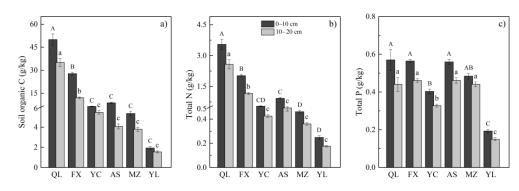
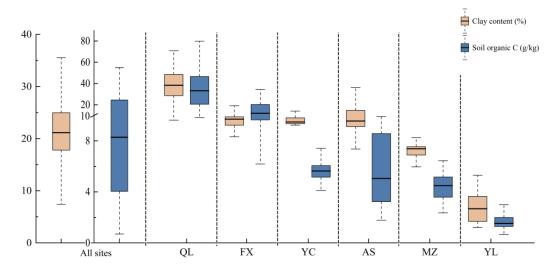
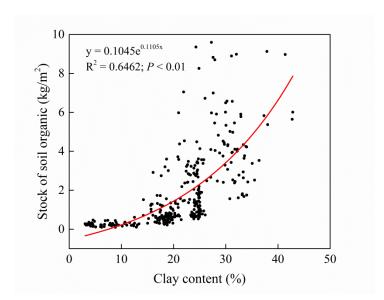
**Table S1.** The clay mineral composition of soil in different study areas (Chen, 1982; Niu, 2015; Zheng, 1994).


| Clay Minerals (%) | Qinling Mountains | Loess Plateau |          | M. H. D. and |
|-------------------|-------------------|---------------|----------|--------------|
|                   |                   | Loess         | Paleosol | Mu Us Desert |
| Smectite          | 22.17             | 2.25          | 1.70     | 0.59         |
| Illite            | 2.81              | -             | -        | 14.58        |
| Kaolinite         | 10.33             | 4.65          | 4.25     | 21.93        |
| Chlorite          | -                 | 11.10         | 12.55    | 36.90        |
| Quartz            | 44.06             | 41.45         | 42.10    | -            |
| Others            | 20.63             | 40.55         | 39.40    | 26.00        |

<sup>&</sup>quot;-" No measurements for this clay mineral. In our research, QL site is located in the Qinling Mountains; FX, YC, AS and MZ are located in the Loess plateau; and YL site is located in the Mu Us Desert.


**Table S2.** Leaf N, P content and N:P of each research site.

| Site      | TN (g/kg)    | TP (g/kg)  | N:P         |
|-----------|--------------|------------|-------------|
| Qing Ling | 17.38±0.71b  | 3.55±0.1c  | 4.85±0.11b  |
| Fu Xian   | 12.03±0.46c  | 3.52±0.31c | 4.4±0.32b   |
| Yi Chuan  | 16.91±1.99b  | 5.78±0.28a | 2.89±0.31c  |
| An Sai    | 23.22±0.99a  | 4.75±0.38b | 6.33±0.55a  |
| Mi Zhi    | 14.29±2.13bc | 2.21±0.11d | 6.29±0.71a  |
| Yu Lin    | 21.17±0.9a   | 6.17±0.29a | 3.66±0.24bc |


TN, Total nitrogen; TP, Total phosphorus; N:P, The ratio of total nitrogen and total phosphorus in leaf.



**Figure S1.** Variations of soil organic carbon, total nitrogen and phosphorus at different sites along the rainfall gradient. Values are means  $\pm$  standard error. Different uppercase letters and lowercase letters indicate significant differences (P < 0.05) at 0-10 and 10-20 cm, respectively.



**Figure S2.** Variation range of SOC and clay content both at regional (All sites) and local scale (QL; FX; YC; AS; MZ and YL).



**Figure S3.** Linear regression analysis between clay content and soil organic carbon stock on regional scale.

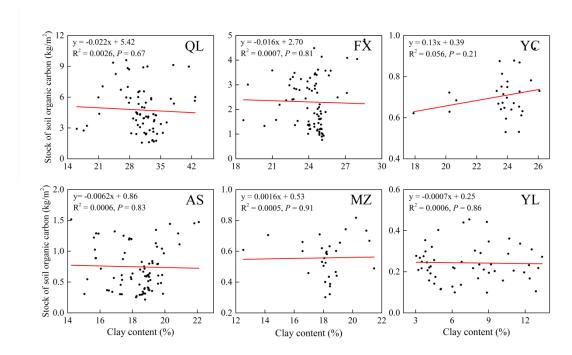



Figure S4. Linear regression analysis between clay content and soil organic carbon stock on local scale.

## References

- Chen, J. Q., 1982. Clay minerals of soils on the north slope of Taibai Mountain (in chinese). ATCA PEDOLOGIGA SINICA. 19(3), 273-282.
- 2. Niu, D.F., Li, B. S., Wang, F. N., Wen, X. H., Ma, J. L., Shu, P. X., 2015. Climate changes indicated by the clay minerals: a case of the Dishaogouwan section on the southeastern margin of the Mu Us Desret (in chineese). Journal of Fuzhou University (Natural Science Edition). 43(3), 345-351.
- 3. Zheng, H.H., Theng, B. K. G., Whitton, J. S., 1994. Mineral compsition of loess-paleosol in the Loess Plateau of China and its environmental implications (in chinese). GEOCHIMICA. 23(14), 113-123.