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Abstract: A tree list is a list of trees in the area of interest containing, for example, the species,
diameter, height, and stem volume of each tree. Tree lists can be used to derive various characteristics
of the growing stock, and are therefore versatile and informative sources of data for several forest
management purposes. Especially in heterogonous and unmanaged forest structures with multiple
species, tree list estimates imputed from local reference field data can provide an alternative to mean
value estimates of growing stock (e.g., basal area, total stem volume, mean tree diameter, mean
tree height, and number of trees). In this study, reference field plots, airborne laser scanning (ALS)
data, and SPOT 5 satellite (Satellite Pour l’Observation de la Terre) imagery were used for tree list
imputation applying the k most similar neighbors (k-MSN) estimation method in the West Ural
taiga region of the Russian Federation for diameter distribution estimation. In k-MSN, weighted
average of k field reference plots with highest similarity between field reference plot and target
(forest grid cell, or field plot) based on ALS and SPOT 5 features were used to predict the mean
values of growing stock and tree lists for the target object simultaneously. Diameter distributions
were then constructed from the predicted tree lists. The prediction of mean values and diameter
distributions was tested in 18 independent validation plots of 0.25–0.5 ha in size, whose species
specific diameter distributions were measured in the field and grouped into three functional groups
(Pines, Spruce/Fir, Broadleaf Group), each containing several species. In terms of root mean
squared error relative to mean of validation plots, the accuracy of estimation was 0.14 and 0.17
for basal area and total stem volume, respectively. Reynolds error index values and visual inspection
showed encouraging results in evaluating the goodness-of-fit statistics of the estimated diameter
distributions. Although estimation accuracy was worse for functional group mean values and
diameter distributions, the results indicate that it is possible to predict diameter distributions in
forests of the test area with the tested methodology and materials.

Keywords: k most similar neighbor; lidar; tree list imputation; field verification

1. Introduction

Parameters describing tree diameter distribution (mean and standard deviation of diameter, shape
of distribution) are commonly used in ecological and economic analysis in forestry. In ecological terms,
varying size of trees have a clear influence on the dynamics of forest ecosystems [1]. The distribution
of trees in forest stands in terms of their diameter at breast height (DBH) provides useful information
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for defining instructions for harvesting forest stands and for assessing the economic value of the size
classes present [2,3].

Compartment level forest inventory information of the growing stock is very often presented as
mean values. The mean values of parameters, such as basal area, total stem volume and stem count
per ha, mean tree diameter, mean tree height, and forest age are listed by species and sometimes by
age or canopy layer class (dominant, sub dominant, and under canopy trees). A more detailed way
of presenting the information is to use tree size distributions or tree lists. A tree list is a list of trees
in the area of interest containing, for example, the species, diameter, height and stem volume of each
tree. Information in the tree list can be compressed in the form of tree size distributions where the
frequencies of trees of similar size are presented. Tree lists are very versatile input data for various
applications. For example, they can be used to derive mean values by species or by other classification
as input data for applying tree level growth models or estimating amounts of timber sortiments in
case of harvesting. Users of the inventory information can choose which trees are of interest and
use the selected trees in further analysis. Field inventories aiming at producing tree lists or tree size
distributions can be laborious, however the use of remotely sensed materials can drastically improve
the efficiency of inventories. Airborne laser scanning (ALS) has been widely used in forest inventories
and it has been proven to produce accurate inventory results that are comparable with field assessment
methods (e.g., [4,5]). Accurate tree species mapping is challenging from ALS or from aerial optical
data using automatic methods. For practical arrangements, species are grouped, for example, in
three groups including separate classes for main coniferous tree species and all broadleaf species are
described as one group (e.g., [4,5]). Inventory methods based on ALS can be roughly divided into two
categories: area based approach (ABA) and detecting individual tree crowns (ITC); a third possible
category is a mixture of ABA and ITC (for example [6–8]). It is possible to use ABA for estimating
the mean values of the growing stock (for example [9–11]) or in the simultaneous estimation of mean
values and tree lists (for example, [12,13]), while ITC always produces complete tree lists if all the trees
are correctly detected (for example [14]).

Methods relying on ITC suffer from bias due to errors in tree crown detection, which are
dependent on tree density and clustering [15]. Methods combining ITC and ABA do not suffer
from bias due to errors in tree crown detection, however they still require the point density to be
high enough to delineate individual trees. During the last decade, the ABA-based prediction of tree
diameter distribution has become an optional procedure in forestry studies in Nordic countries [5].
There are several alternative ABA methods that are available to estimate tree lists or tree size
distributions. Several studies have been complied regarding suitable distribution function, i.e.,
parametric (e.g., Weibull, beta, gamma, log-normal) and non-parametric (e.g., percentile prediction,
k nearest neighbors) (see [16]) to choose independent and dependent variables and other parameters
(number of nearest neighbors, plot sample size) [17]. Examples of ABA-based methods suitable for
low point density data are:

1. Tree list imputation using k-nearest neighbors (k-NN) methods (e.g., [12,13]).
2. Direct estimation of parameters of theoretical distributions (for example [18]).
3. Estimation of mean values and using existing models (parameter prediction) to estimate

parameters of theoretical distributions (e.g., [12]).
4. Estimation of mean values and parameters of theoretical distributions using parameter

recovery [19,20].

It was demonstrated in [12] that Method 1 in the abovementioned list (tree list imputation)
provides more accurate estimates of diameter distributions than Method 3 (parameter prediction).
The k most similar neighbors (k-MSN) method was used to produce the estimates for tree lists and mean
values. In [21], it was reported that parameter recovery, at its best, provided better accuracy for young
stands and at least competitive accuracy for advanced stands when compared with existing distribution
models used in Finland. Furthermore, [20] showed that parameter recovery method applied in
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ABA-based mean estimates is comparable to, or outperforms, comprehensive field measurements in
estimating diameter distributions for the final cut stands.

Parametric estimation assumes that sample data comes from a population that follows a probability
distribution that is based on a fixed set of parameters. In the case of forest structure estimation, parametric
estimation is justified for homogenous single tree story layered stands. Conversely, non-parametric
models differ in that the parameter set is not fixed and can increase, or even decrease if new relevant
information is collected. There is no need to assume anything about the distribution, and we will
rely only on the measurements. Non-parametric estimation is a safe strategy in heterogonous and
unmanaged forest structures with multiple species [22]. Thus, the tree list imputation method can
be considered to be a suitable initial method for Russian taiga conditions. This method can be used
with low pulse density lidar data, which makes it cost efficient in large areas compared to ITC-based
methods which require higher point density and are critical for the detection of individual tree crowns.

In Russia, traditional methods of analyzing and classifying forest stand structure are performed
by age [23], while the concept of diameter distributions is not commonly used. According to [23],
the main types of tree age structures based on tree distributions are:

1. Relatively even-aged stands: The diameter distributions are unimodal and near normal.
2. Absolutely uneven-aged stands: The diameter distributions are “negative-exponential” or

“reverse J-shaped”.
3. Relatively uneven-aged stands: The tree diameter distributions are multimodal, i.e., with

several peaks.

Diameter distributions can, therefore, be used to describe the forest structure compatible with
the traditional age-related classification. From the imputed tree list, the user of the inventory data
can produce official reports with the required parameters, as well as compile information for forest
management and timber procurement purposes. The method does not require existing models for
predicting parameters for theoretical distributions and can be used in mixed species forests with
multiple canopy layers. The downside of the tree list imputation method is that they require extensive
and comprehensive field reference data for producing reliable estimates in forest areas with high
variation in species mixture and forest structure.

This research is a continuation to previous research that was conducted by Kauranne et al. in
2017 [24], in which mean values were estimated within the same study area and materials, however
with a different estimation method. As an independent study, the aim of this research is to test the
imputation of tree lists with a k-MSN method in a taiga forest vegetation zone in the West Ural taiga
region of the Russian Federation. Our research hypothesis is that k-MSN with tree list imputation can
be used to describe all three main types of tree age structures based on tree distributions mentioned
above (relatively even-aged stands, absolutely uneven-aged stands, and relatively uneven-aged stands).
Additionally, the study area and materials make it possible to compare the estimation accuracies of
mean values obtained with the sparse Bayesian regression [11] applied in the previous research and
the k-MSN method applied in this research. We expect that k-MSN produces lower estimation errors
for species group estimates, whereas sparse Bayesian regression performs better in the estimation of
total mean values.

2. Materials and Methods

The materials are described in detail in [24], in which the same research data were used. The study
area covers an area of 10 × 10 km, and it is located close to the village of Polovodovo, in the Solikamsk
forest district, in the northern part of the Perm region, Russia (Figure 1).
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Figure 1. Location of the Perm region (a), and magnification of the Perm region, showing the study
area inside the Solikamsk forest district (b).

The area of the Solikamsk forest district belongs to the taiga forest vegetation zone of the West
Ural taiga region of the Russian Federation. The climate of the area is moderately continental, and the
relief is mostly flat with hilly elevations. Two sub-regions are well recognized within the West Ural
taiga region—one with a dominance of Nordic pine and spruce forests, and the other with a dominance
of Kama-Pechora-Zapadnouralskih fir-spruce forests. Forests cover 85% of land area: Pine and spruce
stands dominate in the study area, representing 42% and 34%, respectively, while birch and aspen
stands occupy 20% and 4% of the forest stands, respectively.

The input data for the study included sparse point density ALS data, SPOT 5 (Satellite Pour
l’Observation de la Terre) satellite images, field reference data, and field test data. ALS data were
obtained in November 2013 with a Leica ALS70 CM LiDAR-scanner device (Leica Geosystems AG,
Glattbrugg, Zurich, Switzerland). The resulting nominal pulse density at ground level was 3–4 points
per square meter. ALS data were preprocessed by the data vendor, which included filtering and
reclassifying into two classes such as ground and other points and transformation to las format in the
WGS84 coordinate system. The ground classification was done with a triangulated irregular network
(TIN)-based algorithm. The point cloud data using Terrasolid’s TerraScan software [25] were used
for the data processing and for generating a digital terrain model (DTM) with 1-m pixel size. SPOT 5
high resolution satellite data were acquired on 7 August 2014. The preprocessing level of the imagery
was 1A. The spatial resolution of the panchromatic band in the SPOT 5 images was 2.5 m, and 10 m for
multispectral images. Geometric correction of the original imagery was performed using the ScanEx
Image Processor software [26] and ground control points taken from aerial images that were collected
during the same flight with lidar acquisition. The resulting spatial resolution of the geometrically
corrected images was 10.7 and 2.7 m for multispectral and pan-sharpened images, respectively.

A total of 281 9-m radius circular field reference plots were used as training data. Plots were
sampled in four plots per cluster with 200 m distance between the plots in one cluster. The aim of the
sampling was to obtain a representative sample of all forest types and development stages (young,
developing, mature) in the whole inventory area. Forest type information from an existing stand
database and ALS heights were used as a priori information in sampling to distribute reference plots
in forest types and development stages. The sampling design follows the sampling that was used in
Finland by Finnish Forest Centre for ALS-based forest inventory campaigns [27] with adjustments for
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the available data. The sampling design used in this research is presented in detail in [24]. Initially,
308 plots were measured in the field between summer 2015 and autumn 2016. DBH, tree class (dead
or alive), and species was recorded for each tree with a DBH value of at least 6 cm. Heights were
measured for height sample trees (maximum of three for every species in a plot) and the heights for the
rest of the trees were estimated using a diameter-height (d-h) curve estimated from the height sample
tree data. Volumes were then estimated for all trees by applying local volume tables. The calculation
process is described in detail in [24]. The process produced a complete tree list for every field plot,
including species, tree class, DBH, height, and stem volume for every standing tree with a DBH value
of at least 6 cm. Species were classified into three functional groups—Pines (Pinus sylvestris L. and
Pinus sibirica Du Tour), Spruce/Fir (Picea abies Karst. and Abies sibirica Ledeb.), and Broadleaf Group
(Betula pendula Roth, Tilia cordata Mill., Populus tremula L., Salix caprea L., and Alnus incana L.)—and
total stem volume per ha (V), basal area (G), number of stems per ha (N), and basal area weighted
mean diameter (D) and height (H) were calculated for totals and for functional groups from the tree
list. Twenty-seven of the original 308 plots were removed because they were either outside ALS data
coverage, over 60% of plot’s total volume was from standing dead trees, the field-measured data was
unrealistic and not logical, or it was considered to be highly plausible that there were problems in
matching the field data with the ALS data. The last analysis was based on comparing field-measured
mean tree height and ALS height; if the difference between field-measured mean tree height and the
90% percentile of ALS height was over five meters, the plot was removed. Statistics of the 281 field
reference plots are presented in Table 1.

Table 1. Field reference plot statistics and mean values, with standard deviations in parentheses. n = 281.

Variable Pines Spruce/Fir Broadleaf Group Total

Total stem volume (m3 ha−1) 151.1 (159.6) 142.7 (141.1) 68.0 (113.0) 361.7 (163.3)
Basal area (m2 ha−1) 14.4 (14.6) 15.0 (13.1) 6.9 (10.6) 36.3 (14.0)
Number of stems (n ha−1) 317.0 (409.7) 618.5 (428.7) 244.1 (380.7) 1180.0 (533.0)
Basal area weighted mean height (m) 21.7 (4.3) 16.6 (5.6) 18.4 (5.2) 20.4 (3.6)
Basal area weighted mean diameter (cm) 28.9 (8.2) 21.2 (8.8) 21.5 (8.8) 26.2 (6.1)

Independent test data consisted of 18 rectangular control plots that were established in the study
area. The plots were laid in the middle part of a forest stand in selected stands representing typical
mature forests of the study area. The location of each plot was recorded using Global Positioning
System (GPS) handheld devices. The plot sizes varied from 0.25 to 0.5 ha. Diameters were measured in
4-cm diameter classes for all trees with a minimum DBH value of 6 cm. Heights were measured for
height sample trees and volumes were calculated based on local volume tables. The mean values were
then calculated for totals and for functional groups. Based on functional group containing most of
the total volume, the test plots represent functional groups, as follows: 12 plots in Pines, five plots in
Spruce/Fir, and one plot in Broadleaf Group. All of the plots were in mixed stands comprising species
at least from two functional groups. Pines and Spruce/Fir occurred in all plots and Broadleaf Group
in six plots. The measurement protocol differs from the protocol used with field reference plot data,
and did not produce tree list information or accurate estimates for H and D. Statistics of the field test
plots are presented in Table 2.

Table 2. Field test data statistics and mean values, with standard deviations in parentheses. n = 18.

Variable Pines Spruce/Fir Broadleaf Group Total

Total stem volume (m3 ha−1) 276.4 (159.0) 147.3 (143.2) 35.7 (130.5) 459.4 (131.7)
Basal area (m2 ha−1) 23.1 (12.6) 13.5 (11.8) 2.9 (10.3) 39.5 (9.8)
Number of stems (n ha−1) 419.8 (267.3) 407.6 (253.0) 34.1 (104.9) 861.5 (252.1)

A k-MSN model for the simultaneous estimation of mean variables and tree list imputation was
formulated based on 281 reference plots. The ALS variables, based on features described in [28],
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were calculated for the plots from the height-normalized ALS point cloud. The ALS variables include
height percentiles for the first-pulse and last-pulse returns, mean height of first-pulse returns above
5 m (high-vegetation returns), standard deviation for first-pulse returns, the ratio between first-pulse
returns from below 2 m and all first-pulse returns and the ratio between last-pulse returns from below
2 m and all last-pulse returns. Linearizing transformations of the ALS variables were also calculated.
From SPOT 5 data, the mean values from each band were calculated, as well as mean values from
band combinations calculated as: (band a − band b)/(band a + band b). The band combinations used
were bands 1 and 2, bands 3 and 2, and bands 1 and 3. The ArboLiDAR software package [29] was
used for the calculation of independent features and the estimation of k-MSN model. All ALS and
SPOT 5 variables are described in Table S1.

K-MSN is a non-parametric estimation method which uses the canonical correlation analysis to
produce the weighting matrix for selecting k most similar neighbors from reference plots in terms
of independent (predictor) variables. Through canonical correlations, it is possible to find the linear
transformations Uk and Vk, for the set of dependent variables Y and independent variables X, which
maximize the correlations between them:

Uk = αkY and Vk = γkX (1)

where αk are the canonical coefficients of dependent variables and γk are the canonical coefficients of
the independent variables (k = 1, . . . , s). The most similar neighbors (MSN) distance metric between
plot u and plot j derived from canonical correlation analysis is described, as follows [30]:

D2
uj =

(
Xu − Xj

)
1× p

ΓΛ2Γ′

p× p

(
Xu − Xj

)′
p× 1

(2)

where Xu is the vector of independent variables from target observation, Xj is the vector of independent
variables from the reference observation, Г is the matrix of canonical coefficients of the independent
variables, and Λ is the diagonal matrix of squared canonical correlations.

In the case of k > 1, the estimates were calculated as weighted averages of k-MSN using inverse of
MSN distances:

Wuj =

(
1

1+D2
uj

)
∑k

i=1

(
1

1+D2
uj

) (3)

where D2
uj is the MSN distance for target plot u of the reference plot j.

Variable selection for k-MSN estimator was done in two phases. First, the initial set of independent
variables was taken from [24], in which the variables were used in sparse Bayesian estimator. Then,
variables and value of k were tested manually with the k-MSN method and they were evaluated via
the relative root-mean-squared errors (RMSE) of V, G, N, H, D, and volumes of functional groups.
RMSE was calculated, as follows:

RMSE =

√
∑n

i=1 (yi − ŷi)
2

n
(4)

where yi is the observed value, ŷi is the estimated value for the reference plot i, and n is the total number
of reference plots. RMSEs were calculated relative to the mean, i.e., the value from Equation (4) was
divided by the mean of the observed value. Effect of the parameter k was tested manually with the
selected set of independent variables. Value of k was increased until the RMSE of the estimated G,
N, V, or D stopped improving. G, N, V, and D were used because they have a strong correlation with
diameter distributions [31].
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Leave-one-out cross-validation (LOOCV) was used in model validation process for reference
plot data. After the optimal value for k and independent variables were found in reference plot data,
the model was tested in test plot data. The estimates for test plots were calculated through a grid
approach, i.e., the plot was divided into grid cells whose sizes corresponded to the area of a reference
plot, estimates were imputed for the cells and cell level estimates were aggregated at the test plot level.
The estimated and observed results were then compared using RMSEs.

Additionally, tree lists were imputed with the k-MSN method for each grid cell of the test
plots. Cell level tree lists were aggregated to test plot level and binned into diameter classes with 4-cm
intervals. The value of each bin represented the stem count of trees in that diameter class. This produced
diameter distribution with frequencies that were proportional to the number of stems. Diameter
distributions were aggregated for the total number of trees and separately for every functional group.

To compare the estimated and observed distributions in each test plot, the Reynolds error
index [32] was calculated in a similar way, as in [31], for all the diameter classes and for diameter
classes that include only trees larger than 22 cm at breast height (Equation (5)).

e =
∑m

i=1
∣∣npi − noi

∣∣
N

100 (5)

where npi and noi are the imputed and observed number of trees per ha in diameter class i and N is
the total number of trees per ha of observed test plot measurements.

3. Results

The results are presented within the reference data (for mean values only) and in independent
test data. The reference data validation allows for the comparison of the k-MSN estimates with the
sparse Bayesian estimates. In independent test data, the main emphasis is on the investigation of
diameter distributions.

3.1. Validation within Reference Data

The prediction model was tested with several values of k and set of independent variables. Here,
we present the validation results with the optimal parameter values found in reference plot data.
The optimal value found for k was 6. The number of independent variables used in the model was 14,
including 11 variables derived from ALS data and three variables from SPOT 5 data (see Table S1
for selected variables). Five of the ALS variables were height percentiles, five variables described
density at different relative or absolute heights and one variable was calculated as a product of height
and density variable. SPOT 5 variables included mean values from band combinations 3 and 2 from
multi-spectral and multi-spectral pan-sharpened images and mean of green band. Plot-level validation
results are presented in Figure 2 with the validation results from the sparse Bayesian model that is
presented in [24]. Based on plot level LOOCV and RMSE values, sparse Bayesian performed better
than or equally well to the estimation of all but four parameters. K-MSN performed better for N, H,
and D of Broadleaf Group, and for H of Spruce/Fir group. For most of the estimated parameters
(12/20), the difference was smaller than three percentage units and for 18/20 it was less than seven
percentage units. The largest differences (about 15 percentage units) in favor of sparse Bayesian were
in H and D of Pines.
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Figure 2. Plot-level root-mean-squared error (RMSE) values relative to mean with k-MSN (k most
similar neighbor) and sparse Bayesian (SB). V = total stem volume; G = basal area; N = number of
stems; H = basal area weighted mean height; and, D = basal area weighted mean diameter.

3.2. Validation within Independent Test Data

Based on the 18 independent test plots, the error and bias were small. There was no significant
bias in the G estimates, however there was significant bias in estimates of N for all functional groups,
except Pines (Table 3). Removing small trees from the test plot data improved both the error and
bias of N but increased the error of G in Spruce/Fir and Broadleaf Group (Table 4). Ref. [24] reported
RMSEs relative to the mean for V of 0.14 and 0.13 in 0.25 and 0.5 ha validation data, respectively. These
are smaller values than that which we present here for k-MSN. In [24], the calculated RMSEs relative
to the mean for G were 0.16 and 0.12 in the 0.25 and 0.5 ha validation data, respectively. These are at
similar level with the value that was obtained in our results.

Table 3. The RMSE (relative root-mean-squared errors) values and biases relative to mean of test plots
(n = 18).

Variable Pines Spruce/Fir Broadleaf Group Total

RMSE Bias RMSE Bias RMSE Bias RMSE Bias
Total stem volume 0.32 0.13 0.59 0.03 1.19 0.09 0.17 0.09 *

Basal area 0.30 0.02 0.53 −0.10 0.97 −0.09 0.14 −0.03
Number of stems 0.41 −0.02 0.72 −0.52 ** 2.33 −1.73 ** 0.45 −0.32 **

Biases marked with * are statistically significant with risk level 0.05, and biases marked with ** are statistically
significant with risk level 0.01.

Table 4. The RMSE values and biases relative to mean of test plots considering only trees with a
minimum value of diameter at breast height (DBH) of 22 cm (n = 18).

Variable Pines Spruce/Fir Broadleaf Group Total

RMSE Bias RMSE Bias RMSE Bias RMSE Bias
Basal area 0.31 0.03 0.62 0.03 1.33 0.17 0.15 0.04

Number of stems 0.32 0.05 0.60 0.07 0.40 −0.22 * 0.13 0.04

Biases marked with * are statistically significant with risk level 0.05. Biases marked with ** are statistically significant
with risk level 0.01.

Estimates of diameter distributions were successfully produced for distributions of different shape.
Distributions were investigated visually and by using Reynolds error index (Table 5). Figures 3–5
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show examples of the best, the average, and the worst agreement between estimated and measured
distributions, according to the Reynolds error index. The order from best to worst was decided
by summing up the Reynolds error index values of functional group and total distributions using
all diameter classes. Reynolds error index values and visual inspection of goodness-of-fit seem to
be congruent. As shown in Figure 3, the proportions of functional groups and the shape of the
estimated distributions seems to fit well in the measured data. In Figure 4, representing an average
goodness-of-fit, there is mixing of Pines and Spruce/Fir groups and the lower end of Spruce/Fir
distribution is poorly estimated. This is typical for estimates: the estimated Spruce/Fir distributions
are always skewed right, having a high proportion of trees in the smallest diameter classes. Figure 5
represents the worst goodness-of-fit. The distribution has wrong shape and the number of trees in
Pines and Broadleaf Group are overestimated.
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Figure 3. Example of estimated (blue line) and measured (gray histogram) functional group diameter
distributions in the test plot, elected as “the best goodness-of-fit” based on Reynolds error indices.
The error index values are 17.99, 8.75, 19.77, and 2.07 for (a) Total, (b) Spruce/Fir, (c) Pines,
and (d) Broadleaf Group, respectively. For trees with a minimum diameter of 22 cm the error index
values are 8.33, 3.77, 8.17, and 0.45 for Total, Spruce/Fir, Pines, and Broadleaf Group, respectively.
DBH = diameter at breast height.
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Figure 4. Example of estimated (blue line) and measured (gray histogram) functional group diameter
distributions in the test plot, elected as “the average goodness-of-fit” based on Reynolds error
indices. The error index values are 44.64, 58.57, 31.19 and 3.90 for (a) Total, (b) Spruce/Fir, (c) Pines,
and (d) Broadleaf Group, respectively. For trees with a minimum diameter of 22 cm the error index
values are 8.68, 11.3, 16.47, and 0.80 for Total, Spruce/Fir, Pines, and Broadleaf Group, respectively.

Table 5. The mean, minimum and maximum Reynolds error index values of test plots for diameter
distributions including all diameter classes and diameter classes with a minimum DBH value of 22 cm.

Statistics Pines Spruce/Fir Broadleaf Group Total

All Min 22 All Min 22 All Min 22 All Min 22
Mean 28.20 15.17 48.91 10.74 10.15 2.67 66.57 15.71

Minimum 8.15 5.06 8.75 1.26 1.60 0.00 17.99 8.33
Maximum 46.74 28.91 97.96 26.95 52.34 24.95 122.94 27.13
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Figure 5. Example of estimated (blue line) and measured (gray histogram) species group diameter
distributions in the test plot, elected as “the worst goodness-of-fit” based on Reynolds error indices.
The error index values are 122.94, 73.89, 41.75 and 24.1 for (a) Total, (b) Spruce/Fir, (c) Pines,
and (d) Broadleaf Group, respectively. For trees with a minimum diameter of 22 cm the error index
values are 27.13, 13.51, 24.91, and 5.49 for Total, Spruce/Fir, Pines, and Broadleaf Group, respectively.

4. Discussion

In this study, we tested the prediction of tree diameter distributions using the tree list imputation
method and ALS data for all DBH classes at the plot and the stand level in a temperate forest in Russia.
Our results indicate that it is feasible to predict diameter distributions in Russian forests on the basis
of sparse ALS data. Due to the lower costs of acquiring sparse ALS data, and its higher accuracy
for predicting the frequencies of all diameter classes, diameter distribution modelling can offer a
comparable alternative to methods that are based on individual tree detection [33]. We were able
to estimate unimodal, negative exponential, and multimodal distributions at functional group level.
Validation in independent test data showed that diameter classes containing larger trees (DBH values
over 22 cm) were, in general, more accurately estimated than diameter classes of smaller trees (spruce,
fir and deciduous trees belonging to the under canopy). Comparison with results of an earlier study [24]
indicated that mean variables could be estimated with better accuracy using sparse Bayesian than
they could with k-MSN with the used reference field data, including most of the functional group
level results.

The choice of dependent variables and independent predictors plays a crucial role in determining
the k-NN based diameter distribution when using ALS data. The choice of dependent variables and
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independent predictors was assessed via the RMSE% of the mean values, which contributed the most
weight in G, N, V, and D, which suggested the goodness-of-fit of the estimated diameter distribution.
The selection of dependent variables and independent predictors by means of minimization of RMSE
is common to many studies, such as [16,17,34,35]. We used V, N, and G as dependent variables, as were
done in [17,31], as well as D. These dependent variables were sufficient to describe the structure of the
diameter distribution in our estimation process. The number of independent variables in our k-MSN
model was 14. In [17], it was recommended that number of independent variables should be kept low
to avoid the over-fitting of the model in reference data. A higher number of independent variables
can produce lower RMSE values in LOOCV, however with independent test data, or in a prediction
situation, a model with a lower number of independent variables may perform better. In the end,
12 independent variables derived from ALS data were used in [17] to estimate total mean values and
diameter distributions. In our study, we estimated functional group parameters and used satellite
features in addition to ALS features. Thus, the final number of ALS (11) and SPOT 5 (3) features used
as independent variables is well consistent with the recommendation that is given in [17].

Investigation of the errors revealed possible deficiencies in the reference plot data. The sample
dataset should contain the entire variability in forest characteristics, including dominant and
suppressed tree features (e.g., density, height, volume), and consequently this inclusion in the training
set will ensure a reasonable estimation accuracy. Independent validation data plays a crucial role in
result validation. Our results in independent test data showed that this study was able to estimate
multimodal distributions. Additionally, the proportions of functional groups were, in general, well
estimated. However, in the case of the Spruce/Fir the diameter distribution estimates were skewed
right (“reverse J-shaped”), which was not always congruent with the field-measured distribution. This
can clearly be seen, for example, in Figures 3–5. Additionally, including all DBH classes estimates
of N were biased for all but the Pines. When including only trees with a minimum DBH value
of 22 cm, the biases reduced, and only the bias of the Broadleaf Group was significant. The total
volume estimate was underestimated by 9% in whole data. For larger diameter classes, G and N
were also underestimated, although based on t-test the bias was insignificant. The results indicate
that there were potential problems in describing the amount of small, suppressed trees in mature
forests, and in describing the amount of the largest trees. In the test plot data, this results in systematic
overestimation of the number of small trees and the possible underestimation of the number of large
trees. To summarize for reference plot data, sample size could be increased to better capture the
variability in absence or occurrence of smaller trees and the largest trees.

Comparison of k-MSN and sparse Bayesian showed noticeable differences between the methods.
When compared with an earlier study [24], estimation errors were smaller with the sparse Bayesian
method, including estimates for functional groups; the only exceptions in favor of k-MSN were
variables describing tree size in Spruce/Fir and Broadleaf Group. Trees in Spruce/Fir and Broadleaf
Group were, on average, smaller than trees in Pines, and especially trees in Spruce/Fir often presented
lower canopy layer, i.e., under canopy trees. In our data, the Broadleaf Group presented more rare
cases, i.e., minor species. This could indicate that k-MSN is better suited in situations where the interest
is in describing the structure of forest, including all canopy layers and minor species, whereas sparse
Bayesian can be more efficient if total mean values are the main interest. Another reason for these
results could be that in the present study there was a quite limited number of field reference plots,
which may not have been enough to cover the variation of forest characteristics for the k-MSN method
in the study area.

Accurate remote sensing of tree species has varied with stand heterogeneity. In passive optical
remote sensing, radiance information from forest canopies has been used to distinguish tree species.
Although the main tree species and homogeneous stands are predicted well, the error in the heterogeneous
stands and for minor tree species can be very high [5]. Widely used photogrammetric multispectral
sensors include the Vexcel UltraCam-D (Vexcel Imaging, Graz, Austria), the Intergraph-Z/I (Intergraph,
Huntsville, AL, USA), and the Leica ADS40 (Leica Geosystems AG, Glattbrugg, Zurich, Switzerland).
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These sensors have been used in single-tree species classification and analysis (e.g., [36–39]). In these
studies, classification accuracies of 80%–93% were reported for Scots pine, Norway spruce, and birch
(Betula pendula and Betula pubescens Ehrh.). In this study, we obtained similar accuracy, although
the dataset was rather small. In ABA, fusing ALS data with auxiliary optical data improves species
estimation significantly when compared with using ALS data only [40]. In [40], it was demonstrated
that, while aerial images performed the best individual material in species estimation, the combination
of all tested auxiliary data—i.e., aerial images, Sentinel-2 and Landsat 8 images—gave even better
species estimates. Thus, the results we presented here for the functional group proportions can be
improved by fusing optical data from other satellite and aerial imaging systems.

5. Conclusions

Diameter distributions and mean values of growing stock were estimated fusing field reference
data, optical satellite data and ALS data in k-MSN estimation framework in Perm region, Russia.
The estimation was successful in describing heterogenous structure of forests and multimodal
distributions. However, the applied method with the available data was not able to capture the
features of under canopy layer correctly. In general, the accuracy of mean value estimation was
worse than with alternative method, sparse Bayesian regression, applied in earlier study. Albeit,
the differences between RMSEs were small and for some mean values (variables describing mean
tree size of under canopy trees or minor species) k-MSN produced more accurate results. The results
obtained demonstrate that ALS-based systems fusing carefully measured field reference data and
auxiliary optical data can be considered as alternatives to the commonly used field plot-based forest
inventory, with preconditions considering species mapping. It is not feasible to map all species
accurately with the method, and therefore, some grouping of species is required, and accurate estimates
can be produced only for the main species. This means that it is possible to partly replace field work
by ALS remote sensing and thus improve forest structure mapping methods. However, careful field
control mechanisms are required for heterogenous forests and in case of mapping several species
accurately. Future research and development is required to adjust methods for better describing under
canopy layer and tree species proportions.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/9/10/639/s1,
Table S1: Description of calculated ALS and SPOT 5 variables. Variables selected in k-MSN model are in bold.
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