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Abstract: Litter fungal communities and their ligninolytic enzyme activities (laccase, Mn-peroxidase,
and lignin-peroxidase) play a vital role in forest biogeochemical cycles by breaking down plant cell
wall polymers, including recalcitrant lignin. However, litter fungal communities and ligninolytic
enzyme activities have rarely been studied in Neotropical, non-coniferous forests. Here, we found
no significant differences in litter ligninolytic enzyme activities from well preserved, moderately
disturbed, and heavily disturbed Quercus deserticola Trel. forests in central Mexico. However,
we did find seasonal effects on enzyme activities: during the dry season, we observed lower
laccase, and increased Mn-peroxidase and lignin-peroxidase activities, and in the rainy season,
Mn-peroxidase and lignin-peroxidase activities were lower, while laccase activity peaked. Fungal
diversity (Shannon-Weaver and Simpson indices) based on ITS-rDNA analyses decreased with
increased disturbance, and principal component analysis showed that litter fungal communities
are structured differently between forest types. White-rot Polyporales and Auriculariales only
occurred in the well preserved forest, and a high number of Ascomycota were shared between
forests. While the degree of forest disturbance significantly affected the litter fungal community
structure, the ligninolytic enzyme activities remained unaffected, suggesting functional redundancy
and a possible role of generalist Ascomycota taxa in litter delignification. Forest conservation and
restoration strategies must account for leaf litter and its associated fungal community.

Keywords: oak litter; ligninolytic enzymes; forest litter degradation; fungal community

1. Introduction

Litter is a key component of nutrient dynamics in forest ecosystems that, upon its decomposition,
provides available nutrients for the plant community [1]. Litter decay in forest ecosystems is a dynamic
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process involving the participation of soil fauna and a complex microbial community producing
extracellular lignocellulolytic enzymes [2]. Within litter biota, the fungal community performs roles
in polysaccharide and lignin degradation [3], causing changes both in biotic and abiotic factors at
different spatial and temporal scales [4]. The structure and function of fungal communities in the forest
floor have patterns characteristic to forest types, with well-established differences between forests in
temperate and tropical ecosystems [5] and between forests dominated by coniferous and broadleaf
trees [6,7]. In addition, significant differences have been clearly documented among similar forest
types along geographical gradients [8]. Furthermore, it has been noted that the principle significant
difference in fungal communities in the same ecosystem generally occurs between communities in
the litter and in the soil, rather than between the organic and mineral soil horizons [8]. Taking all
this into account, the structure and dynamics of litter fungal communities in oak forests in tropical
and Neotropical areas are not well understood, and, despite the key role of fungi in the process of
litter decay in these ecosystems, knowledge regarding fungal community distribution, abundance,
and spatial and temporal changes remains scarce.

The richness of oaks (Quercus L.; Fagaceae) has been estimated to be between 450 and 600 species
worldwide [9,10], of which 160 to 165 are found in Mexico, making the country a hotspot for oak
species [11,12]. Thus, at least 27% of the global species richness of Quercus is found in Mexico, across
5.5% of its territory, in ecosystems ranging from temperate humid to warm and arid climates [13].
Rural communities in Mexico exploit oak and oak-pine forests—mainly for the extraction of firewood
and charcoal [14,15]—and some of these forests have also been converted to cropland and grazing
areas [16]. As a result, the cover of oak forests in Mexico has been seriously reduced with additional
impacts upon their structure and dynamics [17,18]. In this regard, García-Oliva et al. [19] reported
that in oak-pine forests in central Mexico, uncontrolled wood extraction significantly reduced the
carbon pools and disrupted soil nutrient dynamics. For these reasons, knowledge about how these
forests respond to disturbance could contribute to developing strategies for their conservation and
sustainable management [20,21], in particular changes in microbiological, biochemical, and nutritional
components of oak forest litter due to anthropogenic disturbance [22,23], and their potential for
recovery. Although Mexico is a hotspot of Quercus species diversity, studies of fungal communities in
oak forests are limited [24], focusing on ectomycorrhizal species [25] but not other functional groups.
Thus, evaluating the structure of the fungal community and the enzymatic profiles of lignin degradation
in decomposing litter allows the characterization of spatial and temporal patterns of diversity and
responses to environmental factors [23,26] and land use practices [27,28]. In turn, increased knowledge
of forest soil and litter fungal communities will aid in identifying the consequences of changes in
microbial diversity on ecosystem functions and services [29], as well as establishing restoration [30]
and management [31] strategies.

This study aims to describe the ligninolytic enzyme activities and fungal communities present
in Quercus deserticola Trel. litter in forests under different degrees of anthropogenic disturbance,
and to evaluate differences associated with the dry and rainy seasons. Previous studies in Quercus
spp. dominated ecosystems show that fragmentation significantly reduced the diversity of fungal
communities, affecting their metabolic profiles [32]. Based on this and on the above cited works,
we predicted that the Q. deserticola litter fungal communities would be less diverse in sites with
increasing disturbance and that, independently of the degree of disturbance, at the end of the rainy
season, the saprobic guild within basidiomycetes would predominate over mycorrhizal groups.
Corresponding changes in ligninolytic enzyme activity of the fungal community may be observed,
due to shifts in Basidiomycota functional guilds. Functional consequences of the observed patterns are
discussed in the context of ecosystem use at the study site.
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2. Materials and Methods

2.1. Study Area and Litter Sampling

Forest fragments studied are located in the Cuitzeo basin (19◦32′ N, 101◦18′ W), southeast of the
city of Morelia in the Mexican state of Michoacán. The mean annual temperature in the study area
is 15.5 ◦C and the mean annual precipitation is 1047 mm. The July-September period is the wettest
period and the hottest period is April–June (http://smn.cna.gob.mx/). Quercus deserticola Trel. trees
are dominant in the study area; they lose their foliage during the dry season from January to May and
flush leaves in June at the start of the rainy season [24,33]. The region in which the study area is located
has suffered forest losses due to logging for timber and charcoal extraction, agricultural expansion,
and grazing [34–36].

Within the Cuitzeo basin, three sites with different levels of disturbance were selected:
well preserved (WP), moderately disturbed (MD), and heavily disturbed (HD) (Table 1). In order
to minimize differences in geography and climate between sites, forest fragments were located within
0.5 km of each other and the dominant soil type in all three sites was Acrisol. Because the disturbed
sites showed evidence of tree extraction and no signs of burning, the conservation level of the three
selected forest fragments was determined by a description of the vegetation structure and cover
present in each site [37] using the method of Gentry [38]. Additionally, 100 m × 20 m plots were
established in each of the three forest fragments and the diameters at breast height (DBH) ≥ 5 cm of
all individual trees within the plots were measured (Table 1). Finally, aboveground biomass (crown
and stem), litter biomass (Table 1), and plant species composition (Supplementary Table S1) were also
used as indicators of disturbance/regeneration in each plot. The aboveground biomass was quantified
from the DBH values using allometric equations proposed by Aguilar et al. [15]. The temperatures
of the studied plots (Table 1) were measured with a VWR Traceable Logger-Trac RH/Temperature
Datalogger (Radnor, PA, USA).

Table 1. Characteristics of the three forest sites with increasing levels of disturbance in central Mexico
studied to examine fungal communities and ligninolytic enzyme activities.
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Coordinates 

Well Preserved 
(WP) 

Moderately Disturbed  
(MD) 

Heavily Disturbed 
(HD) 

19°32′13.20″ N, 
101°17′60.00″ W 

19°32′18.24″ N, 
101°17′56.40″ W 

19°32′6.00″ N, 
101°18′3.60″ W 

Stand characteristics    
Number of Quercus deserticola Trel. trees 171 154 39 
Mean tree DBH ± standard error (cm) 12.1 ± 0.3 12.3 ± 0.25 15.1 ± 0.6 
Aboveground biomass (Mg ha−1) 42.7 46.3 27.4 
Mean litter mass ± standard error (Mg ha−1) 1.5 ± 0.25 1.0 ± 0.15 1.1 ± 0.1 
Temperature on sampling dates (°C) 1 34.1, 25.6 34.3, 26.1 35, 26.4 

Nutrient concentrations    
Litter 2    

pH 5.9–6.1 6.0–6.3 6.1–6.2 
Carbon (mg g−1) 417 391 473 
Nitrogen (mg g−1) 10.3 8.9 10.4 
Phosphorus (mg g−1) 0.34 0.42 0.54 
C:N 40 44 45 
C:P 1227 935 876 
N:P 30 21 19 

Soil 2    
Carbon (mg g−1) 42.2 58.5 51.3 
Nitrogen (mg g−1) 3.4 2.33 2.5 
Phosphorus (mg g−1) 0.36 0.17 0.55 
C:N 12 25 20 
C:P 132 344 93 
N:P 11 14 4 

1 Temperature data for the dry (June) and rainy (September) seasons separated by a comma.  
2. Concentrations of nutrients were measured in a mixed sample from 20 soil subsamples and five litter 
subsamples as described in Materials and Methods. 

1 Temperature data for the dry (June) and rainy (September) seasons separated by a comma. 2 Concentrations of
nutrients were measured in a mixed sample from 20 soil subsamples and five litter subsamples as described in
Materials and Methods.

http://smn.cna.gob.mx/
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Four transects of 1 m × 100 m of length were established within each plot to quantify nutrient
and carbon contents in both the surface litter and the soil beneath it. Along each transect, a soil sample
was taken from the top 20 cm with a soil-corer every 20 m. The 20 soil samples were then mixed and
kept in a plastic bag. Five samples of litter were randomly collected from each plot within a polyvinyl
chloride ring with a diameter of 160 mm. Soil and litter samples were transported to the laboratory in
a cooler and placed in darkness at 4 ◦C until analysis [39].

For enzyme activities and fungal community composition, litter sampling was done directly
beneath the crown of Q. deserticola trees to avoid heterogeneous litter composition in the degraded
sites. In each plot, five oak trees were randomly selected and litter samples were collected in June 2015
(recent leaf-fall) and September 2015 using a 16 cm-diameter polyvinyl chloride ring, including the
first 5–10 cm depth to avoid mineral soil layers. The two sampling dates allowed a comparison of
the enzyme activity and fungal community between the driest (June) and the wettest (September)
seasons of the year. Samples were immediately cooled to 4 ◦C and transported to the laboratory on the
same day as collection. Once in the laboratory, each sample was subdivided in two: one subsample
was stored at 4 ◦C for physicochemical analyses and enzyme assays, and the other was stored at
−80 ◦C until the extraction of DNA for genetic analyses. Physicochemical analyses and enzyme assays
were conducted within five days after sampling. A subsample was dried in an oven at 70 ◦C and the
amount of litter dry matter was determined, with the litter mass estimated in grams per square meter
(Table 1) [24].

2.2. Litter and Soil Nutrients Analyses

In the laboratory, total C, N, and P were analyzed for both soil and litter samples. For all three
sites, 1 g of fresh litter was placed in a 50 mL beaker and 10 mL of distilled water was added. The mix
was stirred for 30 min at 100 rpm, allowed to stand for 5 min, and the pH reading was performed with a
potentiometer (Accumet basic AB15, Thermo-Fisher Scientific, Waltham, MA, USA). The litter samples
were oven-dried at 70 ◦C for 72 h, subsequently ground with a mill (Retsch MM400, Haan, Germany),
and sieved through a 40 mesh. Similarly, soil samples were oven-dried and ground. Total N and
P were determined following acid digestion in a mixture of concentrated H2SO4 and K2SO4 plus
CuSO4, using the latter as a catalyst; N was determined by a micro-Kjeldahl method [40] and P by the
molybdate colorimetric method following ascorbic acid reduction [41]. The extract was measured by
colorimetry in an autoanalyzer (Bran-Luebbe; Nordestedt, Germany). Carbon was analysed in a total
carbon analyzer (UIC 5012; Chicago, IL, USA) and determined by colorimetric detection [42].

2.3. Enzyme Activity Assays

The activity of ligninolytic enzymes in litter samples was determined in triplicate within five
days of collection in a Nanodrop 2000c spectrophotometer (Thermo Scientific Inc., Waltham, MA,
USA). Enzyme extracts were prepared from 0.5 g aliquots from each litter sample that were incubated
for 15 min at room temperature in 30 mL of modified universal extraction buffer (MUB) [43] with
continuous stirring. All reaction mixtures were incubated at 30 ◦C for 120 min. Enzyme activities
were expressed in units (U), defined as µmoles of product formed from substrate per hour (µmol h−1),
per gram of soil (U g−1).

2.3.1. Laccase (Lac; EC 1.10.3.2)

Lac determination was performed following the procedure of Nagai et al. [44], by measuring
the oxidation of ABTS (2,2′-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) to its cation radical.
The reaction mixture included 300 µL enzyme extract, 100 µL of 10 mM ABTS (Sigma-Aldrich, St. Louis,
USA), 200 µL of 0.2 M sodium acetate buffer (pH 5), and 400 µL sterile distilled water. Absorbance
determinations were made at 420 nm.
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2.3.2. Lignin Peroxidase (LiP; EC 1.11.1.14)

The LiP assay was conducted using the method of Tien and Kirk [45], which is based on
the principle that LiP uses H2O2 to catalyze the oxidation of veratryl alcohol to veratraldehyde.
The reaction mixture included 300 µL of enzyme extract, 200 µL of 0.2 M sodium acetate buffer (pH 5),
200 µL of 10 mM veratryl alcohol (Sigma-Aldrich), 200 µL of sterile distilled water, and 100 µL of
0.4 mM H2O2 (Analytyka, Nuevo Leon, Mexico). Absorbance was measured at the absorption peak of
veratraldehyde at 310 nm.

2.3.3. Manganese Peroxidase (MnP; EC 1.11.1.13)

The activity of MnP was measured using a method based on the oxidation of 2,6-dimethoxyphenol,
as described by Martinez et al. [46]. The reaction mixture contained 300 µL of enzyme extract, 200 µL
of 0.2 M sodium acetate buffer (pH 5), 200 µL of sterile distilled water, 100 µL of 0.1 mM MnSO4

(Sigma-Aldrich), 100 µL of 10 mM 2,6-dimethoxyphenol (Sigma-Aldrich), and 100 µL of 0.4 mM H2O2

(Analytyka). Absorbance was measured at 469 nm.

2.4. Statistical Analyses of Enzyme Activity

Statistica v.9.0 software (StatSoft, Palo Alto, CA, USA) was used to conduct repeated-measures
analysis of variance (RMANOVA) with the site as the between-subjects factor and season and
the interaction site-season as the within-subject factor to test for differences in enzyme activity.
When RMANOVA indicated significant factor effects, a mean comparison was performed with Tukey’s
multiple comparison test [47].

2.5. DNA Extraction, PCR Assays, Cloning, and Sequencing

For molecular analyses, genomic DNA was extracted from 5 g of litter using the FastPrep
System with the FastDNA spin for soil kit (MP Biomedicals, Santa Ana, CA, USA) according to the
manufacturer’s instructions. The DNA obtained was purified with the DNA Clean and Concentrator-5
kit (Zymo Research, Irvine, CA, USA). The ITS region of the nuclear ribosomal unit was amplified
using ITS1/ITS4 primers [48]; the total reaction mixture volume was 25 µL and it contained 50 ng DNA,
10 mM Tris-HCl (pH 8.5), 1.5 mM MgCl2, 0.5 mM of each deoxynucleoside triphosphate (dATP, dCTP,
dGTP, and dTTP), 0.5 µM of each primer, 2% bovine serum albumin (BSA; Thermo Scientific), and 0.5 U
Taq DNA recombinant polymerase (Invitrogen, Carlsbad, CA, USA). The PCR conditions used were
94 ◦C for 5 min, 35 1-min cycles at 94 ◦C (denaturation), 62 ◦C for 1 min (annealing), and 72 ◦C for
1 min (extension), followed by 10 min at 72 ◦C. The amplification products were visualized on 2%
agarose gel stained with SYBR® Safe (Invitrogen, Carlsbad, CA, USA). The amplification products
were then cloned using the TOPO TA cloning kit (Invitrogen, Carlsbad, CA, USA), according to
the manufacturer’s instructions. Plasmids were recovered by alkaline lysis [49]. Finally, the cloned
products were sequenced at Elim Biopharmaceuticals, Inc. (Heyward, CA, USA) with primer M13F
(5′-GTAAAACGACGGCCAG-3′).

2.6. Bioinformatics and Fungal Community Analyses

Of the 1013 clone product sequences obtained, seven were identified as chimeras using UCHIME
in de novo mode [50] and discarded, leaving a total 1006 sequences for analysis. Curated sequences
were deposited in GenBank with accession numbers KT581643 to KT581949. DOTUR [51] was used
to group the sequences obtained from the ITS region of rDNA into operational taxonomic units
(OTUs) at 97% similarity. For each OTU, the longest sequence was selected and the closest hits were
identified using the Blastn algorithm in GenBank (National Center for Biotechnology Information,
NCBI, http://www.ncbi.nlm.nih.gov/). The following indices were also calculated with the same
package: Shannon-Weaver (H’) and Simpson (1-D) [52] diversity indices, Chao1 richness estimator [53],
and rarefaction analysis of each clone library. The library coverage values were calculated by [1-(n/N)],

http://www.ncbi.nlm.nih.gov/
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where n is the number of OTUs representing a single clone (singleton) and N is the number of
total OTUs representing the clones in the library [54]. The Jaccard index was calculated using the
software SONS [55] to examine differences in the fungal community between sites and sampling dates.
β-Diversity between fungal communities was estimated with the UniFrac package [56] by performing
Principal Coordinates Analysis (PCoA) and Jackknife Cluster Environment analysis.

3. Results

3.1. Nutrients and Vegetation in Studied Plots

Litter mass decreased by around 30% in the disturbed plots (Table 1), but the C and N
concentrations of litter were similar among all plots. However, the litter of the WP site had a lower
P concentration, and therefore higher C:P and N:P ratios. The C concentration in the soil was lower
in WP than in the MD and HD sites, whereas soil N concentration showed the opposite pattern.
The P concentration was lower at the MD site where, therefore, higher C:P and N:P ratios were
also found.

The presence of plant species characteristic of degraded sites including Eysenhardtia polystachya
(Ortega) Sarg., Loeselia mexicana (Lam.) Brand, and Croton sp. was more conspicuous in the MD and
HD sites, whereas all plant species found in the WP site were characteristic of undisturbed areas
(Supplementary Table S1).

3.2. Enzyme Activity

The activity of the three enzymes was significantly affected by season but not forest disturbance
(Table 2). At the three sites, Lac activity was five times higher in the rainy than in the dry season
(Figure 1a), the activity of LiP decreased in the rainy season (Figure 1b), and MnP behaved in a similar
way to LiP, with its activity being significantly higher in the dry than in the rainy season (Figure 1c).

Table 2. F (p) values from the RMANOVAs of enzymatic activity in Quercus deserticola litter in three
forest sites with increasing levels of disturbance in central Mexico.

Enzyme Between Subjects Within Subjects

Site Sampling Season Interaction (Site:Season)

Laccase 0.28 (0.75) 106.42 (<0.0001) 0.12 (0.88)
Manganese peroxidase 1.65 (0.23) 24.37 (<0.0001) 2.42 (0.13)
Lignin peroxidase 3.55 (0.061) 52.73 (<0.0001) 1.76 (0.21)

Bold letters denote significant (p ≤ 0.05) differences.
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Figure 1. Enzyme activities in litter samples from three forest sites with increasing levels of
disturbance in central Mexico by sampling date. Enzyme activities for laccase (a), lignin peroxidase
(b), and manganese peroxidase (c) are shown by site and season. Capital letters denote significant
differences between sites; lowercase letters denote significant differences between sampling dates
(p ≤ 0.05).

3.3. Analysis of Fungal Communities

A total of 1006 sequences of the fungal ITS region were obtained over the two sampling periods:
502 during the dry season (175 from the WP site, 170 from the MD site, and 157 from the HD site;
coverage values of 0.811, 0.823, and 0.892, respectively), and 504 during the rainy season (163 from the
WP site, 173 from the MD site, and 168 from the HD site; coverage values of 0.816, 0.890, and 0.887,
respectively). The coverage value of each library above 0.8 suggests that they represented the major
fungal phyla present in the litter samples. In congruence with the coverage values obtained, rarefaction
curves showed a tendency to slow their increase as the sampling effort increased (Figure 2).
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Figure 2. Rarefaction curves of a number of fungal OTUs found in samples of Quercus deserticola litter
from forest sites with increasing levels of disturbance (well preserved: WP; moderately disturbed: MD;
heavily disturbed: HD) in central Mexico in the dry (D) season and rainy (W) season.

When all samples were examined together, we observed a decrease in OTU richness with an
increasing degree of disturbance: regardless of sampling date and using a 97% similarity threshold,
the WP and MD sites showed a similar richness with 95 and 93 OTUs, respectively, while 80 OTUs
were identified in the HD site (Table 3). When sequences were examined for each sampling date
separately, in the dry season, the WP site showed the highest richness with 58 OTUs, followed by
the MD site with 54 OTUs, and the HD site with 43 OTUs. For the rainy season samples, 56 OTUs
were identified in the WP site, and 49 and 45 OTUs in the MD and HD sites, respectively. For both
sampling dates, both diversity indices (Shannon-Weaver and Simpson) ranked the diversity of sites
in the following order (from highest to lowest): WP, MD, and HD (Table 3). This ranking is also in
agreement with the number of singletons identified for each site. In all three sites, the Chao1 index
showed that the observed richness was lower than the estimated richness, but that a greater proportion
of the estimated species had been found in the HD site and the MD site in the rainy season.

Table 3. Number of fungal OTUs, singletons, and diversity indices for three forest sites with increasing
levels of disturbance in central Mexico in two contrasting seasons.
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Independently of the abundance, some taxa were shared between sites: the WP site shared 15 taxa
with the MD site and three taxa with the HD site, whereas the MD site shared 20 taxa with the HD site.
Despite the similar number of OTUs identified in the WP and MD sites, there were differences in the
order of the most abundant taxa at each site and in the abundance of shared taxa.

The majority of OTUs belonged to the phylum Ascomycota (71%) followed by Basidiomycota
(16%); the remaining 13% were allocated to unidentified non-cultivated fungi. This pattern of many
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more OTUs belonging to Ascomycota than to Basidiomycota was observed in the three sites and
in both sampling dates (Table 3). In general, the most abundant taxa orders in the WP site were
Capnodiales (18%), Hypocreales (17%), and Pleosporales (16%), whereas in the MD site they were
Pleosporales (19%), Capnodiales (13%), and Agaricales (6%), and in the HD site they were Pleosporales
(25%), Capnodiales (13%), and Thelephorales (6%). Taking sampling season into account, at the WP
site, Hypocreales (30%) and Capnodiales (27%) were the most abundant orders in the dry season,
while Pleosporales (23%) and Thelephorales (10%) dominated in the rainy season (Figure 3). In the MD
site, Capnodiales (25%) and Hypocreales (7%) dominated in the dry season, and Pleosporales (34%)
and Thelephorales (8%) were important in the rainy season. Finally, in the HD site, Capnodiales (23%)
and Sordariales (13%) were dominant in the dry season, while Pleosporales (40%) and Tubeufiales (8%)
dominated in the rainy season (Figure 3).

The Jaccard index was used to evaluate the similarity between sites in terms of fungal community
composition (Table 4). The results revealed significant changes in the composition of the litter fungal
community of a given site between the dry and rainy seasons. The WP site showed the highest
between-dates similarity (J = 0.253) and the other two sites showed even larger differences between
sampling dates, with Jaccard index values of 0.102 and 0.099 for the MD and HD sites, respectively.
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Table 4. Jaccard similarity index of fungal OTUs in forest sites with different levels of disturbance
(well preserved: WP; moderately disturbed: MD; heavily disturbed: HD) in central Mexico in two
contrasting seasons (dry season: D; rainy season: W).

WP-W MD-D MD-W HD-D HD-W

WP-D 0.253 0.352 0.099 0.296 0.104
WP-W 0.160 0.301 0.133 0.304
MD-D 0.102 0.308 0.096
MD-W 0.106 0.667
HD-D 0.099

WP, well preserved site; MD, moderately disturbed site; HD, heavily disturbed site; D, dry season;
and W, rainy season.

Although, in general, Basidiomycota were not among the most abundant taxa in the studied
sites, the comparison of structural changes among communities is interesting because members of this
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group are the main producers of laccase and peroxidases. The main orders of Basidiomycetes found in
the three study sites were Thelephorales and Agaricales, but their abundance was different between
study sites and sampling seasons. The abundance of Thelephorales increased during the transition
between the dry season to the wet season in WP and MD sites from 2% to 35% and from 9% to 22%,
respectively; in the HD site, the abundance of these taxa decreased from 23% in the dry season to 17%
in the wet season. In the case of Agaricales, WP and MD sites maintained the abundance of this order
between sampling dates (20% and 17%, respectively), but the abundance of Agaricales in the HD site
increased from 4% in the dry season to 15% in the wet season. The orders Polyporales, Auriculariales,
and Atractiellales were only found in the WP site, whereas the Tremellales and Sporidiobolales were
only observed in the MD site. The HD site did not present an exclusive order, but there was a greater
abundance of unidentified Basidiomycetes. The PCoA of the sequences obtained showed a clear
separation between the dry and rainy season samples along the first component, which accounted
for 35% of the total variance. Component 2 separated the WP site from the MD and HD sites on both
sampling dates (Figure 4).
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forest sites with increasing levels of disturbance (well preserved: WP; moderately disturbed: MD;
heavily disturbed: HD) in central Mexico in two contrasting seasons (dry season: D; rainy season: W).

4. Discussion

In this work, we compared the ligninolytic enzyme activities and the overall fungal richness
of the litter community from three forest fragments dominated by Quercus deserticola with different
disturbance levels and in two contrasting seasons (dry and rainy) in central Mexico.

The hypothesis of the C:N ratio being the major driver of litter decomposition in forest
ecosystems [57] has been recently questioned [58]. Litter C:N ratios in the studied sites were similar to
those reported for the litter from other oak species, including Q. ilex L. [58], Q. petraea (Matt.) Liebl. [59],
and Q. serrata Thunb. ex Murray after one year of decomposition [60]. Most sites in this study had
similar litter and soil nutrient contents and ratios, thus suggesting that decomposition rates might
be similar between them. However, the slightly greater N in the soil of the well preserved site could
promote differences in the litter decomposition rate in relation to the disturbed sites. It has recently
been proposed that the decomposition rate in N-poor litter will increase when lying over N-rich soil,
due to the translocation of N from soil to litter [58].

Each site had plant species characteristic of its disturbance status, thus creating different mixes
of litter, which, due to differences in N availability, labile/recalcitrant C sources, and secondary
metabolites [61], is a determining factor influencing the fungal litter community structure. Comparative
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decomposition analysis involving oak species shows contrasting results; whereas some studies
document that Quercus spp. litter has slower decomposition rates than the litter of other plant
species [62], and some authors found higher decomposition rates in oaks [63,64]. Quercus spp.
litter recalcitrance has been attributed to high tannin and phenol concentrations, a poorer quality of
long-lived leaves, and sclerophyllous leaf properties [62]. However, synergistic interactions in mixed
litter could translocate nutrients from the labile to the recalcitrant substrates in the mix [61]. In this
regard, the litter of Fraxinus uhdei (Wenz.) Lingelsh is considered to be of high quality due to its
high nutrient concentrations and low concentrations of lignin and soluble polyphenols, and because
it harbors a microbial community that produces fewer enzymes involved in N and P acquisition
and more enzymes involved in cellulose degradation [65]. Thus, F. uhdei in the well preserved site
should provide resources to cellulo-hydrolytic Ascomycota that provide labile nutrients to sustain
the litter decomposition of recalcitrant components. It has also been documented that the litter of
E. polystachya—a woody plant species found in both disturbed sites studied—has a C:N ratio of 15.1,
but its decay rate is slow compared to that of other tree species, with decomposition rates thought
to be associated with microenvironmental conditions under its canopy, as well as with its lignin
and polyphenol content [66]. These conditions suggest that plant species associated with the well
preserved site might increase litter decomposition rates and that plants associated with the disturbed
sites might slow it down; a possibility that needs to be further evaluated. To the best of our knowledge,
there are no studies documenting litter ligninolytic enzyme activities of fungal communities related to
F. uhdei and E. polystachya—or of other plants species associated with Q. deserticola in the studied sites,
which requires further study linking mycobiota, enzyme activities, and nutrient cycles in litter.

Laccase activity in Q. deserticola litter samples was higher during the rainy than during the dry
season, while peroxidase (LiP and MnP) activities showed the opposite pattern. In Q. petraea litter, Lac
showed low activity in spring (May) and high activity levels in summer (July), while MnP exhibited
a higher activity in spring than in summer [67]. A similar trend in Lac activity was observed for
Q. ilex litter, but not for MnP [68]; however, for this same oak species, Kellner et al. [69] reported
the higher MnP activity in litter subject to drought relative to control samples. Thus, our results are
in agreement with previous findings of seasonal activity patterns of ligninolytic enzyme activities
in oak forests. Changes in the activity of lignocellulolytic enzymes in forest soil and litter are
correlated with environmental factors, including temperature, moisture, and pH [70]. However,
Criquet et al. [68] found no correlation between the activity of Lac and MnP and abiotic factors such
as temperature, humidity, and pH in Q. ilex litter. Thus, besides physical and climatic variables,
chemical changes in litter composition [68], variations in fungal biomass [71], and changes in fungal
community composition [72] can explain the changes in enzyme activity patterns. The lack of
differences in enzyme activities between the sites studied could be attributed to functional redundancy
in fungal communities: different species being capable of producing ligninolytic enzymes in different
ecological contexts [73]. Recently, soil microbial community redundancy—also called functional
convergence—has been described between under-canopy and open areas of Q. ilex forest fragments
harboring different bacterial and fungal communities, but showing similar metabolic patterns [32].
Thus, it is quite possible that the functional redundancy of basidiomycetes could explain the similar
ligninolytic activities found in the Q. deserticola litter along a disturbance gradient (see below).

The fungal community we described is highly consistent with previously studied fungal litter
communities at different taxonomic levels. In our study, 70% of the sequences were associated with
the phylum Ascomycota, 15% were Basidiomycota, and 15% remained as unidentified fungi. A
small percentage (0.2%) of the sequences showed a relation with the former phylum Zygomycota,
now invalid; however, because it was not possible to know if these sequences were within
Glomeromycota or Mucoromycotina, we decided to group them with unidentified fungi. In a
previous analysis conducted by the authors, we found the same proportions of Ascomycota and
Basidiomycota [24], supporting the representativeness of our present data. These abundances agree
with the relative percentages reported in previous investigations of mixed hardwood litter in which the
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Ascomycota accounted for 62–85%, the Basidiomycota for 15–36%, and the Glomeromycota for up to 2%
of the total fungal community [74]. In Q. petraea litter, the composition was different, with Ascomycota
representing 42% and Basidiomycota 48% of the fungal community [67], the lowest abundances
corresponding to Glomeromycota and Mucoromycotina. Gibberella, Teratosphaeria, and Cladosporium
were among the most abundant genera during the dry season. Such results are consistent with previous
findings for fungi colonizing Quercus spp. leaves and litter. Cladosporium spp. have been described
as phyllosphere fungi in the early stages of litter decomposition in Q. leucotrichophora A. Camus [75],
Q. rotundifolia Lam. [76], and Q. petraea [72] forests. Teratosphaeria species have been found in the
phyllosphere of Q. petraea [72] and anamorphs of Gibberella (Fusarium) species have been isolated from
senescent and early decomposition stages of Q. rotundifolia litter [76]; however, Fusarium has been found
as a later colonizer of Q. myrsinaefolia Blume litter [77]. Phoma and Pyrenochaeta were the most abundant
groups in the rainy season, with the former noted as phyllosphere fungi in Quercus spp. [72,77] and
occurring in the early stages of litter decomposition [75,77]. All these genera within Ascomycota
contribute as producers of hydrolytic enzymes acting on plant cell wall polysaccharides [78,79].

The fungal taxa associated with the degradation of lignin in litter are within Basidiomycota.
Among the taxa of Basidiomycota we found in the studied sites, members of the family
Thelephoraceae—particularly Tomentella—were the most abundant OTUs in rainy-season samples.
Our previous analysis of litter of Q. deserticola found Tomentella sp. to be a prevalent taxon [24],
which shows a wide distribution in Q. deserticola forests. Interestingly, it has been documented that
Tomentella sublilacina forming ectomycorrhizal (ECM) associations with Q. robur L. increased the
hydrolytic and laccase enzyme activities in a thinned tree stand, but not so in a disturbed stand of the
same tree species [80]; this shows both that appropriate management will conserve fungal diversity
and function, and that some of the fungal-plant biotrophic interactions might be used as indicators of
forest performance.

Regarding the orders of Basidiomycota sampled here, genomic phylogenetic analysis has shown
that white rot Auriculariales and Polyporales possess high numbers of MnP and LiP genes, Agaricales
retained low gene numbers, and Tremellales, Atractiellales, and Sporidiobolales have lost the genes
coding such enzymes [81]. Thus, our present results show that the litter of well preserved Q. deserticola
forest sustains the highest diversity of well-identified ligninolytic fungi, mainly of the strongest lignin
degraders. In the previous study conducted in Q. deserticola litter [24], Corticiales and Thelephorales
were the only orders of Basidiomycota found, indicating the representativeness of the samples
herein analyzed.

Despite the differences we observed in the structure of the ligninolytic fungal community,
we found no differences in the enzyme activities of Lac and peroxidases among the three studied sites.
It must be taken into account that both Agaricales and Thelephorales were found along the forest
degradation gradient we evaluated, and that unidentified basidiomycetes were only found in the
disturbed site. Although many members of the two former taxa are considered ECM, they may be
contributing, along with the unidentified taxa, to sustain ligninolytic activities in the litter of disturbed
sites. Recent genomic evidence shows that certain ECM taxa have retained genes for Lac and MnP
enzymes from their saprotrophic ancestors [82,83]. However, it has been postulated that ECM fungi are
not facultative saprotrophs using lignin as the principal source of metabolic C, but use the conservation
of Lac and MnP activities for mobilizing N locked up in non-hydrolysable, recalcitrant organic matter
complexes [84]. Despite this, the ligninolytic activity of ECM fungi might play a central role in the
turnover and stabilization of organic matter, influencing the C and N dynamics of temperate forest
ecosystems [83,84]. Thus, it is possible that ECM fungi replaced saprobic guilds in the perturbed forest
sites, something that deserves detailed assessment in future studies.

We found that the fungal community of Quercus deserticola litter was influenced both by the
sampling date and by the degree of forest disturbance. Seasonal changes of whole fungal soil and litter
communities have been documented in Quercus spp. forests [67,74]. The composition of the fungal
soil community in pine-oak and oak–hickory stands was found to be closely associated with changes
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in soil nutrient status and specific changes in edaphic properties might explain the observed shifts
in the microbial community [85]. Thus, previously noted seasonal changes in N content and the C:N
ratio of the Q. deserticola litter partially explain seasonal changes in the fungal community structure.
As stated above, the highest richness of fungal OTUs was found in the well preserved site, suggesting
that conservation status affects the diversity of the fungal community in Q. deserticola litter.

Historically, pine-oak forest fragmentation in the state of Michoacán has been associated with
agricultural expansion, grazing, and logging for wood and charcoal extraction [34–36], as is the
case of the studied area. It has been previously documented that Quercus spp. forests management
practices [62] and fragmentation cause changes in soil and litter fungal community structure [28].
On one side, in a Q. ilex forest, Richard et al. [86] documented a significant correlation between
the species richness of macroscopic saprobic and ECM fungi and tree density. On the other side,
Azul et al. [27,87] found that logging, soil tillage, and permanent grazing reduced the macroscopic
(mainly ECM) fungal community in Q. suber ecosystems.

In the context of the socioeconomic needs of rural communities in developing countries like
Mexico, a balance must be found between practices of forest use and conservation so that biodiversity
is conserved while the energy and food requirements of the population are fulfilled [88]. In the state
of Michoacán, the compromise between the use and conservation of forests has been analyzed in
indigenous Purépecha artisanal and peasant rural communities [35]. However, forest management
promoting conservation has largely ignored litter and fungi as vital components of forest functioning.
Appropriate stand management of Quercus spp. forests—such as logging without soil tillage and
grazing—has been documented to preserve fungal diversity [27,87]. Furthermore, within the studied
area, models for sustainable charcoal extraction have been developed [36]. Additionally, our present
results and those from previous work show that some of the orders and genera of fungi present in the
Quercus spp. litter remain constant despite geographical distance and differences in climatic conditions.
The data increases our understanding of the geographical range of fungi associated with Quercus spp.
litter, and will enable the generation of successional models and increase our understanding of fungal
community responses to management, restoration, and climatic change [89].

Further studies are needed to assess the interactions between environment and land use variables
affecting the Q. deserticola litter fungal community. Knowledge derived from such studies will
prove useful for designing better management practices so that the socioeconomic demands of the
rural population are satisfied, in addition to preserving the functions and biodiversity of the forest
ecosystem [31].

5. Conclusions

The fungal community structure and the decomposition process of Q. deserticola litter in Mexican
forests are highly dynamic. The activity of three major ligninolytic enzymes showed similarities
among them. Therefore, in the near future, it might be possible to formulate a model of fungal
succession and enzyme dynamics in oak forest litter, as has been achieved by similar studies in
different geographic areas. Such models can guide the formulation of appropriate management and
conservation strategies for oak forests. In particular, further studies are needed to better understand
the interactions taking place in Q. deserticola forests between forest management, litter chemistry,
seasonal changes, the composition of fungal communities, and their enzyme activities.

Supplementary Materials: The following are available online at www.mdpi.com/1999-4907/9/1/11/s1, Table S1:
Vegetation found in the study plots used as indicator of conservation or disturbance.
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