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Abstract: Boreal forest fire history is typically reconstructed using tree-ring based time since last fire
(TSLF) frequency distributions from across the landscape. We employed stochastic landscape fire
simulations to assess how large a study area and how many TSLF sample-points are required to
estimate the fire cycle (FC) within a given accuracy, and if those requirements change with length of
the simulated fire rotation (FRS). FRS is calculated from simulated fire-year maps used to create the
TSLF map, and is the “true” measure of fire history that FC estimates should equal. Fire-year maps
were created by (i) using a spatially homogenous landscape, (ii) imposing large variations in annual
area burned, and (iii) having no age-related change in the hazard of burning. We found that study
areas should be ≥3× the size of largest total annual area burned, with smaller-scale areas having
a bias that cannot be fixed by employing more samples. For a study area scale of 3×, a FC estimate
with an error <10% was obtained with 187 TSLF samples at 0.81 samples per 100 km2. FC estimates
were not biased in study area scales that were ≥3×, but smaller-scale areas with a short FRS had an
overestimated FC and smaller-scale areas with a long FRS had an underestimated FC. Site specific
variations in environmental- and age-related variations in the hazard of burning may require more
sample-points; site specific simulations should thus be conducted to determine sample numbers
before conducting a TSLF field study.
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1. Introduction

There is concern that fire frequency is increasing globally [1] and that the resulting carbon
emissions will enhance climate change [2]. Fire frequency is here defined as the probability that
a forest stand burns [3,4]. An understanding of how fire frequency has changed, and the climatic
and anthropogenic factors that have driven those changes, can help anticipate future changes in fire
frequency. In areas of high fire frequency, the use of decades-long historical and remotely sensed data
can indicate temporal changes in wildfire frequency [5], while areas of lower fire frequency require
longer-term biophysical records such as provided by fossil charcoal and tree-rings [6].

Fire frequency is equal to the inverse of each of the fire cycle (FC), fire rotation (FR), and mean fire
interval (MFI), if the hazard of burning is constant over historical time and forest age [4,7]. FC and FR
are both equal to the number of years required to burn an area equal in size to the study area, but they
differ in the data employed for their estimation. FR is estimated from a series of annual fire-year maps
created using either historical records or tree-ring reconstructions [8]. FC is estimated from a map that
displays the times since last fire (TSLF) across the landscape; a frequency distribution of TSLF ages
typically displays a negative exponential form and its FC can be obtained using a maximum likelihood
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estimate (MLE) [3]. MFI is the mean number of years between consecutive fires, as estimated from
peaks in fossil charcoal records, fire scars on a tree, or polygons on annual fire maps created using
historical records or stand origin maps [7]. This paper will focus on FC estimation, but will use the
simulated value of FR (FRS, see below) to evaluate the accuracy of FC estimates.

FC estimation using TSLF data typically has three steps [7]. First, a study area is identified
that is ≥3× larger than the largest fire year, a size believed to ensure that individual years do not
over-influence the shape of the TSLF frequency distribution. Second, the TSLF at each sample-point is
dated using tree-ring pith origins or fire scar data and, if available, historical fire records. While the
TSLF usually represents the last stand replacing fire as indicated by tree ages, it could also represent
the last sub-lethal fire as indicated by fire scars [7]. Third, the TSLF data from across the landscape is
statistically analyzed to estimate the FC. The third step can be conducted using point-sample data,
or using a complete TSLF map. However, it has been suggested that TSLF studies should employ
point-sample data as the creation of TSLF maps through interpretation of aerial photographs can
result in pseudo-replication [9]. Additional methods may be employed, depending on the study area.
For example, for study areas with spatial and temporal heterogeneity, methods have been developed
to estimate variations in FC over time [10] and space [11]. In other areas, the potential problem of
censoring of old TSLF dates due to tree senescence [12] has been addressed [13].

In this study, we focus on three issues related to FC estimation using TSLF data: sample number,
study area size, and FR length. First, no research has suggested how many TSLF points should
be employed to obtain an accurate estimate of FC. Landscape fire simulation analyses have,
however, shown that increased numbers of TSLF samples result in decreased variance in FC estimates
and FC estimates closer to the “true,” simulated FR [4,13]. Since the FRS is calculated with all
simulated fire-year maps used to create the TSLF map, FRS represents the “true” value that FC
estimates should equal. Second, some results [13] appear to show that as FRS lengthens, the variance in
FC estimates also lengthens, which may indicate the need for more TSLF samples. Third, the suggestion
that the study area should be ≥3× the largest total annual area burned [7] has not been evaluated,
though studies have exhibited influences of scaling on related measures. Smaller areas tend to have
a greater variance in stand ages [14], and greater variation around the expected negative exponential
TSLF distribution [15,16]. Related to this, the capacity to detect relations between historical fire records
and environmental drivers was stronger for larger study areas [17]. Two empirical studies whose
studied areas were spatially nested indicate that the FC estimate from the smaller area [3] was shorter
than the FR estimate from the larger area [8].

Eighteen representative field studies that estimated FC using TSLF sample-points varied greatly
in study parameters: study area ranged from 78 to 44,870 km2 (median 2250 km2); ratio of study
area to largest total annual area burned that could be calculated for five studies ranged from 1.7 to
16.2 (median 4.1); number of TSLF sample-points ranged from 75 to 3168 (median 197); and sample
density ranged from 0.4 to 185.6 per 100 km2 (median 10.3 per 100 km2) [8,9,18–33]. Variations in
study area size were often due to the size of the conservation area that was studied, while variations
in sample number were likely due to operational constraints such as time and money. It is possible
that if guidelines on TSLF sample number requirements had been available then those studies might
have taken more TSLF samples to increase FC accuracy, or perhaps fewer TSLF samples so as to be
more cost-effective.

We will use a simulation approach to assess the number of TSLF sample-points required to
estimate the FC with a given accuracy in response to study area size and the FRS. Since the FRS

is calculated using all simulated fire-year maps used to create the simulated TSLF map, a good FC
estimate from the TSLF map should be equal to the value of FRS. Over a dozen computer models
simulate landscape fires [34], many of them have been used to simulate TSLF maps, e.g., [35,36],
and simulated TSLF maps have been used to assess the influence of number of TSLF samples on
FC estimates [4,13]. First, we develop a statistical approach to indicate the minimum number of
TSLF samples required for a fire history study to have a FC estimate within a predefined error.
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Second, we evaluate how the error in the FC estimate and how the number of required TSLF samples
varies with the ratio of study area size to largest total annual area burned. Third, we evaluate if error in
the FC estimates varies with FRS. To address these issues we simulate fire in a homogenous landscape
with no long-term climatic variation, as methods to address spatial and temporal homogeneity have
already been developed.

2. Materials and Methods

2.1. Landis-II Model

To simulate fires and develop TSLF maps, we used LANDIS-II (Landscape disturbance and
succession model, version 2) [37] and its Dynamic Fire and Fuel System (DFFS) extension [36].
LANDIS-II was designed to simulate broad-scale (>100 km2) forest landscape dynamics [38],
including succession, insect disturbance, carbon fluxes, and impacts of climate change, e.g., [39–41].
Landscapes contain interacting cells with user defined resolutions, and individual cells have
homogenous forest cover and soil conditions [40]. It allows landscape conditions and dynamics
to be parameterized using empirical data that reflect historical conditions [42,43]. The DFFS extension
allows simulated fire behavior to respond to temporal variations in fire weather [39] thus increasing
realism in fire shape.

2.2. Historical Forest Fire Data

The historical fire and weather data used to parameterize LANDIS-II and DFFS were from Wood
Buffalo National Park (WBNP), a 44,807 km2 area of boreal forest in Alberta and adjacent Northwest
Territories. These data were collected by the WBNP warden service from 1969 to 2012. During that
44-year period there were 1556 forest fires that ranged in size from 0.001 to 1812.5 km2. The largest
10% of the fires caused 99% of the total area burned, exhibiting a fire size distribution similar to
other areas [44]. The annual number of fires ranged from 5 to 65, with a mean of 36. The annual
burned area ranged from 0.133 to 6519 km2, with a mean of 560 km2. The historical fire rotation
(FRH; see Section 2.8) for this 44-year period was thus 80.0 years (i.e., 44,807 km2 divided by 560 km2

per year).
The following fire weather data associated with each historical fire, were obtained for the model

fire parameterization (Section 2.3): fire season (spring: March to May; summer: June to August;
fall: September to November), leaf status (leaf-on: summer; leaf-off: spring and fall), wind speed
velocity (km/h), wind direction (degrees), fine fuel moisture code (unitless), buildup index (unitless),
and weather class (moderate to extreme, as related to fire size by LANDIS-II) [36]. As 253 fire records
lacked some of that information, only 1303 fire weather records in the 44 years could be used in the
weather information table.

2.3. Model Fire Parameterization

In DFFS, fire sizes are assumed to follow a lognormal distribution that is described using the
mean and standard deviation of the natural logarithm of fire sizes [36]. Our preliminary simulations
were parameterized using the mean and standard deviation of the complete 44-year historical record
of fire sizes and annual numbers of fires. However, we found that those simulations predicted much
less inter-annual variation in fire numbers and area burned than occurred in the historical record.
To allow simulations to predict the full observed range of fire activity, we thus divided the historical
record into six groups of years based on natural breaks in a rank-ordering of their total annual area
burned (Figure 1). In classes with progressively smaller total annual area burned, the historical record
of fire had progressive decreases in the size of the largest individual fire, mean percent of the landscape
burned annually, and percent of total annual area burned (Table 1).
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Figure 1. The 44-year historical record of total annual area burned, rank-ordered from most- to
least-area burned in a year. Classes of total annual area burned: Class 6: <1 km2; Class 5: 1–9.9 km2;
Class 4: 10–99.9 km2; Class 3: 100–399.9 km2; Class 2: 400–999.9 km2; Class 1: ≥1000 km2.

Table 1. Fire characteristics in six classes of total annual area burned (TAAB) for 44 years of historical
records from Wood Buffalo National Park and 1200 years of simulated fires.

Class
of

TAAB

TAAB
Range
(km2)

Historical Record of Fires (44 Years) Simulated Fires (1200 Years)

LIF
(km2)

SIF
(km2) MPLBA PTA LIF

(km2)
SIF

(km2) MPLBA PTA

1 >1000 1812.5 0.01 4.99 71.5 1562.3 0.01 6.56 68.6
2 400–999.9 847.9 0.01 1.65 20.7 732.6 0.01 2.24 21.4
3 100–399.9 193.5 0.01 0.47 6.2 180.6 0.01 0.63 6.0
4 10–99.9 48.1 0.01 0.07 1.4 45.2 0.01 0.23 2.8
5 1–9.9 6.3 0.01 0.01 0.2 6.0 0.01 0.10 1.2
6 <1 0.4 0.01 0.00 0.0 0.0 0.00 0.00 0.0

LIF = largest individual fire. SIF = smallest individual fire. MPLBA = mean percent of the landscape burned
annually by fires in that TAAB class. PTA = percent of total area burned by all fires that was burned by fires in that
TAAB class.

For each of those six classes of total annual area burned we calculated the mean and standard
deviation of the log-transformed fire sizes and the mean number of fires per year (Table 2). The values
in Table 2 differ from the WBNP records in two ways. First, the mean number of fires per year in
WBNP was multiplied by 1.88 as the 2900 × 2900 grid simulated area (see Section 2.4) was 1.88 the
size of WBNP. Second, the many fires <0.01 km2 (<1 ha) were discarded so as to not over-influence the
parameter values obtained for mean and standard deviation of fire sizes. Each of the six sets of fire
parameters (Table 2) were used to simulate 200 individual years of fires, for a total of 1200 years of
simulated fires.
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Table 2. Parameters of fire size distribution and annual ignition number for individual fires that
occurred in each of the six classes of total annual burned (TAAB), including mean (µ) and standard
deviation (σ) of individual fire size lognormal distribution, maximum individual fire size (α),
and annual number of individual fires (η). Values are in hectares as that unit is employed in LANDIS-II.

Class of TAAB µ σ α (ha) η

1 5.02 3.65 181,248 108
2 3.70 3.20 84,790 84
3 3.01 2.74 19.352 78
4 2.61 2.16 4810 56
5 2.29 1.69 633 68
6 - - 35 42

A size-based, rather than duration-based, fire simulation approach in DFFS was employed using
four steps to increase naturalness of the spatial pattern of fires in annual fire-year maps. First, a fire
was initiated and its size was randomly selected from our predefined lognormal distribution for one
of the six classes of total annual area burned. Second, the fire spread to cells selected using spread
equations adapted from the Canadian Fire Behavior Prediction System [45]. The weather parameters
for these spread equations were randomly selected from the weather table for the weather class
associated with that fire size; those weather conditions were used to simulate the entire fire event.
Third, the fire simulation was terminated when either the number of cells selected multiplied by the
cell area equaled or exceeded the predetermined fire size, or it reached the edge of the simulated
landscape. Fourth, additional fires were simulated until the total number of fires that year was equal
to the number determined by a random draw from the Poisson distribution [36] for that class of total
annual area burned (Table 2).

2.4. Landscape Conditions Input

LANDIS-II and DFFS require information on landscape size, topography, waterbodies, tree species
coverage, and forest age. Our simulated landscape contained 2900 × 2900 cell that were each
100 m × 100 m (0.01 km2). Following the simulation of a fire year, the outer 400 cells (40 km) were
clipped from all four edges of the landscape to account for reduced fire occurrence due to the
“probability shadow” [46]. By removing that buffer area, all areas have an equal chance to be burned
by peripheral fires. The remaining 2100 × 2100 cell landscape was 44,100 km2, similar in size to the
44,807 km2 WBNP from where the fire parameterization data were obtained.

Each of the 1200 years of fire simulations was initiated on a homogenous 60-year-old jack pine
(Pinus banksiana Lamb.) forest with no spatial variation in environmental conditions or in the probability
of fire ignitions. This was done as all landscapes differ, and thus this simple landscape would serve
as a baseline condition. In each of our simulations the same forest age (i.e., 60 years) was used so
that multiple simulations could be run at once, and so that each year’s fire map could be used in the
creation of multiple TSLF maps (see Section 2.5 ).

While each of the 1200 years of fire simulations was initiated on a 60-year-old forest,
the information that we extracted from that simulation was the spatial pattern of fires created in
that year. From each of the 1200 simulations we thus obtained one fire-year map of the areas burned in
that year, providing a total of 1200 fire-year maps.

2.5. Time Since Last Fire (TSLF) Map Creation

We simulated 200 years of fires in each of the six classes of total annual area burned, for a total of
1200 years. Since most of the individual fires in Class 6 years were smaller than the cell size of 0.01 km2,
we simply used a “no fire” map to represent total annual area burned in those years. Thus, there were
actually 1000 years of simulated fires.

TSLF maps were created by overlaying the 1200 maps of total annual area burned in the following
sequence of classes of total annual area burned: 6, 5, 4, 3, 2, 1, 6, 5, 4 . . . 1 until all 1200 maps had
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been stacked (Figure 2). The stacking operation was undertaken using a program we wrote in Python.
Each annual fire-year map was randomly selected (without replacement) from the appropriate class
of total annual area burned, until all 1200 fire-year maps had been selected. The first-used fire-year
map represented 1200 years ago, the second-used fire-year map represented 1199 years ago, and the
last-used fire-year map represented one year ago. When cells burned in earlier years were overlaid
(i.e., over-burned) by more recent fires, their age changed to that of the newer burn.

Figure 2. An example of (a) the stacking process of annual fire-year maps for the six classes of total
annual area burned to create (b) a simulated time since last fire (TSLF) map. In the simulated TSLF map,
warm colors represent area burned in recent years, while cold colors show areas burned longer ago.

2.6. Creating TSLF Maps with Different Fire Rotations (FRs)

TSLF maps with a range of FRs were created by leveraging the independence of the 1200 fire-year
maps with which they were built, and the influence that the largest fire-years have on the FR [44].
We created a total of 201 TSLF maps that contained progressively fewer of the large, Class 1 fire-year
maps: 200, 198,197 . . . 2, 1, 0. To insure that the 201 TSLF maps were unique in their spatial pattern of
fires, they were each created using a new random sequence of fire-year maps (described in Section 2.5).
Once stacked, j of the Class 1 fire-year maps were removed by first dividing all fire-year maps into j
intervals, and then removing one randomly chosen Class 1 fire-year map from each of the j intervals.
This was done for j = 1, 2, 3 . . . 200. By removing the 200 Class 1 fire-year maps in this strategic manner,
we ensured that we would obtain TSLF maps that would have a wide variety of FRS.

Uniqueness of the spatial pattern of forest ages in the TSLF maps was evaluated by comparing
TSLF ages in the 11 TSLF maps that contained 200, 180 . . . 20, 0 of the Class 1 fire-year maps.
The 11 TSLF maps had their 2100 × 2100 grid overlain with a lattice which contained 900 nodes
that were each separated by 68 grid-cells. The 900 nodes were at the following XY grid-pairs: 68–68,
68–136, 68–204 . . . 136–68, 136–136 . . . 2040–2040. The TSLFs at those 900 nodes were extracted from
each of the 11 TSLF maps. Spearman rank correlation coefficients were calculated between all pairs of
the 11 node-constrained arrays of TSLFs, and the frequency distribution of those 55 paired correlations
was examined. Spatial autocorrelation in the 11 TSLF maps was evaluated using the global Moran’s I [47].

2.7. Creating TSLF Maps at Different Study Area Scales

To assess the influence of study area scale, the 201 TSLF maps with different FRs (see Section 2.6)
were evaluated at nine different study area scales. The scales were of the study area size relative to the
largest historical total annual area burned. For example, the 2100 × 2100 grid simulated landscape is
6× larger than the largest total annual area burned in the 1200 years of fire simulations (see Section 3.1).
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The nine scales of 6×, 5×, 4×, 3×, 2×, 1×, 0.75×, 0.50× and 0.25× were created by extracting a square
area centered on the middle of the 2100 × 2100 grid simulated landscape (Figure 3). The nine TSLF
maps at the different scales were thus nested, but not unique.

Figure 3. TSLF maps for the whole 2100 × 2100 grid simulated landscape created using (a) 1200 fire-year
maps including all 200 Class 1 fire-year maps, (b) 1100 fire-year maps including 100 Class 1 fire-year
maps, and (c) 1000 fire-year maps including no Class 1 fire-year maps. Outlined in black are the study
area scales (a) 6×, 3×, 0.75×, (b) 5×, 2×, 0.5×, (c) 4×, 1×, 0.25×.

2.8. Fire Rotation (FR) and Fire Cycle (FC) Estimation Methods

Fire rotation (FR) is calculated using annual fire maps: study area size divided by the mean total
annual area burned. The historical fire rotation (FRH) for WBNP was calculated using its 44-year
historic record. The simulated fire rotation (FRS) for the 2100 × 2100 grid simulated landscape was
calculated using its 1200 simulated annual fire-year maps. A Python program was written to conduct
a Monte Carlo simulation to estimate the mean FRS and its standard deviation. The Python program
randomly selected without replacement 100 of the 200 annual fire maps in each of the six classes,
and then used those 600 maps to calculate one FRS; this operation was repeated 1000 times providing
1000 estimates of the FRS from which the mean and standard deviation were calculated.

The FC of the TSLF map created using all 1200 annual fire-maps was calculated using two
methods: the mean age (FCMA), and the maximum likelihood estimate (FCMLE). The FCMA was
estimated as the mean age of 1000 TSLF sample-points; the FCMA was introduced as a simple
MLE of a TSLF distribution with a negative exponential form [3]. The FCMLE of 1000 TSLF points
was estimated using a more elaborate maximum likelihood function [48] that accounted for two
sources of randomness: the random occurrence and spread of fires, and the random selection of
sample-points [49]. The 1000 points used to calculate FCMA and FCMLE were distributed across
the landscape of the TSLF map in a structured random approach: discretizing the landscape into
100 equal-sized non-overlapping areas of 210 × 210 grid (441 km2), and then obtaining the TSLF from
10 different randomly selected, without replacement, cells from each of the 100 areas. For both methods
of estimating the FC, the historical hazard of burning in the simulation would be constant, because the
six classes of total annual area burned that we employed would simply cause a six-year cycle around
a multi-century trend. The two methods were employed 1000 times. Differences between estimates of
FRS, FCMA and FCMLE were assessed using a two-sample t-test.

2.9. Estimating the Minimum Required Number of TSLF Sample-points

To assess the minimum number of sample-points required to estimate the FCMA at a given level
of accuracy, we wrote a Python program to conduct a five-step procedure. First, the TSLF map was
discretized to obtain 100 square grids numbered 1 to 100. Second, 1000 sample-points were randomly
selected in a repeated sequence from the grids 1 to 100; reaching 1000 points required 10 cycles through
the 100 grids. Third, each time a new sample-point was added, the FCMA was recalculated, until FCMA
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was estimated with 1000 sample-points. FCMA was estimated as the sum of TSLF ages for the n points
divided by n. Fourth, the number of sample-points required to estimate mean FCMA at a given level of
accuracy was determined by the absolute difference in the measured mean (ADMM):

ADMM =
abs

(
∑n

i=1 Age
Sorder

− MeanAge(1000)

)
MeanAge(1000)

× 100 (1)

where abs is the absolute value, MeanAge(1000) is the mean of the 1000 randomly selected sample-points,
and Sorder is the order of the 1000 samples. Accuracy in this study was assessed using an ADMM
threshold of 10%, but the program can be modified to employ any value. Fifth, the minimum sample
size was identified as the lowest sample size at which the ADMM stayed lower than the threshold
value of 10% for the remainder of the 1000 sample-points. The 1000 different estimates of the minimum
sample size were then expressed as their 95th percentile.

2.10. Influence of Study Area Scale on Estimated FC and TSLF Age Variability

The influence of study area scale (study area size divided by largest total annual area burned) on
FCMA estimation was evaluated in four steps. First, the FRs was calculated for all 201 TSLF maps for
the whole 2100 × 2100 grid landscape. Since FRs was calculated using all of the individual fire-year
maps that were used to create the TSLF map, FRs provides the “true” value that a good estimate of
FCMA should also provide. Second, FCMA was estimated for all 201 TSLF maps at all nine scales, for
a total of 1809 values. Third, at each of the nine scales, the root mean square error (RMSE) and R2

adj
were calculated between the 201 FRS values and FCMA estimates. Fourth, the RMSE and R2

adj values
were graphed across the nine scales to assess if there was a scale at which the FRS and FCMA no longer
agreed well.

The influence of study area scale on age variability across TSLF maps was evaluated in four
steps. First, the FRs was calculated for all 201 TSLF maps for the whole 2100 × 2100 grid landscape.
Second, 1000 TSLF points were selected from each of the 1809 TSLF maps and their standard
deviation was calculated; this was done 1000 times for each map and their mean was calculated.
Note: in a negative exponential distribution, the standard deviation and the mean should have equal
values [3]. Third, at each of the nine scales, the RMSE and R2

adj were calculated between the 201 FRS

values and the standard deviation of the TSLF ages. Fourth, the RMSE and R2
adj values were graphed

across the nine scales to assess if there was a scale at which the two measures indicate poor agreement
between FRS and the standard deviation.

2.11. Influence of FRS and Study Area Scale on Minimum Required Sample-Points

The influence of the FRS on the accuracy of the FCMA estimate was evaluated in three steps.
First, the value of FRS minus FCMA (i.e., FRS-FCMA) was calculated for all 201 TSLF maps at all nine
scales, for a total of 1809 values. FRS was always for the whole 2100 × 2100 grid landscape, as it
represents the basic conditions behind the creation of the TSLF map. Second, linear regressions were
conducted between the 201 values of FRs against FRs minus FCMA, with this done separately for each
of the nine scales. Third, the intercept and slope parameters and p-values were tabulated; study-area
scales at which the intercept and slope were not significantly different than zero were inferred to have
had no influence on the length or the FRS on the length of the FCMA estimate.

The minimum number of TSLF samples required to estimate FCMA at a given level of accuracy
was assessed using four steps. First, for each of the 201 TSLF maps at each of the nine scales we
determined the 95th percentile of the minimum number of TSLF sample-points required to obtain an
ADMM of 10% (see Section 2.9). Second, those values were expressed in two ways: the number of
TSLF points per map and, since the nine study area scales differed greatly in total area, the number
of TSLF points per 100 km2. Third, linear regressions were conducted between the 201 values of FRS

against the 95th percentile of the minimum number of sample sizes for each of the 201 maps; this was
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done separately at each of the nine scales. The FRS was for the whole 2100 × 2100 grid landscape.
Fourth, the 95th percentile of the 201 minimum sample values was calculated for each of the nine
scales and graphed.

3. Results

3.1. Simulated Fires and Fire-Year Maps

The largest simulated fire in the 1200 fire-year maps was 1562 km2 (Table 1; 3.5% of the simulated
landscape). The largest of the 1200 simulated fire years burned 7385 km2 (16.7% of the landscape),
and the mean total annual area burned for the 1200 fire maps was 717.5 km2. The fire characteristics in
the six classes of total annual area burned was similar for the 1200 years of simulated fires as it was for
the 44 years of historical fires (Table 1) in terms of both the absolute size of the largest individual fire,
as well as the mean percent of the landscape burned annually and the percent of the total area burned.

Rank-ordered distributions of the total annual area burned in the 1200 years of simulated fires
and the 44 years of historical fire records both exhibit a negative exponential distribution (Figure 4).
The distributions are more similar for large fire years than for small fire years; for example, the largest
30% of the historical fire years and the largest 34% of the simulated fire years each burned >1% of the
study area per year. The historical data exhibit a steeper slope in the frequency of total annual area
burned than do the simulated data. The Monte Carlo estimate of FRS from the 1200 fire-year maps was
61.5 years (range: 57.6 to 66.3 years).

Figure 4. The rank-ordered distributions of the percent area of the landscape burned in the 44 years of
historical fire records for Wood Buffalo National Park (WBNP) and the 1200 years of simulated data,
and their exponential regression parameters. The y-axis is truncated at 0.1% as simulated data with
fire-years lower than that all had zero area burned.

3.2. Time Since Last Fire Map and FC Estimates Using Initial Fire Parameters

The TSLF map for the 2100 × 2100 grid landscape, created using 1200 fire-year maps based on the
fire parameters in Table 2, contains much young forest and progressively less old forest (Figure 3a).
The cumulative frequency distribution of TSLFs for all 4,410,000 cells from that TSLF map (Figure 3a)
displays a negative exponential distribution (Figure 5), the slope of which indicates a FC of 61.7 years.
When 1000 TSLF points were sampled from that TSLF map 1000 times, the mean FC was 61.6 years
for FCMA (range: 57.9 to 66.9 years), and 61.7 years for FCMLE (range: 57.0 to 66.3 years). The FCMA

was not significantly different from FCMLE (p = 0.35) or FRS (p = 0.18; from Section 3.1), as indicated by
two-tailed t-tests.
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Figure 5. The cumulative TSLF distribution and regression model created for the 2100 × 2100 grid
simulated landscape using all 1200 fire-year maps. The FCMA estimate from the slope is 61.7 years.

3.3. Examples of Calculating the Minimum Number of Sample-Points

With an increase in the number of sample-points from the TSLF map (Figure 3a, created using
all 1200 fire maps and the 2100 × 2100 grid landscape) the FCMA estimate initially varied greatly and
then stabilized (Figure 6). When an ADMM of 10% was employed 1000 times from this TSLF map,
the minimum number of samples required ranged from 65 to 571, with a median of 147 and a 95th
percentile of 239 sample-points (Figure 7).

Figure 6. Three examples of how the FCMA estimate varied with the number of TSLF sample-points,
using the TSLF map for the 2100 × 2100 grid simulated landscape that contained all 1200 fire-year
maps. For example, the minimum required number of sample-points to obtain an absolute difference
in the measured mean (ADMM) of 10% of the FCMA estimate is (a) 65, (b) 147 and (c) 571. Those values
correspond to the minimum, median and maximum values in the distribution in Figure 7.
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Figure 7. The frequency distribution for 1000 simulations of the minimum number of TSLF
sample-points required to estimate FCMA with an ADMM of 10% when using the TSLF map for
a 2100 × 2100 grid simulated landscape that included all 1200 fire-year maps. The minimum number
of TSLF sample-points is 65, median is 147, the 95th percentile is 239, and maximum is 571.

3.4. Creation of TSLF Maps with Different FRS

The 201 TSLF maps had an FRS that ranged from a low of 61.1 years when all 200 Class 1 fire
years were employed, to a high of 200.5 years when no Class 1 fire years were employed. TSLF maps
with fewer Class 1 fire years had progressively less young forest and more old forest (Figure 3).
Spearman rank-correlations between 55 permutations of 11 TSLF maps ranged from −0.164 to 0.343
with a median of 0.026; when classified into bins that were 0.05 correlation-units wide, the mode was in
the zero-bin of −0.024 to 0.025. The global Moran’s I ranged from −0.127 to 0.120, and was positively
correlated with FRS for those maps (rs = 0.964, p = 0.0000, n = 11), but not correlated with the 95th
percentile of TSLF sample-points for those maps (rs = −0.092, p = 0.789, n = 11).

3.5. Influence of Study Area Scale on Estimated Fire Cycle (FCMA) and TSLF Age Variability

At a study area scale of 3× of the largest total annual area burned, TSLF maps based on a higher
FRS also had a higher FCMA estimated from the TSLF map (Figure 8). In contrast, at a study area
scale of 0.5×, TSLF maps based on a higher FRS did not yield higher FCMA estimates. When those
calculations were done for all nine scales (Figure 9), TSLF maps with a study area scale of ≥2×
had a high R2

adj and low RMSE between FRS and FCMA, while scales of ≤1× had a low R2
adj and

high RMSE. When similar analyses were conducted between the FRS and the standard deviation of the
201 TSLF maps (Figure 10), TSLF maps with a study area scale of ≥2× had a high R2

adj and low RMSE
between FRS and standard deviation, and study area scales of ≤1× had a low R2

adj and high RMSE.

Figure 8. Relations between simulated fire rotation (FRS) for the whole 2100 × 2100 grid simulated
landscape and FCMA estimates for each of the 201 TSLF maps. Of the nine scales at which these
analyses were conducted, two are depicted here: 3× and 0.5×. Each point represents one of the 201
TSLF maps. The R2

adj and root mean square error (RMSE) are, respectively, 0.97 and 7.7 for the 3×
study area scale, and 0.03 and 54.4 for the 0.5× study area scale; these values provide four of the points
used in Figure 9.
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Figure 9. The R2
adj and the RMSE between FRS for the whole 2100 × 2100 grid simulated landscape

and the FCMA estimate for each of the 201 TSLF maps at each of the nine study area scales.

Figure 10. The R2
adj and RMSE between FRS for the whole 2100 × 2100 grid simulated landscape and

the standard deviation of TSLF ages for all 201 TSLF maps at each of the nine study area scales.

3.6. Influence of FR and Study Area Scale on Minimum Required Sample-Points

At a study area scale of 3× of the largest total annual area burned, TLSF maps based on a longer
FRS did not exhibit any difference between FRS for the whole study area and FCMA estimates
from the 3× scale TSLF map (Figure 11). In contrast, at a study area scale of 0.5×, TSLF maps
based on a longer FRS did exhibit differences between FRS for the whole study area and FCMA

estimates from the 0.5× scale TSLF map; the differences were typically negative for low values of
FRS and positive for high values of FRS. Results from linear regressions between FRS and the FCMA

from the nine different scales (Table 3) indicate that scales ≥4× had intercept values that were not
different than zero, while progressively smaller scales had progressively more negative intercepts.
The regression results also indicate that scales ≥3X had slopes that were not significantly different than
zero, while progressively smaller scales had steeper slopes that were significantly different than zero.

At a study area scale of 3× of the largest total annual area burned, TSLF maps based on a longer
FRS did not require more TSLF sample-points to obtain an ADMM of 10% than did TSLF maps based
on a shorter FRS (Figure 12). There was no significant trend with FRS in the number of sample-points
for the 0.5× study area, nor for the density of sample-points for the 3× or 0.5× study areas. The 3X
study area scale did require more TSLF total sample-points, but at a lower density of sample-points
per 100 km2, than did the 0.5× study area scale. In general, an increase in study area scale resulted
in a linear increase in the minimum total number of required TSLF sample-points, and a negative
exponential decrease in the number of sample-points per 100 km2 (Figure 13).
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Figure 11. Relations between FRS for the whole 2100 × 2100 grid simulated landscape and FRS minus
the FCMA estimate for each of the 201 TSLF maps at the relevant study area scale. Of the nine scales at
which these examples were conducted, two are depicted here: 3X and 0.5X.

Table 3. Linear regression results between the FRS for the whole 2100 × 2100 grid simulated landscape
and FRS minus the FCMA for each of the 201 TSLF maps using the relevant study area scale.

Study Area Scale R2
adj

Intercept Slope

Constant p-Value Coefficient p-Value

6X 0.002 −0.038 0.980 0.0129 0.258
5X 0.006 −1.906 0.172 0.0192 0.133
4X 0.002 1.505 0.261 0.0096 0.432
3X 0.001 3.845 0.004 0.0134 0.273
2X 0.260 −5.921 0.001 0.1343 0.000
1X 0.549 −82.245 0.000 0.6954 0.000

0.75X 0.529 −103.17 0.000 1.0616 0.000
0.5X 0.339 −89.834 0.000 0.8114 0.000

0.25X 0.448 −104.66 0.000 1.0030 0.000

Figure 12. The minimum number of TSLF sample-points to estimate FCMA with an ADMM of 10%.
Each sample-point pairs the FRS from the whole 2100 × 2100 grid simulated landscape with the 95th
percentile estimate of the 1000 trials of how many TSLF points are required; this was done for all 201
TSLF maps. The minimum number of TSLF sample-points is expressed in two ways: the total number
for that study area scale, and the density of sample-points (points/100 km2). Of the nine scales at
which these examples were conducted, two are depicted here: 3× and 0.5×.
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Figure 13. The minimum number of TSLF sample-points, and the density of TSLF sample-points per
100 km2, which were obtained for each of the nine study area scales. The number of TSLF points at
each scale is the 95th percentile from the 201 TSLF maps, each of which in turn is represented by the
95th percentile of their 1000 trials of how many TSLF samples were required to meet an ADMM of 10%.

4. Discussion

Our key findings suggest that: TSLF fire histories should employ study areas ≥3× the largest
total annual area burned [7]; the minimum number of TSLF sample numbers and sample density
that should be employed differs with study area scale (study area divided by largest total annual
area burned); and an influence of FRS length on the FC estimate only occurs if the study area scale is
<3×. Although the 201 TSLF maps were created by randomized resorting of the same 1200 simulated
fire-year maps, Spearman correlations suggest that the TSLF maps contain unique spatial patterns.
Our results most directly apply to areas of boreal forest that are predominantly burned by large
stand-replacing fires, but scaling relations could be used as a first approximation for study areas with
small stand-replacing fires.

Three aspects of our results support the suggestion that study areas should be ≥3× the size
of the largest total annual area burned [7]. First, relations between FRS and the FCMA are best for
scales of ≥2×. That is, for study area scales ≥2×, the estimated FCMA was strongly similar to the
FRS for the complete 2100 × 2100 grid simulated landscapes. Remember that since the TSLF map is
based on the FRS, a good FCMA estimate should equal the FRS. Second, the individual regressions
between FRS against FRS minus FCMA at each study area scale indicate that only scales of ≥4×
had an intercept not different than zero, and only scales ≥3× had a slope not different than zero.
Third, standard deviation in TSLF ages is most similar to FRS for scales of ≥2×. Since a fundamental
property of the negative exponential distribution that many TSLF distributions display, is that the
mean and standard deviation should have equal values, it is not surprising that our scaling results
were similar for the two parameters. Thus, while our results suggest that a study area scale as small as
2× could provide accurate estimates of the FC, since some of our relations only become stable at 4×,
our findings agree with others that progressively larger areas provide more accurate results [14–16].
Also, since a small study area scale will likely provide a TSLF distribution that is not representative of
the FR, increasing the number of TSLF sample-points cannot fix that misrepresentation.

Given that real landscapes contain spatial heterogeneity in environmental conditions, unlike our
spatially homogenous simulated area, study area scales >3× are likely required to obtain accurate FC
estimates [50]. Of the 18 TSLF fire history studies whose size and sample numbers were given in the
Introduction, five provided information on the largest total annual area burned; they had a median
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study area scale of 4.1 and a range from 1.7 to 16.2 [8,22,27,28,32]. This suggests that TSLF fire history
studies should, to reduce possible errors in their results and to maximize the interpretive potential of
their data, strive to study larger areas. In study areas restricted by property boundaries such as the
edge of a park that make larger study area scales infeasible, recognition should be made that the FCMA

could misrepresent the real FC even if the TSLF sample size is high.
The number and density of TSLF samples required to estimate the FC with an error (ADMM)

of less than 10% for study area scales of 3× were, respectively, 187 samples and 0.81 per 100 km2.
While this coarse-scale sampling will provide information on the regional FC, it will not provide
enough information to understand small-scale drivers. An increase in sample number or density
would help with detecting environmental small-scale drivers of spatial variations in FC, e.g., [18,27].
If we assume that the 18 TSLF-based fire history studies mentioned in the Introduction had a study
area scale of 3×, then two of them did not meet the sample density requirement, and nine did not meet
the sample number requirement. This indicates that increased TSLF sample sizes should be employed
to reduce error in FC estimates.

Our results suggest that only study areas with a scale of <3× will have FC estimates influenced
by the length of the FR. In general, small-scaled areas with a short FR have an overestimated FC,
and small-scaled areas with a long FR have an underestimated FC. This pattern is supported by the
only studies we are aware of that allow a multi-scale comparison of FC and FR: the FC of 47 years from
a 1.1× scaled study area by Van Wagner [3] underestimates the FR of 204 years calculated from a 2.3×
scaled study area by Heinselman [8] within which it was nested.

The reduced standard deviation of TSLF ages that we observed in smaller areas could result in
uncommon old stands over-influencing the FC estimate in areas with a short FR, and uncommon young
stands over-influencing the FC estimate in areas with a long FR. It is possible, however, that field-based
TSLF studies could avoid those biases as the exact area of recent burns can be known from historical
records and/or remotely sensed imagery, and very old burns would be lost due to mortality of the
original tree cohort and be replaced by younger successional forests, e.g., [13].

We recognize that our simulation methods and study design have some limitations, and could
be improved in four key regards. First, our uniform landscape did not consider spatial variation
in factors such as soil, topography, hydrography and climate, known to influence FC [27,51].
Future studies could assess how requirements of study area scale and TSLF number change with
increased spatial heterogeneity. Our preliminary research using neutral landscape models showed
that increases in positive spatial autocorrelation did require increased number of TSLF sample points
(Supplementary Materials), but variations in spatial autocorrelation in our 11 TSLF maps did not
appear to influence the required number of TSLF sample points. A second improvement would involve
modifying LANDIS-II and DFSS (Dynamic fuels and fire system) so that each simulated year could
sample from different probability distributions of fire occurrence, fire size and fire weather. Since our
preliminary analyses showed that using only one set of fire parameters resulted in unrealistically low
inter-annual variation in area burned, we employed six classes of fire parameters and thus had to
simulate years individually. If LANDIS-II and DFSS included this modification, that would allow
one TSLF map to develop over 1200 years of burning, and thus incorporate the influences of forest
age on fire spread [52]. Third, our TSLF maps did not assume censoring due to mortality, and thus
unrealistically contained TSLF grids >801 years. We could have applied a censoring to TSLF points,
e.g., [13] but we instead believe that fire history field researchers should examine tree-rings to determine
if it is an open-grown post-fire stand, or a closed-grown successional stand [53]. If the latter occurs
then either soil charcoal should be used to get the TSLF, e.g., [54], or the TSLFs should be examined as
a truncated distribution [7].

A fourth improvement would be to evaluate the influence of age-related changes in the hazard
of burning on the required number of TSLF sample-points. Many but not all forest types exhibit
an increase in the hazard of burning with increased age [55] which can cause increased positive
spatial autocorrelation of TSLF [52]. Since increasingly positive spatial autocorrelation requires an
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increased number of sample-points to obtain a spatially representative mean value of landscape
conditions [56], forests that have age-related increase in the hazard of burning might require more
TSLF sample-points. Indeed, in a preliminary evaluation of this issue using neutral landscape models,
we found that increases in spatial clustering of forest ages, such as might occur due to age-related
increases in hazard of burning, did result in an increase in the required number of TSLF sample-points
(Supplementary Materials).

We suggest six different ways that future TSLF fire history studies could apply our results
to estimate the FC in forests with a stand-replacing fire regime. First, and most importantly,
researchers should always use a study area ≥3× the largest total annual area burned. If the study area is
under fire suppression, then they should use the largest total annual area burned from pre-suppression
TSLF records or from other fire history studies. Second, researchers could use the minimum number
of TSLF sample-points that we suggest for the relevant study area scale. Third, researchers should
increase the number of TSLF sample-points above our minimum to account for spatial and temporal
heterogeneity, such as caused by age- or environment-related increases in the hazard of burning
(Supplementary Materials). Fourth, researchers could divide our TSLF sample density requirement
by the appropriate scaling factor related to largest total annual area burned. For example if a study
area had the largest total annual area burned 1/10 that in our study area, then instead of 0.81 samples
per 100 km2 they would use 0.81 samples per 10 km2. This approach does, however, simplistically
assume similar slopes of the total annual area burned distributions. Fifth, researchers could import
their spatial environment into LANDIS-II and DFSS, and parameterize the simulations in a manner
that would reflect that area’s temporal variations in fire weather. They could then use our Python code
to determine either the number of TSLF points required to reach an acceptable error, or determine the
error their FC estimate will have given their constraints in study area and sample number. Since all
study areas contain unique spatial patterns of environmental factors that influence the hazard of
burning, and unique age-related changes in the hazard of burning, this approach will yield the most
realistic indication of the required number of TSLF sample-points. Sixth, an ongoing TSLF fire history
could begin with our minimum suggested sample density, and employ a Monte Carlo simulation
while doing fieldwork to estimate the FC and the error in that estimate; if the error is too high then the
researchers would gather additional TSLF samples until the error was acceptable.

5. Conclusions

The method of constructing and sampling TSLF maps that we developed allows guidelines to be
tested in regard to how large of a study area and how many TSLF sample-points should be employed
to estimate the FC using the TSLF method. This approach builds upon previous simulation studies
which showed that increased sampling effort would reduce error in FC estimates.

Our results indicate that TSLF fire histories should be created for areas that are ≥3× the largest
total annual area burned that occurs in the region within which the study area is located. If smaller
study areas are employed, then areas with a short but unknown FR will likely obtain an overestimated
FC, and areas with a long but unknown FR will likely obtain an underestimated FC. Since these biases
will be the result of the study area being too small, they cannot be compensated for by employing
more TSLF samples.

Our results further indicate that in forests whose fire regime is similar to our simulation, 187 TSLF
sample-points is the minimum required to estimate the FC with an error of less than 10% in a study
area 3× the largest total annual area burned. Larger areas would require more samples but at a lower
spatial density. Since our suggestions are based on a spatially homogenous study area with a cyclic
climate, study areas with progressively higher spatial and temporal heterogeneity due to factors such
as age-related increases in the hazard of burning, should employ progressively more TSLF samples.
To optimize the number of TSLF samples in a fire history study, we encourage researchers to develop
site-specific applications of our simulation approach prior to conducting fieldwork.
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Supplementary Materials: All input data and code from this study are available at XW’s Github repository:
https://gist.github.com/xinyuanwylb19. A supplementary section is available at http://www.mdpi.com/
1999-4907/9/11/708/s1: “A preliminary evaluation of the influence of environment- and age-related spatial
autocorrelation on the required number of time since last fire sample-points”.
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Abbreviations

The following abbreviations are used in this manuscript:

ADMM Absolute difference in the measured mean
DFSS Dynamic fuels and fire system
FC Fire cycle
FCMA Fire cycle estimated as mean age of simulated TSLF map
FR Fire rotation
FRH Fire rotation estimated from historical data
FRS Fire rotation estimated from simulated data
LANDIS-II Landscape disturbance and succession model, version 2
MFI Mean fire interval
MLE Maximum likelihood estimator
TSLF Time since last fire
WBNP Wood Buffalo National Park
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