [21]. Amongst these methods, LAI-2000/LAI-2200 and DHP estimate the α of forest
canopies based on the gap fraction or radiation attenuation measurements collected at leaf-on and
leaf-off periods [17–20]. Meanwhile, the effective WAI (WAIe) obtained from LAI-2000/LAI-2200 or
DHP at leaf-off period forest canopies is represented as the WAIe of leaf-on period forest canopies in
estimating α [17–19]. Other studies have estimated the α of forest canopies by calculating the ratio of
pixel numbers between woody components and the sum of leaves or shoots and woody components
in a group of single-channel DHP images [13,22]. However, these traditional optical methods are
unable to discriminate leaves or shoots, branches, stems, fruits and sky. Two multispectral canopy
imaging devices (i.e., MVI and MCI) have been developed and applied to estimate α based on the
special spectral characteristics of canopy element at visible (VIS) and near-infrared (NIR) bands [14,21].
Previous studies have reported a wide range and relatively large values of α (ranging from 0.03 to
0.41) [14,17,18,23,24]. Therefore, ignoring α can result in approximately 3% to 40% estimation errors in
LAI estimates obtained by optical methods. Thus, α must be considered in the in situ LAI estimation
of forest canopies.

Although several optical methods have been developed for estimating the α of forest canopies,
no study has evaluated the estimation performance of those methods. Moreover, three aspects of those
methods require further investigation. Firstly, a constant α value is often used in estimating the LAI of
forest plots with the same tree species [16,25]. However, the variations in the α of plots with the same
tree species yet varying stand densities, tree ages, site conditions and management activities are often
ignored and whether such variations can be accepted for obtaining accurate in situ LAI measurements
is yet to be verified. Secondly, for most natural forest canopies, the spatial distribution of the canopy
element and woody components in the space largely deviates from the random distribution assumed
by the inversion models used by optical methods. Zou et al. reported that the most effective plant area
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index (PAIe) and WAIe estimates derived from optical methods are 35% to 75% and 63% to 90% of the
PAI and WAI of leaf-on and leaf-off forest scenes, respectively [15]. Therefore, the clumping effects
of canopy element and woody components should be considered in estimating the PAI and WAI of
forest canopies. However, no study has evaluated how the clumping effects of canopy element and
woody components influence the α estimation of forest plots. Thirdly, several optical methods have
been developed for estimating the α of forest canopies. Some studies have attempted to cross-compare
the α estimates obtained by different optical methods [19,20]. However, to the best of our knowledge,
no study has attempted to validate the estimation performance of those methods based on the α

estimates obtained by direct methods, such as the destructive method.
In this study, five permanent Larix gmelinii Rupr. plots, with varying tree ages, tree heights,

stand densities, and site conditions, were selected as elementary sampling units to validate LAI map
products. The reference α of each plot was obtained by using the destructive method and the variations
amongst the α the five selected forest plots were analyzed. Two classical optical methods (i.e., MCI and
DHP) were used to simultaneously estimate the α of these five sites. Factors that affect the estimation
performance of MCI and DHP to estimate the α forest plots were analyzed, including inversion model
and the clumping effects of canopy element and woody components. The α estimates derived from
DHP and MCI were compared with those obtained by the destructive method. The performance of
these two optical methods was evaluated afterwards to determine the best method for estimating the α

of L. gmelinii forest plots.

2. Theory

2.1. Effective PAI (PAIe), Effective WAI (WAIe), PAI, and WAI

The PAI of leaf-on forest canopies can be estimated by inverting Beer’s law based on the gap
fraction measurements [15,26,27] as follows

PAI =
−ln(pe(θ))cos(θ)γe

Ge(θ)Ωe(θ)
(1)

where pe(θ), Ge(θ), and Ωe(θ) are the canopy element gap fraction, canopy element projection
coefficient and canopy element clumping index (Ωe) at zenith angle θ. γe is the needle-to-shoot
area ratio for quantifying the effect of needle clumping within a shoot.

Previous studies have reported that the Ge(θ) of leaf-on forest canopy is approximately intersected
at the zenith angle near 57.3◦ and can be assumed to be equal to 0.5 at such zenith angle [13,15,28].
Therefore, many studies have attempted to estimate the LAI and PAI of forest canopies based on
the Beer’s law and gap fraction measurements collected at this zenith angle or the narrow zenith
angle ranges near 57.3◦ [13,15,27,29,30]. The PAI of leaf-on forest canopies can be calculated based on
Equation (1) as follows (57.3)

PAI57.3 = −2ln(pe(57))cos(57)γe/Ωe(57) (2)

where pe(57) and Ωe(57) denote the canopy element gap fraction measurements and the Ωe estimates
obtained at zenith angle 57◦ or the narrow zenith angle ranges near 57◦, respectively.

Aside from Beer’ law, the PAI of leaf-on forest canopies can be estimated based on Miller
theory [31] without prior knowledge of Ge(θ) (Miller):

PAIMiller = −2
∫ π

2

0

ln[pe(θ)]γe

Ωe(θ)
cos(θ)sin(θ)dθ (3)
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Based on the gap fraction measurements collected from the five annuli of LAI-2000/LAI-2200,
a modified Miller theory was used to estimate the PAI of leaf-on forest canopies [15,32] (LAI-2200):

PAILAI−2200 = −
5

∑
i=1

ln[pe_i(θi)]γecos(θi)Wi
Ge_iΩe_i

(4)

where θi is the center zenith angle of the ith annulus and pe_i(θi), Ge_i, and Wi are the canopy
element gap fraction, canopy element projection coefficient, and weight factor of the ith annulus,
respectively. Ωe_i and Ge_i were calculated by averaging the Ωe(θ) and Ge(θ) estimates with the
zenith angles covered by the ith annulus, respectively. The zenith angle ranges of the five annuli of
LAI-2000/LAI-2200 were 0–13◦, 16–28◦, 32–43◦, 47–58◦ and 61–74◦, respectively [15,32]. Wi can be
calculated as follows

Wi = sin(θi)dθi (5)

When normalised to 1.0, the values of Wi in Equation (5) were computed as 0.041, 0.131, 0.201,
0.29, and 0.337, which correspond to the five annuli with center zenith angles of 7◦, 23◦, 38◦, 53◦,
and 68◦, respectively [15].

The modified Miller theory also can be adopted by MCI to estimate the PAI of leaf-on forest
canopies (MCI_0-85) as follows

PAIMCI0−85 = −
9

∑
i=1

ln[Pe_i(θi)]γecos(θi)Wi
Ge_iΩe_i

(6)

By using Equation (5), the Wi for the nine annuli of MCI were computed as 0.0038, 0.0303, 0.0596,
0.0872, 0.1120, 0.1335, 0.1510, 0.1640, and 0.2750 whilst the zenith angle ranges covered by these annuli
were 0–5◦, 5–15◦, 15–25◦, 25–35◦, 35–45◦, 45–55◦, 55–65◦, 65–75◦, and 75–85◦.

If the beyond- (Ωe) and within-shoot clumpings (γe) are not considered in estimating the PAI
of leaf-on forest canopies (where Ωe(θ), Ωe(57), Ωe_i, and γe are assumed to be equal to 1, then
the estimates derived from Equations (2), (3), (4), and (6) are PAIe_57.3, PAIe_Miller, PAIe_LAI−2200,
and PAIe_MCI_0−85, respectively. Given that the spatial distribution of the canopy element for most
natural forest canopies usually deviates from the random distribution. Optical methods usually
fail in detecting small gaps between needles within shoots [14,33]. Therefore, both Ωe and γe

should be considered in estimating the PAI of leaf-on forest canopies. Several algorithms have
been developed to estimate the Ωe and woody components clumping index (Ωw) of leaf-on and leaf-off
forest canopies, including logarithmic averaging (LX) [34], modified logarithmic averaging (LXW) [35],
gap size distribution (CC) [36,37], modified gap size distribution (CMN) [38], combination of gap
size and logarithmic averaging (CLX) [39], and Pielou’s coefficient of spatial segregation (PCS) [40].
Previous studies show that PCS tend to produce error Ωe and Ωw estimates [15,35,38]. Moreover, high
similarities are observed between CC and CMN as well as between LX and LXW [15]. For conciseness,
only the three algorithms of CC, LX and CLX recommended by Zou et al. [15] were used in this study.
Table 1 presents the Ωe and γe estimation formulae used in this study.
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Table 1. The Ωe and γe estimation formulae used in this study. Fm(0, θ) is the measured total gap
fraction of the canopy element at zenith angle θ (i.e., accumulated gap fraction from the largest to
the smallest gaps), Fmr(0, θ) is the total gap fraction after removing those large gaps resulting from
the nonrandom distribution of the canopy element [14,36,41], pe(θ) is the mean canopy element gap
fraction of all segments at θ, ln[pe(θ)] is the mean logarithmic canopy element gap fraction for all
segments at θ [34,41], n is the number of segments, pe_k(θ) is the canopy element gap fraction of
segment k, Ωe_CC_k(θ) is the Ωe of segment k at θ estimated by CC [35,39], and An is half of total needle
area in a shoot. Ap(0◦, 0◦), Ap(45◦, 0◦), and Ap(90◦, 0◦) are the shoot projection areas measured by
projecting the shoot at zenith angles 0◦, 45◦, and 90◦ and azimuth angle 0◦, respectively [16]. γ is the
effective needle-to-shoot area ratio derived based on the Ap(0◦, 0◦), Ap(45◦, 0◦), Ap(90◦, 0◦), and An

of each shoot sample. γe is the needle-to-shoot area ratio that corrects the overestimation of γ for
woody components in estimating the PAI of leaf-on forest canopies [14].

Equation References

Ωe_CC(θ) =
ln(Fm(0,θ))
ln(Fmr(0,θ)) ∗

[
1 + Fm(0,θ)−Fmr(0,θ)

1−Fm(0,θ)

]
(7) [36]

Ωe_LX(θ) =
ln[pe(θ)]
ln[pe(θ)]

(8) [34]

Ωe_CLX(θ) =
nln[pe(θ)]

∑n
k=1 ln[pe_k(θ)]/Ωe_CC_k(θ)

(9) [39]

γ = An
Ap (0◦ ,0◦ )∗cos(15◦ )+Ap (45◦ ,0◦ )∗cos(45◦ )+Ap (90◦ ,0◦ )∗cos(75◦ )

cos(15◦ )+cos(45◦ )+cos(75◦ )
(10) [16]

γe = 1 ∗ WAI
PAI + γ ∗ [PAI − WAI]/PAI (11) [14]

In this study, the equations used for estimating WAIe_57.3, WAIe_Miller, WAIe_LAI−2200,
WAIe_MCI_0−85, WAI57.3, WAIMiller, WAILAI−2200, and WAIMCI_0−85 of leaf-off forest canopies are
the same as those used for estimating PAIe_57.3, PAIe_Miller, PAIe_LAI−2200, PAIe_MCI_0−85, PAI57.3,
PAIMiller, PAILAI−2200, and PAIMCI_0−85, respectively. Similarly, the equations used for estimating
Ωw_CC(θ), Ωw_LX(θ), and Ωw_CLX(θ) of leaf-off forest canopies are the same as those used for
estimating Ωe_CC(θ), Ωe_LX(θ) and Ωe_CLX(θ), respectively.

2.2. Effective Woody-to-Total Area Ratio (αe) and Woody-to-Total Area Ratio (α)

If Ωe and Ωw are not considered in estimating the α of leaf-on forest canopies, then the estimates
derived from optical methods are computed as αe (effective woody-to-total area ratio) [14,19,42]:

αe = WAIe/PAIe (12)

Sea et al. [22] proposed another method to estimate the αe of leaf-on forest canopies based on the
canopy and woody component cover fractions ( fc and fw) as follows (percentage)

αe = fw/fc (13)

where fc is the ratio of the total pixel numbers of leaves or shoots and woody components to the pixel
number of the classified DHP or MCI images, whereas fw is the ratio of the pixel number of woody
components to the pixel number of classified DHP or MCI images [13,22].

If Ωe and Ωw are considered in estimating the α of leaf-on forest canopies, then α can be estimated
as follows

α = WAI/PAI (14)

where PAI and WAI are were obtained from DHP or MCI.
For the destructive method, harvesting all trees in each forest plot is impossible, especially for

those plots that have been established as long-term observation plots for validating LAI map products.
Some studies have attempted to estimate the α of forest plots based on the α of several harvested trees
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located in or nearby these plots [16,23,43]. This study also applied such method to estimate the α of
forest plots based on the α of destructive trees and the basal area of the trees in these plots:

α =
Bd

Bd + Bc + Bs
αd +

Bc

Bd + Bc + Bs
αc +

Bs

Bd + Bc + Bs
αs (15)

where Bd, Bc, and Bs are the basal area of the dominant, codominant and suppressed trees in the
plots, respectively; and αd, αc and αs are the estimated α of the representative dominant, codominant,
and suppressed trees as measured by the destructive method, respectively.

3. Materials and Methods

3.1. Plots Description

The five forest plots selected in this study are located in the Saihanba National Forest Park in Hebei
Province, China (Figure 1). These plots are monocultural with a flat terrain and a size of 25 m × 25 m.
Forest inventories were carried out during the LAI measurement campaign (Table 2). For plots 1 and
2, the majority of the branches below the live canopies were harvested during the selective thinning
performed in the winter of 2014. For plots 3 and 4, the dead branches with heights of less than about
2.5 m were low- and medium-level harvested before the LAI measurement campaign, respectively.
For plot 5, all branches of forest canopies were not harvested before the LAI measurement campaign.
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Table 2. Characteristics of Larix gmelinii Rupr. plots.

Plot 1 Plot 2 Plot 3 Plot 4 Plot 5

Longitude and latitude 42◦24’43” N,
117◦19’4” E

42◦24’2” N,
117◦18’40” E

42◦18’2” N,
117◦18’9” E

42◦25’22” N,
117◦19’32” E

42◦17’42” N,
117◦16’53” E

Mean tree height (m) * 19.43 20.4 12.58 13.31 8.73
Average DBH** (cm) 26.58 27.22 12.71 14.14 9.23

Mean element width (mm) 21.66 23.34 17.91 21.09 17.60
Stand density (stems/ha) 464 384 2320 1760 3904

Tree age (~years) 54 55 21 22 13
Needle-to-shoot area ratio (γe) 1.30 1.17 1.14 1.17 1.28

Tree species Larix gmelinii

* The height of trees in each plot was measured based the point cloud dataset collected using the terrestrial laser
scanner in the 2017 LAI measurement campaign. The height of each tree was computed as the vertical distance
between the highest point of the tree and the lowest point of the stem located close to the ground. ** Diameter at
breast height.

3.2. Mean Element Eidth and Needle-to-Shoot Area Ratio (γe) Measurement

The typical shoots used for measuring the mean element width and needle-to-shoot area ratio
were collected by using a ladder at the three height classes of forest canopies (i.e., top, middle and
bottom). Two to four shoot samples were randomly obtained at each height class of the five plots.
The mean element width of each shoot sample was calculated by using the method described in
Leblanc et al. [44]. The mean element width of each plot was derived by averaging the mean element
width estimates of all typical shoots in the plot.

The shoot projection areas were recorded by using a Canon 6D camera equipped with a Canon
24–70 mm lens and a flat, levelled white panel with two rulers laid on its top surface. Three shoot
projection images were obtained for each shoot by rotating the shoot main axis at zenith angles 0◦,
45◦, and 90◦ and azimuth angle 0◦. Ap(0◦, 0◦), Ap(45◦, 0◦), and Ap(90◦, 0◦) were obtained for each
shoot based on the three shoot projection images. The An of each shoot was measured by applying the
volume displacement method described in Chen et al. [33]. Afterwards, the γ of each typical shoot was
calculated by using Equation (10). The γ of each plot was estimated by averaging the γ of all sampled
typical shoots. The γe of each plot was calculated by using Equation (11) based on the γ and reference
α of the plot.

3.3. DHP Images Acquisition and Processing

A cross-pattern sampling scheme with nine sampling points (with a 5 m distance interval between
each sampling point, except for the central sampling point) was used to collect DHP images (Figure 2).
The sampling points were marked with wooden stakes to facilitate the two periods collection of leaf-on
and leaf-off DHP images at each sampling point. These DHP images were collected by using a Canon 6D
camera with a height of about 1.2 m and equipped with a Sigma 8 mm fisheye lens. The DHP images had
a resolution of 5472 × 3678 pixels. The exposure parameter was set manually to avoid the overexposure or
underexposure of DHP images. All images were collected before sunrise, after sunset, or under an overcast
sky. Both leaf-on and leaf-off periods DHP images were collected for each plot (Figure 3a,b, respectively).
The leaf-on period DHP images were collected between 11 August and 2 September 2017 at the maximum
PAI (maximum LAI) period of the five plots. The leaf-off period DHP images were collected between
28 October and 15 November 2017 at the minimum PAI (equals to WAI and the LAI equals to 0) of the five
plots. A total of 90 DHP images were obtained from these plots.

The DHP images were preprocessed by using the same procedure described in Gonsamo and
Pellikka [45]. The image preprocessing procedure includes cropping the circular areas of the DHP
images, selecting the blue channel, applying a correction for gamma, and thresholding to classify the
canopy element and sky. The in-house software called Measurement Tools of Vegetation Structural
Parameters (MTVSP, version 2018, Fuzhou, China), which was developed using the MATLAB
programming language, was used to calculate the pe(θ), pw(θ), Ωe, Ωw, WAIe, PAIe, WAI, and PAI of
the leaf-on and leaf-off forest plots based on the classified DHP images and MCI image pairs. For the
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DHP method, the calculation procedures for pe(θ), pw(θ), pe_i(θi), pw_i(θi), pe(57), and pw(57) were
the same as those described in Zou et al. [15]. An assumption of spherical projection function was
made for the canopy element (Ge) and woody components (Gw) projection functions in the PAI and
WAI estimation because no Ge and Gw measurements were collected in the field for the five plots.

For the DHP method, six segment sizes were used by LX (5◦, 15◦, and 30◦) and CLX (15◦, 30◦,
and 45◦) to estimate the Ωe and Ωw of leaf-on and leaf-off forest canopies. The reasons for selecting
the six segment sizes are explained in detail in Zou et al. [15]. Seven Ωe(θ) or Ωw(θ) estimates
were obtained by using CC, LX, and CLX at each zenith angle ranging from 10◦ to 90◦ with a 1◦

interval at each plot (one estimate for Ωe_CC(θ) or Ωw_CC(θ) and three estimates each for Ωe_LX(θ) and
Ωe_CLX(θ) or Ωw_LX(θ) and Ωw_CLX(θ)). The Ωe(θ) and Ωw(θ) estimates at 10 zenith angles ranging
from of 0◦ to 9◦ with a 1◦ interval were assumed to be equal to Ωe(10) and Ωw(10), respectively [15].
This assumption was adopted to obtain 91 Ωe(θ) and Ωw(θ) estimates that match the pe(θ) and pw(θ)

measurements at the same zenith angle range of 0◦ to 90◦ with a 1◦ interval. The Ωe_i or Ωw_i in
Equation (4) was calculated by averaging the Ωe(θ) or Ωw(θ) estimates with the zenith angles covered
by the ith annulus. The Ωe(57) or Ωw(57) in Equation (2) was calculated by averaging the Ωe(θ)

or Ωw(θ) with zenith angles ranging from 52◦ to 62◦ with a 1◦ interval. Three groups of PAIe and
WAIe estimates of PAIe_57.3 and WAIe_57.3, PAIe_Miller and WAIe_Miller, as well as PAIe_LAI−2200 and
WAIe_LAI−2200 were calculated for each plot by using Equations (2) to (4) based on the pe(θ), pw(θ),
pe_i(θi), pw_i(θi), pe(57), and pw(57) measurements. Afterwards, three αe estimates were obtained
for each plot by using Equation (12) based on the three groups of PAIe and WAIe estimates. A total
of 21 groups of PAI and WAI estimates were calculated for each plot by using Equations (2) to
(4) based on the three groups of PAIe and WAIe estimates (PAIe_57.3 and WAIe_57.3, PAIe_Miller and
WAIe_Miller, as well as PAIeLAI−2200 and WAIe_LAI−2200) and seven Ωe and Ωw estimates derived from
the combinations of the three algorithms of CC, LX, and CLX and the four segment sizes of 5◦, 15◦,
30◦, and 45◦ (seven estimates for each group of PAI and WAI estimates, including PAI57.3 and WAI57.3,
PAIMiller and WAIMiller, as well as PAILAI−2200 and WAILAI−2200). Afterwards, 21 α estimates were
derived for each plot by using Equation (14) based on 21 groups of PAI and WAI estimates.
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(c) leaf-on period visible (VIS) band MCI image, (d) leaf-on period near-infrared (NIR) band 
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Figure 3. The DHP or multispectral canopy imager (MCI) images collected from the same sampling
point or the same sampling point with the same zenith and horizontal angles at leaf-on and leaf-off
periods in plot 1. (a) Leaf-on period DHP image, (b) leaf-off period DHP image, (c) leaf-on period
visible (VIS) band MCI image, (d) leaf-on period near-infrared (NIR) band MCI image, (e) leaf-off
period VIS band MCI image, and (f) leaf-off period NIR band MCI image.

3.4. MCI Images Acquisition and Processing

Two representative locations were selected for the collection of MCI images in each plot. The same
procedures for collecting MCI image pairs adopted in previous works were used in this study with
two key differences [14,41]. Firstly, the MCI image pairs were collected in zenith directions ranging
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from 0◦ to 80◦ with a 10◦ interval (i.e., nine zenithal measurements at each azimuthal direction).
Secondly, the manual exposure model was used to capture MCI images to avoid overexposure and
underexposure. The MCI instrument height was about 1.2 m and MCI image resolution was 3488
× 2616 pixels. The MCI measurements were collected before sunrise, after sunset or under an
overcast sky. To minimize the effect of forest canopy movement on the collection of MCI image pairs,
the MCI measurements were collected under windless or breezy conditions [14,41]. Both leaf-on and
leaf-off periods MCI measurements were collected in each plot (Figure 3c–f). The leaf-on period MCI
measurements were collected from 20 August to 12 September 2017 at the maximum PAI (maximum
LAI) period of the plots. The leaf-off period MCI measurements were collected from October 31 to
16 November 2017 and 4 May 2018 at the minimum PAI (equals to WAI and the LAI equals to 0) of the
plots. A total of 1080 MCI image pairs were obtained from the five plots.

The procedures used for processing the MCI image pairs were the same as those described in Zou
et al. [14], except that the images were subdivided into two sub-images to reduce the amount of work
needed. The MCI image pairs were eventually classified into sky, woody components, and shoots [14].
For the MCI method, pe(57) and pw(57) were calculated by using the classified MCI images of the
seventh annuli collected with a center zenith angle of 60◦.

The full size of each pixel of the MCI images was calculated based on the field of view of
MCI, image resolution, mean tree height of the plot and the zenith angle where these images were
collected [14,21]. The pixel number of the segment required as the key parameter for LX and CLX in
the Ωe and Ωw estimation of leaf-on and leaf-off forest plots was calculated based on the full size of
each pixel of the MCI images. A total of 27 Ωe(θ) or Ωw(θ) estimates were obtained for each annulus
of the MCI measurements at the nine zenith angles covered by the annulus with a 1◦ interval (three
estimates each for Ωe_CC(θ), Ωe_LX(θ), and Ωe_CLX(θ) at nine zenith angles). The center zenith angle of
the nine zenith angles was defined as the zenith angle where the MCI images were collected. The Ωe_i
or Ωw_i in Equation (6) was calculated by averaging the nine Ωe(θ) or Ωw(θ) estimates of the ith

annulus. The Ωe(57) or Ωw(57) in Equation (2) was treated as the Ωe_i or Ωw_i estimate of the seventh
annulus. Two groups of PAIe and WAIe estimates of PAIe_57.3 and WAIe_57.3 as well as PAIe_MCI_0−85
and WAIe_MCI_0−85 were calculated for each sampling point by using Equations (2) and (6) based on
the pe_i(θi), pw_i(θi), pe(57), and pw(57) measurements. Two αe estimates were calculated for each
sampling point by using Equation (12) based on the two groups of PAIe and WAIe estimates. The αe

of each plot was calculated by averaging the αe of the two sampling points. Six groups of PAI and
WAI estimates were calculated for each plot by using Equations (2) and (6) based on the two groups of
PAIe and WAIe estimates (PAIe_57.3 and WAIe_57.3 as well as PAIe_MCI_0−85 and WAIe_MCI_0−85) and
the three Ωe and Ωw estimates derived from CC, LX, and CLX (three estimates each for group PAI57.3

and WAI57.3 as well as PAIMCI_0−85 and WAIMCI_0−85). Six α estimates were obtained for each plot by
using Equation (14) based on the six groups of PAI and WAI estimates.

Classifying the leaf-on period DHP images into sky, shoot, and woody components by using
the method described in Sea et al. [22] entails a large uncertainty. Therefore, the classified leaf-on
period MCI images were used to estimate the αe of leaf-on forest plots if the percentage method was
adopted. The fc or fw was calculated by taking the ratio of the sum of the canopy element or woody
components pixels to the sum of the image pixel number of the classified leaf-on period MCI images.
Afterwards, the αe of each sampling position was calculated by using Equation (15) based on the
obtained fc and fw estimates. The αe of each plot was then calculated by averaging the two αe estimates
of the two sampling points.

3.5. The α Measurements of The Representative Trees and Plots

The trees in each plot were categorized into dominant, codominant and suppressed classes based
on DBH. The representative trees harvested for each plot were selected according to the three DBH
classes. Two or three representative trees with a distance of less than 100 m between the trees and
plots were harvested to measure the α of each tree. One tree for each DBH class was harvested for
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each plot except for plot 2. For plot 2, only one dominant and one codominant tree were harvested
because all suppressed trees were felled in the winter of 2014. Those trees located within plots were not
harvested because these plots were established as long-term observation sites. The canopy structure
characteristics of the harvested trees were guaranteed to be similar to those trees inside each plot.
All representative trees were felled in the middle of August and the beginning of September in 2017.

The branches (live or dead) and shoots of each harvested tree were categorized according to their
height from 1.2 m above ground (equals to instrument height) to the tree top with a 1 m interval.
The branches and shoots located below 1.2 m were classified as individual height class. Both the stem
and branch sections were assumed to be circular truncated cone. The top and base diameters of the stem
section of each height class were measured by using a tape or digital caliper in the field. The branches
and shoots of each height class were bagged and labeled in the field before being immediately shipped
to the laboratory. After clipping the shoots from the live branches, the branch areas of both dead and
live branches were measured by using a digital caliper. In this study, the branches attached directly to
the stem were defined as level 1 branches whilst those attached to level 1 branches were defined as
level 2 branches. In this way, the branches of each height class of the harvested tree were classified
into six levels. The levels 1 and 2 branches were divided into branch sections with a branch length
of 15 cm to facilitate the measurement of branch area. Meanwhile, the other four levels branches
were divided into branch sections with a branch length of 10 cm. The bottom and top diameters of
each branch section were measured by using a digital caliper. The branch base and tip diameters as
well as the branch length were measured for those branch sections with a branch tip. Aside from
stems and branches, the fruit area of each height class for the harvested trees was measured under the
assumption that these fruits are spheroids. The long and short axes of these fruits were measured by
using a digital caliper.

For each harvested tree, approximately 15 typical shoots were randomly selected from each 1 to
5 adjacent height classes to measure the specific leaf area (SLA). The adjacent height classes with similar
structural characteristics of shoots and needles shared the same SLA. The number of adjacent height
classes sharing the same SLA ranged from two to five for all harvested trees. Approximately 300 to
350 typical needles were randomly selected from the sampled typical shoots to measure the SLA in the
laboratory. Twisted, incomplete, and abnormal needles were discarded during the SLA measurements.
The hemisurface area of the needles was measured using the volume displacement method described
in Chen et al. [33]. Typical needle for measuring SLA, whilst the needles of each height class of the
harvested trees were dried in an oven at 67◦ for approximately 48 hours until the weight of the needles
was almost unchanged. Afterwards, the dry mass of the typical needles and the needles of each height
class were weighted by using high-precision electronic balances.

Two leaf and woody components area estimates were obtained for each harvested tree with
measurement heights of 0 m and 1.2 m, respectively. A measurement height of 0 m or 1.2 m means that
all needles and woody components or those needles and woody components with a height of above
1.2 m were considered in calculating the leaf and woody components areas of each harvested tree.
The leaf area of each height class for the harvested trees was calculated by multiplying the dry mass
and SLA of each height class. The leaf area of each harvested tree is equal to the sum of the leaf area of
all height classes which height exceeded the measurement height. Meanwhile, the woody components
area of each harvested tree is equal to the sum of the woody components areas of the branch and stem
sections of those height classes exceeding the measurement height. Two α estimates were obtained for
each harvested tree with the measurement heights of 0 m and 1.2 m. Afterwards, two α estimates with
the measurement heights of 0 m and 1.2 m were obtained for each plot by using Equation (15) based
on the αd, αc, and αs estimates of the harvested trees and the Bd, Bc, and Bs estimates of the plot.
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4. Results

4.1. α Estimates Obtained from The Destructive Method

The proportions of branch and stem areas to the woody components area of each harvested tree
range from 16% to 32% and from 63% to 84% in the five plots, respectively (Figure 4). The branch
areas of the harvested trees mainly comprise of the branch areas of B1, B2 and B3 (Figure 4).
Meanwhile, the proportions of B6 and sum of B4, B5, and B6 branch areas to the woody components
area of each harvested tree are smaller than 0.1% and 3% in the five plots, respectively (Figure 4).
Interestingly, the proportions of the fruit area to the woody components area of each harvested tree
vary obviously amongst the five plots (Figure 4). For example, the proportions of the fruit area to the
woody components area of each harvested tree range from 7% to 14% in plot 1 yet range from 0% to
7% in the other plots (Figure 4). Meanwhile, the proportions of the sum of B3, B4, and B5 branch areas
and fruit area to the woody components area of each harvested tree range from 5% to 28% in the five
plots (Figure 4).

Table 3 shows that the proportions of the woody components area of those woody components
with heights of <1.2 m to the woody components area of the harvested trees in each plot slightly vary
amongst the five plots at a range of 2% to 6%. However, the proportions of the woody components area
of the branches located below live canopies to the woody components area of the harvested trees in
the five plots largely vary at a range of 1% to 21% (Table 3). The proportions of the woody components
area of all branches located below live canopies to the woody components area of all harvested trees
in each plot are the largest in plots 4 and 5 (0.18 and 0.21, respectively; Table 3) and smallest in plots
1 and 2 (0.01; Table 3).

Large variations can be observed amongst the α of the harvested trees in plots 3 to 5, especially
plot 3 (Table 4). The variations in value and proportion of the α of harvested trees are 0.19 and 112%
in plot 3 and <0.03 and 19% in plots 1 and 2 (Table 4). Large differences are also observed in the α of
the five plots estimated with a measurement height of 0 m (Table 4). For example, the difference in
proportion of the α in plots 1 and 5 reaches as large as 56% (Table 4). Compared with the α of plots
1 and 5, the difference in proportion of the α in plots 3 and 4 is relatively smaller and equivalent to 19%
(the measurement height is 0 m). Meanwhile, only minor differences are observed between the α of
plots 1 and 2 (2%; the measurement height is 0 m) (Table 4). The α of plots 4 and 5 are larger than those
of the other three plots (Table 4). In sum, the variations in proportion of the α in the five plots estimated
with two measurement heights of 0 m and 1.2 m range from 2% to 6% (Table 4). Hereinafter, only the
plot α estimated using the destructive method with a measurement height of 1.2 m is regarded as the
reference α of the five plots.
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Figure 4. The proportion of stem, branch, and fruit area to the woody components area of each
harvested tree in the five plots, respectively (S: stem, B1-B6: levels 1 to 6 branches, respectively, and F:
fruit). (a): plots 1 and 2, (b): plots 3 and 4, (c): plot 5.

Table 3. Proportions of the woody components area of those woody components with heights of <1.2 m
(including stem and branches) or the branches located below live canopies to the woody components
area of the harvested trees in each plot.

Proportions of the Woody Components Area of the Parts
of the Woody Components to Woody Components Area
of the Harvested Trees in Each Plot

Plot 1 Plot 2 Plot 3 Plot 4 Plot 5

Woody components with heights of <1.2 m 2% 2% 6% 4% 6%
All the branches located below live canopies 1% 1% 11% 18% 21%

Table 4. The α of the harvested trees estimated via the destructive method with a measurement height
of 0 m in each plot. The α of each plot was calculated by using Equation (15) with measurement heights
of 0 m and 1.2 m.

Plot Name Tree 1 Tree 2 Tree 3
Plot α

Measurement Height: 0 m Measurement Height: 1.2 m

Plot 1 0.16 0.16 0.17 0.16 0.16
Plot 2 0.16 0.19 0.17 0.16
Plot 3 0.22 0.17 0.36 0.21 0.20
Plot 4 0.27 0.21 0.28 0.25 0.24
Plot 5 0.19 0.25 0.28 0.25 0.23
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4.2. αe Estimates Obtained from DHP and MCI

Figure 5a shows that the proportions of the woody components pixel number to the classified
leaf off period MCI image pixel number at zenith angles ranging from 0◦ to 80◦ with a 10◦ interval are
remarkably larger than the proportions of the woody components pixel number to the classified leaf
on MCI image pixel number at the same zenith angle in the five plots. For example, the proportions of
the woody components pixel number to the classified leaf-on and leaf off periods MCI image pixel
number in plot 1 are 0.15 and 0.62 at zenith angles 0◦ as well as 0.50 and 0.96 at zenith angles 80◦,
respectively (Figure 5a). For leaf-on forest canopies, the proportions of woody components shaded
by shoots at zenith angles ranging from 0◦ to 80◦ with a 10◦ interval are large, especially at small
zenith angles, and tend to decrease along with zenith angles in the five plots (Figure 5b). For example,
the proportion of woody components shaded by shoots can reach as high as 0.70 at a 0◦ zenith angle,
and decreases to 0.35 at a 80◦ zenith angle in plot 1 (Figure 5b). Meanwhile, the proportions of woody
components shaded by shoots at a zenith angle ranging from 0◦ to 80◦ with a 10◦ interval are larger at
those plots with fewer branches located below live canopies (plots 1 and 2) compared with those plots
with a large number of branches (plots 4 and 5) (Figure 5b).
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Figure 5. The proportion of the woody components pixel number to the classified MCI image pixel
number (a) and the proportion of the woody components shaded by shoots, which is calculated by
using the classified leaf-on and leaf-off periods MCI images (b) at zenith angles ranging from 0◦ to
80◦ with a 10◦ interval in the five plots. The proportion of the woody components shaded by shoots at
each zenith angle is derived by taking the ratio of the shaded woody components pixels (calculated by
subtracting the woody components pixel number of the classified leaf-on period MCI images from the
woody components pixel number of the classified leaf-off period MCI images) to the total classified
leaf-on period MCI image pixel number.

Table 5 shows that the αe estimated by using the leaf-on and leaf-off periods DHP or MCI images is
2.29 to 4.63 times the reference α of the five plots regardless of the optical method and inversion model
used in the αe estimation. For example, the αe derived using the leaf-on and leaf-off periods DHP
images at plot 2 was ~4.63 times the reference α of plot 2 if the LAI-2200 inversion model was adopted
in the αe estimation (Tables 4 and 5). Similarly, the αe derived using the leaf-on and leaf-off periods
MCI images at plot 2 was ~ 3.5 times the reference α of plot 2, if the MCI_0-85 inversion model was
adopted in the αe estimation (Tables 4 and 5). The RMSE and MAE of the αe derived using the leaf-on
and leaf-off periods MCI or DHP images were larger than 0.41 (205%) and 0.40 (203%) in the five plots,
respectively (Table 6). Similarly, the αe derived from the percentage method by using the leaf-on period
MCI images was 2.19 to 2.57 times the reference α of the five plots (Table 5). However, the αe obtained
by using the leaf-on period MCI images based on 57.3 and MCI_0-85 was closer to the reference α of
the five plots whilst its RMSE and MAE were <0.05 (26%) and 0.04 (22%), respectively (Tables 4–6).
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Table 5. αe estimates obtained from DHP and MCI in the five plots.

Image Datasets Leaf-on and Leaf-off
Periods DHP Images Leaf-on Period MCI Images Leaf-on and Leaf-off

Periods MCI Images

Inversion model 57.3 Miller LAI-2200 57.3 MCI_0-85 Percentage 57.3 MCI_0-85
Plot 1 0.59 0.61 0.68 0.17 0.17 0.36 0.65 0.59
Plot 2 0.68 0.53 0.74 0.16 0.17 0.35 0.55 0.56
Plot 3 0.57 0.49 0.64 0.28 0.28 0.54 0.59 0.63
Plot 4 0.67 0.85 0.73 0.29 0.31 0.59 0.55 0.62
Plot 5 0.64 0.79 0.67 0.30 0.28 0.59 0.65 0.62

Table 6. Correlation statistics between the αe estimated from DHP and MCI and the reference α of the
five plots. Statistics are given at the 95% confidence level from the two-tailed Student’s t-test.

Image Datasets Inversion Model R2 Intercept Slope RMSE (in %) MAE (in %)

Leaf-on and leaf-off periods DHP images
57.3 0.19 0.58 0.26 0.44 (221%) 0.43 (219%)

Miller 0.78 0.01 3.23 0.47 (238%) 0.46 (231%)
LAI-2200 −0.07 0.71 −0.08 0.50 (250%) 0.49 (249%)

Leaf-on period MCI images
57.3 0.95 −0.10 1.73 0.05 (26%) 0.04 (21%)

MCI_0-85 0.956 −0.10 1.71 0.05 (26%) 0.04 (22%)
Percentage 0.97 −0.14 3.16 0.30 (150%) 0.29 (145%)

Leaf-on and leaf-off periods MCI images 57.3 −0.03 0.61 −0.05 0.41 (205%) 0.40 (203%)
MCI_0-85 0.82 0.47 0.66 0.41 (205%) 0.41 (205%)

Small differences (<7%) were observed between the αe estimates obtained by using the leaf-on
period MCI images based on 57.3 and MCI_0-85 in the five plots (Table 5). Similarly, the variations
in proportion between the αe estimates obtained using the leaf-on and leaf-off periods MCI images
based on 57.3 and MCI_0-85 were <13% in the five plots (Table 5). By contrast, large differences were
observed between the αe estimates obtained by using the leaf-on and leaf-off periods DHP images
based on 57.3 and Miller (3% to 27%), Miller and LAI-2200 (11% to 40%), and LAI-2200 and 57.3 (5% to
15%) in the five plots (Table 5).

4.3. α Estimates Obtained from DHP and MCI

The αe estimates derived without consideration of Ωe and Ωw by using the leaf-on and leaf-off
periods DHP or MCI images were systematically larger than those derived with consideration of Ωe

and Ωw by using the same inversion model in the five plots (with the exception of the αe estimates
obtained by using the leaf-on and leaf-off periods DHP images based on the Miller inversion model in
plots 2 and 3) (Tables 4, 5, 7 and 8). Specifically, those α estimates obtained with consideration of Ωe and
Ωw by using the leaf-on and leaf-off periods DHP or MCI images were 1.57 to 4.13 times larger than
the reference α of the five plots (Tables 4, 7 and 8). The RMSE and MAE of these α estimates derived
using the leaf-on and leaf-off periods DHP or MCI images with consideration of Ωe and Ωw were >0.30
(153%) and 0.30 (150%) or 0.21 (107%) and 0.20 (103%) in the five plots, respectively, regardless of the
Ωe and Ωw estimation algorithm and inversion model adopted in the estimation (Tables 9 and 10).
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Table 7. α estimates derived with consideration of Ωe and Ωw by using the leaf-on and leaf-off periods
DHP images in the five plots.

Inversion Model Ωe and Ωw Estimation Algorithm Plot 1 Plot 2 Plot 3 Plot 4 Plot 5

57.3

CC 0.45 0.57 0.49 0.57 0.47
LX_5 0.41 0.57 0.50 0.53 0.46

LX_15 0.41 0.59 0.50 0.55 0.47
LX_30 0.44 0.60 0.51 0.55 0.47

CLX_15 0.49 0.62 0.53 0.57 0.49
CLX_30 0.47 0.62 0.50 0.57 0.46
CLX_45 0.46 0.62 0.50 0.57 0.47

Miller

CC 0.50 0.49 0.45 0.72 0.59
LX_5 0.51 0.54 0.51 0.69 0.56

LX_15 0.51 0.52 0.51 0.71 0.58
LX_30 0.52 0.51 0.50 0.72 0.59

CLX_15 0.54 0.56 0.54 0.72 0.59
CLX_30 0.53 0.55 0.52 0.72 0.58
CLX_45 0.52 0.54 0.50 0.71 0.58

LAI_2200

CC 0.50 0.62 0.54 0.61 0.49
LX_5 0.50 0.64 0.56 0.59 0.48

LX_15 0.50 0.65 0.57 0.61 0.49
LX_30 0.51 0.66 0.58 0.61 0.50

CLX_15 0.54 0.66 0.59 0.62 0.52
CLX_30 0.53 0.66 0.57 0.62 0.50
CLX_45 0.52 0.66 0.56 0.61 0.50

Table 8. α estimates obtained with consideration of Ωe and Ωw by using the leaf-on period MCI images
in the five plots.

Inversion
Model

Ωe and Ωw Estimation
Algorithm

Leaf-on Period MCI Images Leaf-on and Leaf-off Periods MCI Images

Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 Plot 1 Plot 2 Plot 3 Plot 4 Plot 5

57.3
CC 0.10 0.11 0.17 0.20 0.16 0.32 0.37 0.54 0.40 0.37
LX 0.15 0.15 0.28 0.28 0.22 0.42 0.45 0.55 0.50 0.45

CLX 0.16 0.16 0.31 0.31 0.26 0.44 0.47 0.57 0.55 0.48

MCI_0-85
CC 0.10 0.16 0.20 0.23 0.18 0.36 0.38 0.46 0.46 0.36
LX 0.14 0.16 0.28 0.30 0.24 0.45 0.47 0.56 0.54 0.44

CLX 0.15 0.17 0.30 0.33 0.28 0.47 0.48 0.60 0.57 0.48
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Table 9. Correlation statistics between the obtained α (estimated with consideration of Ωe and Ωw by
using the leaf-on and leaf-off periods DHP images) and the reference α of the five plots. Statistics are
given at the 95% confidence level from the two-tailed Student’s t-test.

Inversion Model Ωe and Ωw Estimation Algorithm R2 Intercept Slope RMSE (in %) MAE (in %)

57.3

CC 0.15 0.47 0.22 0.32 (160%) 0.31 (158%)
LX_5 0.10 0.46 0.17 0.30 (153%) 0.30 (150%)

LX_15 0.08 0.48 0.15 0.31 (159%) 0.31 (155%)
LX_30 −0.03 0.52 −0.05 0.32 (164%) 0.32 (160%)

CLX_15 −0.16 0.59 −0.24 0.35 (176%) 0.34 (173%)
CLX_30 −0.13 0.57 −0.25 0.33 (169%) 0.33 (165%)
CLX_45 −0.12 0.57 −0.22 0.33 (169%) 0.33 (165%)

Miller

CC 0.76 0.13 2.12 0.36 (182%) 0.35 (179%)
LX_5 0.73 0.28 1.43 0.37 (186%) 0.37 (185%)

LX_15 0.79 0.21 1.81 0.37 (187%) 0.37 (185%)
LX_30 0.81 0.18 1.98 0.37 (189%) 0.37 (187%)

CLX_15 0.74 0.3 1.46 0.40 (200%) 0.40 (198%)
CLX_30 0.7 0.28 1.49 0.38 (194%) 0.38 (192%)
CLX_45 0.72 0.25 1.61 0.38 (190%) 0.37 (188%)

LAI_2200

CC −0.03 0.56 −0.05 0.36 (183%) 0.36 (180%)
LX_5 −0.19 0.62 −0.34 0.37 (184%) 0.36 (181%)

LX_15 −0.14 0.61 −0.24 0.37 (188%) 0.36 (184%)
LX_30 −0.14 0.62 −0.25 0.38 (191%) 0.37 (188%)

CLX_15 −0.19 0.65 −0.30 0.39 (199%) 0.39 (196%)
CLX_30 −0.22 0.65 −0.37 0.38 (194%) 0.38 (190%)
CLX_45 −0.21 0.64 −0.37 0.38 (191%) 0.37 (187%)

Table 10. Correlation statistics between the obtained α estimates (derived with consideration of Ωe and
Ωw by using the leaf-on period MCI images) and the reference α of the five plots. Statistics are given at
the 95% confidence level from the two-tailed Student’s t-test.

Inversion
Model

Ωe and Ωw
Estimation Algorithm

Leaf-on Period MCI Images Leaf-on and Leaf-off Periods MCI Images

R2 Intercept Slope RMSE (in %) MAE (in %) R2 Intercept Slope RMSE (in %) MAE (in %)

57.3
CC 0.91 −0.06 1.03 0.05 (28%) 0.05 (27%) 0.27 0.28 0.59 0.22 (109%) 0.20 (103%)
LX 0.84 −0.07 1.42 0.04 (19%) 0.03 (14%) 0.42 0.36 0.57 0.28 (141%) 0.28 (140%)

CLX 0.86 −0.10 1.71 0.06 (31%) 0.04 (22%) 0.58 0.34 0.84 0.31 (155%) 0.31 (154%)

MCI_0-85
CC 0.82 −0.03 1.01 0.04 (18%) 0.03 (13%) 0.49 0.27 0.67 0.21 (107%) 0.21 (105%)
LX 0.88 −0.10 1.64 0.04 (22%) 0.03 (16%) 0.34 0.39 0.49 0.30 (149%) 0.29 (147%)

CLX 0.91 −0.14 1.96 0.06 (33%) 0.05 (26%) 0.45 0.38 0.70 0.33 (165%) 0.32 (163%)

Based on RMSE, MAE, and R2, the accuracies of the α estimates derived using the leaf-on period
MCI images with consideration of Ωe and Ωw showed little to no improvement compared with those
estimates derived from the same inversion model but without consideration of Ωe and Ωw in the five
plots (Tables 6 and 10). The RMSE and MAE of the α estimated with consideration of Ωe and Ωw by
using the leaf-on period MCI images were <33% and 27% in the five plots, respectively (Table 10).

For the DHP method, only slight differences (0% to 16%) were observed in the α estimated using
the leaf-on and leaf-off periods DHP images based on the same inversion model but with different Ωe

and Ωw estimation algorithms in the five plots (Table 7). No significant differences (0% to 22%) were
also observed in the α estimated using the leaf-on and leaf-off periods DHP images based on the two
inversion models of LAI-2200 and 57.3 but with the same Ωe and Ωw estimation algorithm in the five
plots (Table 7). By contrast, large variations (0% to 30%) were observed in the α estimated using the
leaf-on and leaf-off periods DHP images based on two groups of inversion models (Miller and 57.3 as
well as Miller and LAI-2200) but with same Ωe and Ωw estimation algorithms in the five plots (Table 7).

For the MCI method, only small differences (2% to 18%) were observed in the α estimated using the
leaf-on period or leaf-on and leaf-off periods MCI images based on the same inversion model but with
different Ωe and Ωw estimation algorithms (except for CC) in the five plots (Table 8). However, large
differences (0% to 82%) were observed in the α estimated using the leaf-on period or leaf-on and leaf-off
periods MCI images based on the same inversion model but with different Ωe and Ωw estimation
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algorithms (include CC) in the five plots (Table 8). Meanwhile, only slight differences (0% to 9%) were
observed in the α estimated using the leaf-on period or leaf-on and leaf-off periods MCI images based
on the two inversion models with the same Ωe and Ωw estimation algorithms (excluding CC) in the
five plots (Table 8). By contrast, obvious differences (0% to 45%) were observed in the α estimated
using the leaf-on period or leaf-on and leaf-off MCI images based on the two inversion models with
CC in the five plots (Table 8).

5. Discussion

5.1. Factors That Affect the Accuracy of the Reference α Estimates

The destructive method requires considerable time and effort to measure the reference α of
forest plots. To reduce workload, some studies have simplified the measurement procedures, such as
by discarding the fruits and parts of branches of the harvested trees [16]. For example, all branches
(excluding B1, B2, and the end level branches) and fruits were not considered in estimating the reference
α of forest plots in Chen [16]. However, the sum of the proportions of the B3, B4, and B5 branch areas
and fruit areas to the total woody components area of the harvested trees ranges from 5% to 28% in the
five plots (Figure 4). Therefore, simplifying the measurement procedures of the destructive method as
can be seen in Chen [16] can introduce large bias in the reference α estimation of L. gmelinii forest plots.
Such simplification cannot be directly used to measure the reference α of forest plots with different
plant functional types. At least, this simplified method [16] is not accurate enough to estimate the
reference α of L. gmelinii forest plots. However, based on the results in Figure 4, B4, B5, and B6 can all
be neglected in estimating the reference α of L. gmelinii forest plots due to their small contributions
to the woody components areas of the harvested trees in the five plots. By contrast, fruits should be
considered in estimating the reference α because they are widely distributed across the forest canopies
(Figure 4).

The mismatch between the measurement heights of the destructive and optical methods has
usually been ignored in previous studies [16,23,33]. Specifically, these studies have estimated the
reference α of forest plots with a measurement height of 0 m, but their optical instruments are usually
operated and levelled above ground in the plots. Meanwhile, in this study, the DHP and MCI
instruments were mounted on a tripod with a measurement height of about 1.2 m above ground.
Therefore, the woody components and leaves or shoots of forest canopies with a height of < 1.2 m
cannot be sampled by optical methods. Neglecting the mismatch in the measurement heights of
harvesting and optical methods can introduce approximately 2% to 6% bias into the estimation of the
woody components area and α of the harvested trees in the five plots (Tables 3 and 4). Therefore, such
mismatch must be considered when evaluating the performance of optical methods in estimating the α

of forest plots.

5.2. Impact of Tree Age, Stand Density, Site Conditions, and Management Activities on the Reference α of
Forest Plots

Management activities, such as removing the branches below live canopies are usually performed
by forest managers to promote tree growth in forest plots. The proportion of the woody components
area of all woody components located below live canopies to the woody components area of the
harvested trees in plot 5 is 0.21 (Table 3), which indicates that management activities affect the reference
α of forest plots obviously. If the woody components of the trees located below live canopies were not
harvested for plots 1 and 2 during the thinning campaign prior the experiment and if the proportions
of the woody components area of the woody components located below live canopies to the woody
components area of the trees in plots 1, 2, and 5 were assumed to be the same, then the reference α of
plots 1 and 2 would become equal to 0.19 and 0.19, respectively. The variations in proportion between
the recalculated α of plots 1 and 2 and the reference α of plot 5 were approximately 21%. Given that no
obvious differences can be found in the site conditions of the three plots, the variations between the
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recalculated α of plots 1 and 2 and the reference α of plot 5 were mainly attributed to tree age and stand
density. On the other hand, the large variations in the reference α of plots 1, 2, and 5 also be indicative
of the larger role of management activities (relative to tree age or stand density) in increasing the large
difference in the reference α of the five plots.

Plots 3 and 4 sharing similar characteristics, including tree age, mean tree height, and average
DBH (Table 2). Furthermore, those branches with a height of ~ ≤ 2.5 m were low- and medium-level
harvested in plots 3 and 4 prior the experiment, respectively. Plot 4 had poorer site conditions
compared with plot 3 because this plot had many yellow needles distributed amongst its canopies and
had a larger dry soil depth as compared with plot 3. However, the reference α of plot 4 was 20% larger
than that of plot 3 thereby indicating that site conditions affect the reference α of forest plots obviously
(Table 4).

In conclusion, tree age, stand density, site conditions, and management activities contribute to the
large differences in the reference α of the five selected L. gmelinii plots (Tables 2 and 4). Therefore, these
four factors must be considered when estimating the reference α of L. gmelinii plots. Amongst these
factors, site conditions and management activities have the largest contributions to the variations
in the reference α of the L. gmelinii plots. Meanwhile, the reference α of those forest plots with the
same tree species and similar characteristics of stand density and tree age yet with different levels of
branch removal and site conditions must be dissimilar. A specific α estimate should be obtained for
those forest plots (Tables 2–4). The same can be said for those forest plots with the same tree species,
branch removal levels and site conditions yet with different stand density and tree age (Tables 2–4).
However, those forest plots with the same tree species and similar characteristics of stand density, site
conditions, tree age, and management activities (e.g., plots 1 and 2) must show slight variations in
their reference α (Tables 2 and 4). Chen [16] also reported small differences (13%) in the reference α of
two Picea mariana plots with similar stand density, tree age, tree height, and management activities.
This argument is consistent with the findings of this study.

5.3. Factors That Affect the α Estimation of the Two Optical Methods

Figure 5 and Tables 5–10 reveal that the performance of DHP and MCI in estimating the α of forest
plots is influenced by four factors, namely, the inversion model, the clumping effects of canopy element
and woody components, the Ωe and Ωw estimation algorithms, and the preferential shading of woody
components by shoots. Amongst these factors, the inversion model only slightly influences the αe

or α estimation of forest plots, if 57.3, LAI-2200 and MCI_0-85 are used in the estimation (Tables 5,
7 and 8). Meanwhile, the αe or α estimates obtained using the leaf-on and leaf-off periods DHP
images based on Miller and 57.3 as well as Miller and LAI-2200 showed relatively larger differences
compared with those estimated by 57.3 and LAI-2200. This finding is consistent with the conclusions
of Zou et al. [15], who reported small differences (<10%) in the WAIe, PAIe, WAI, and PAI of leaf-on
and leaf-off forest canopies estimated using LAI-2200 and 57.3. Relatively large differences (2% to
17%) were also observed in the WAIe, PAIe, WAI, and PAI that were estimated using Miller and
57.3 as well as Miller and LAI-2200 [15]. Such variations can be attributed to the fact that the gap
fraction measurements collected from DHP at zenith angles near the horizon tend to approach zero.
When using Miller in estimating PAI and WAI, the null gap fraction measurements could introduce
errors into the estimations even if the null gap fraction measurements processing solutions were
applied [15]. Zou et al. [15] pointed out that several inversion models, including LAI-2200 and 57.3,
can avoid such effect. Given that accurate α estimates were obtained by using leaf-on period MCI
images based on MCI_0-85 (similar to LAI-2200) and 57.3 in the five plots (Tables 8 and 10), both
57.3 and MCI_0-85 suggest to be used in the α estimation of forest plots.

The αe or α estimates obtained with or without consideration of Ωe and Ωw using the leaf-on and
leaf-off periods DHP or MCI images were 1.57 to 4.63 times the reference α of the five plots (Tables 4, 5,
7 and 8). Given that the WAIe and WAI of leaf-on forest plots were derived by using leaf-off period
DHP or MCI images, the overestimation of αe and α indicates that the PAIe and PAI of leaf-on forest
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plots are significantly underestimated when leaf-on period DHP or MCI images are used in the PAIe

and PAI estimation. Moreover, the underestimation of the PAIe and PAI of leaf-on forest plots was
mainly driven by the underestimation of WAIe and WAI because of the obvious differences in the
proportions of woody components pixel number to the leaf-on and leaf-off periods MCI image pixel
numbers at the zenith angles ranging from 0◦ to 80◦ with a 10◦ interval in the five plots (Figure 5a).
The underestimation of the WAIe and WAI of leaf-on forest plots can also be reflected in the large
proportions of woody components shaded by shoots at zenith angles ranging from 0◦ to 80◦ with
a 10◦ interval (Figure 5b). The shading of woody components by shoots in canopies increases the
woody components gap fraction of forest canopies as their WAI should be, thereby resulting in the
underestimation of WAIe and WAI. However, the overestimation of αe or α can be largely reduced if
only the leaf-on period MCI images are used in the αe or α estimation (Tables 4, 5 and 8) because the
underestimation of the denominator (PAIe or PAI) and numerator (WAIe or WAI) cancels out the αe

or α estimation errors to a large degree. The underestimation of the WAIe and WAI of leaf-on period
forest plots as estimated using leaf-on period MCI or DHP images reveals the obvious overestimation
of αe and α in the five plots, which were obtained using leaf-on and leaf-off periods DHP or MCI
images, can be attributed to the fact that the woody components are preferentially shaded by shoots.
In L. gmelinii forest canopies, the shoots are directly located on the branch and stem surfaces, thereby
leading to preferential shading of branches and stems.

The woody components of forest canopies include stems, branches, and fruits. Given that these
woody components are not randomly distributed in space similar to leaves or shoots, both the clumping
effects of the canopy element and woody components should be considered in estimating the α of
forest plots. However, minor differences were observed between the RMSE and MAE of the αe and α

estimates obtained using the leaf-on period MCI images without or with consideration of Ωe and Ωw

(Tables 6 and 10). Therefore, the clumping effects of the canopy element and woody components of
leaf-on forest canopies are not effectively evaluated by the adopted Ωe and Ωw estimation algorithms
regardless of the Ωe and Ωw estimation algorithm and segment size used in the αe and α estimation.
Previous studies have also reported that the Ωe and Ωw estimation algorithms used in this study
do not always perform well in estimating the Ωe and Ωw of all leaf-on and leaf-off forest canopies
with different plant functional types, tree species composition, PAI, and WAI [15,27,46]. For example,
Zou et al. [15] observed small differences between the majority of the WAI estimates derived using
57.3 or LAI-2200 with consideration of Ωw (derived from CC, LX, and CLX) and the WAI of leaf-off
birch forest plots. However, large differences were observed between the majority of the PAI estimates
(derived by using the same inversion model and Ωe estimation algorithm) and the PAI of leaf-on birch
forest plots [15]. This report indicates that the Ωw of leaf-off birch forest plots was effectively estimated
by using the three Ωe and Ωw estimation algorithms; by contrast, the Ωe of leaf-on birch forest plots
was not effectively estimated by using these algorithms [15]. Accurately estimating α depends on both
accurate PAI and WAI estimates whilst accurately estimating PAI and WAI estimates, in turn, relies on
both accurate estimates of Ωe and Ωw. Therefore, the mismatch between the performance of Ωe and
Ωw estimation algorithm in estimating the Ωe and Ωw of leaf-on and leaf-off forest plots can introduce
errors into the estimation of α. The fact of the preferential shading of woody components by shoots
can also influence the performance of Ωe and Ωw estimation algorithms in evaluating the clumping
effects of the canopy element and woody components of leaf-on forest canopies.

5.4. Determining Whether Accurate α Estimates Can Be Obtained from DHP and MCI

Tables 4–10 reveal that relatively accurate α estimates with estimation errors of lower than 20%
can be obtained from MCI in the L. gmelinii plots. If no errors are exist in the LAI estimation of
L. gmelinii forest plots except in estimating α, then MCI can be considered an effective method that
meets the required maximum LAI estimation error (20%) for in situ LAI estimates specified by GCOS.
Unlike DHP, MCI can discriminate leaves or shoots, woody components and sky based on the NIR and
VIS band images of forest canopies. DHP has the disadvantage of the insufficient sampling of forest
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canopies at zenith angles close to the zenith due to the intrinsic defect of hemispherical photography.
The proportions of woody components shaded by shoots at zenith angels ranging from 0◦ to 85◦

with a 10◦ interval are large at those zenith angles close to the zenith in the five plots (Figure 5b).
Therefore, for DHP, the estimation errors in the pe(θ), pw(θ), Ωe(θ), and Ωw(θ) measurements with
zenith angles close to zenith can introduce bias into the α estimation of forest plots. By contrast, MCI
can obtain images with sufficient sampling of forest canopies at all directions of the upper hemisphere
and is thereby recommended for estimating the α of forest plots.

The methods adopted in previous studies [17–20] for estimating the α of forest plots by using
leaf-on and leaf-off periods DHP images or radiation attenuation measurements can introduce
significant errors into the estimations (Tables 4–10). Therefore, these methods would not suggested to
be used in estimating the α of forest plots, at least for L. gmelinii forest plots. The percentage method
also overestimated the α in the five plots (Table 5), thereby indicating that this method must not be used
in estimating the α of L. gmelinii forest sites. This conclusion contradicts the report of Woodgate [13],
who found a 3% difference in the α estimated by the percentage method and the reference α of eucalypt
forest scenes. The contrasting canopy structures of the tree species covered in Woodgate and in this
study may explain such contradiction.

5.5. Limitations and Perspectives

Given the huge amount of time and effort required by the destructive method to measure the
α of forest sites, only two or three representative trees were harvested for each plot in this study.
Considering the obvious variations between the α of the harvested trees in each plot (Table 4), more
representative trees must be harvested to obtain highly reliable and accurate estimations of the reference
α of forest plots. For example, three trees can be harvested for each class of dominant, codominant,
and suppressed trees in each plot. Given that only five plots were covered in this study, the impact of
tree age or stand density on estimating the reference α of forest plots was not evaluated. More forest
plots (>5) must be covered in the future to obtain highly reliable conclusions regarding the influence
of tree age, stand density, site conditions and management activities on estimating the reference α of
L. gmelinii forest plots. More plant functional types must also be covered in the future to check whether
MCI can effectively measure the α of forest sites with different tree species compositions.

6. Conclusions

The conclusions of this study are as follows. (1) The woody components area of harvested
trees mainly comprises of the woody components areas of branches and fruits. Caution is needed
when parts of woody components, especially fruits, are discarded in estimating the α of harvested
trees. The mismatch in the measurement heights of destructive and optical methods should also be
considered in the α estimation of forest plots. (2) Large variations (0% to 56%) are observed in the
reference α of the five plots with the same tree species yet with different tree age, stand density, site
conditions, and management activities. Moreover, the impact of site conditions and management
activities on the reference α of forest plots is larger than that of tree age and stand density. (3) The
performance of DHP and MCI in estimating the α of forest plots is obviously affected by the inversion
model and the preferential shading of woody components by shoots in leaf-on canopies. The large
overestimation of the α (i.e., 1.57 to 4.63 times larger than the reference value for this study) that
was derived using leaf-on and leaf-off periods DHP or MCI images can be mainly attributed to the
preferential shading of woody components by leaves or shoots. The impact of the adopted Ωe and
Ωw estimation algorithms on estimating the α of forest plots is relatively small. (4) Relatively accurate
α estimates (with estimation errors of <20%) can be obtained from MCI if the appropriate inversion
model and Ωe and Ωw estimation algorithm are used in the α estimation of L. gmelinii forest plots.
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Appendix A

List of Symbols:
57.3—57.3 inversion model (Equation 2)
An—half the total needle area in a shoot
Ap(θ, φ)—shoot projection area measured by projecting the shoot at zenith angle θ and azimuthal
angle φAp(0◦, 0◦)—shoot projection areas measured by projecting the shoot at zenith angle 0◦ and
azimuth angle 0◦

Ap(45◦, 0◦)—shoot projection areas measured by projecting the shoot at zenith angle 45◦ and azimuth
angle 0◦

Ap(90◦, 0◦)—shoot projection areas measured by projecting the shoot at zenith angle 90◦ and azimuth
angle 0◦

B1—level 1 branch
B2—level 2 branch
B3—level 3 branch
B4—level 4 branch
B5—level 5 branch
B6—level 6 branch
Bc—basal area of the codominant tree
Bd—basal area of the dominant tree
Bs—basal area of the suppressed tree
CC—gap size distribution algorithm
CLX—combination of gap size and logarithmic averaging algorithm
CMN—modified gap size distribution algorithm
DBH—diameter at breast height
DHP—digital hemispherical photography
F—fruit
Fm(0, θ)—measured total gap fraction of the canopy element at θ

Fmr(0, θ)—total canopy element gap fraction after removing large gaps resulting from the nonrandom
distribution of the canopy element at θ

fc—canopy element cover fraction
fw—woody component cover fraction
GCOS—global climate observing system
Ge—canopy element projection function
Gw—woody component projection function
Ge(θ)—mean projection of the unit surface area of the canopy element on the plane perpendicular to
the view zenith angle θ

Gw(θ)—mean projection of the unit surface area of the woody component on the plane perpendicular
to the view zenith angle θ

Ge_i—Ge estimate of the ith annulus
Gw_i—Gw estimate of the ith annulus
LAI—leaf area index
LAI-2200—LAI-2200 inversion model (Equation 4)
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ln[pe(θ)]—mean of the logarithmic canopy element gap fraction for all segments at θ

LX—logarithmic averaging algorithm
LXW—modified logarithmic averaging algorithm
MAE—mean absolute error
MCI—multispectral canopy imager
MCI_0-85—MCI_0-85 inversion model (Equation 6)
Miller—Miller theorem (Equation 3)
MTVSP—measurement tools of vegetation structural parameters software
MVI—multiband vegetation imager
NIR—near-infrared
PAI—plant area index
PAI57.3—plant area index estimated based on the 57.3 inversion model
PAIMiller—plant area index estimated based on the Miller theorem
PAILAI−2200—plant area index estimated based on the modified Miller theorem of
LAI-2000 and LAI-2200
PAIMCI_0−85—plant area index estimated based on the modified Miller theorem and MCI images
PAIe—effective plant area index
PAIe_57.3—effective plant area index estimated based on the 57.3 inversion model
PAIe_Miller—effective plant area index estimated based on the Miller theorem
PAIe_LAI−2200—effective plant area index estimated based on the modified Miller theorem of
LAI-2000 and LAI-2200
PAIe_MCI_0−85—effective plant area index estimated based on the modified Miller theorem and
MCI images
PCS—Pielou’s coefficient of spatial segregation algorithm
pe(θ)—mean canopy element gap fraction of all segments at θ

pe(θ)—canopy element gap fraction at θ

pe_i(θi)—canopy element gap fraction of the ith annulus
pe(57)—canopy element gap fraction at zenith angle 57◦

pe_k(θ)—canopy element gap fraction of segment k
pw(θ)—woody component gap fraction at θ

pw_i(θi)—woody component gap fraction of the ith annulus
pw(57)—woody component gap fraction at zenith angle 57◦

R2—Pearson correlation coefficient
RMSE—root mean square error
S—stem
SLA—specific leaf area
TRAC—tracing radiation and architecture of canopies
VIS—visible
WAI—woody area index
WAIe—effective woody area index
WAIe_57.3—effective woody area index estimated based on the 57.3 inversion model
WAIe_Miller—effective woody area index estimated based on the Miller theorem
WAIe_LAI−2200—effective woody area index estimated based on the modified Miller theorem of
LAI-2000 and LAI-2200
WAIe_MCI_0−85—effective woody area index estimated based on the modified Miller theorem and
MCI images
Wi—weight factor of the ith annulus
θ—zenith angle
θi—center zenith angle of the ith annulus
φ—azimuthal angle



Forests 2018, 9, 746 24 of 26

Ωe—canopy element clumping index
Ωe(θ)—canopy element clumping index at θ

Ωe(57)—canopy element clumping index at zenith angle 57◦

Ωe_CC(θ)—canopy element clumping index estimated using the gap size distribution algorithm at θ

Ωe_CC_k(θ)—canopy element clumping index of segment k at θ estimated using CC
Ωe_LX(θ)—canopy element clumping index estimated using the logarithmic averaging algorithm at θ

Ωe_CLX(θ)—canopy element clumping index estimated using the combination of gap size and
logarithmic averaging algorithm at θ

Ωe_i—Ωe estimate of the ith annulus
Ωw—woody component clumping index
Ωw(θ)—woody component clumping index at θ

Ωw(57)—woody component clumping index at zenith angle 57◦

Ωw_CC(θ)—woody component clumping index estimated using the gap size distribution algorithm
at θ

Ωw_LX(θ)—woody component clumping index estimated using the logarithmic averaging algorithm
at θ

Ωw_CLX(θ)—woody component clumping index estimated using the combination of gap size and
logarithmic averaging algorithm at θ

Ωw_i—Ωw estimate of the ith annulus
γe—needle-to-shoot area ratio
γ—effective needle-to-shoot area ratio
α—woody-to-total area ratio
αe—effective woody-to-total area ratio
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