
Article

Proximate Causes of Land-Use and Land-Cover
Change in Bannerghatta National Park: A Spatial
Statistical Model

Sanchayeeta Adhikari 1,*, Timothy Fik 2 and Puneet Dwivedi 3

1 Department of Geography, California State University, Northridge, 130 J Sierra Hall, 18111 Nordhoff Street,
Northridge, CA 91330-8249, USA

2 Department of Geography, University of Florida, 3141 Turlington Hall, Gainesville, FL 32611, USA;
fik@geog.ufl.edu

3 Warnell School of Forestry and Natural Resources, The University of Georgia, Warnell 114 Building 4,
Athens 30602-2152, Georgia; puneetd@uga.edu

* Correspondence: sadhikari@csun.edu; Tel.: +1-612-600-3842; Fax: +1-818-677-2723

Received: 6 June 2017; Accepted: 5 September 2017; Published: 12 September 2017

Abstract: Land change modeling has become increasingly important in evaluating the unique driving
factors and proximate causes that underlie a particular geographical location. In this article, a binary
logistic regression analysis was employed to identify the factors influencing deforestation and
simultaneous plantation driven reforestation in Bannerghatta National Park, located at the periphery
of one of the fastest growing cities in India, i.e., Bangalore. Methodologically, this study explores the
inclusion of different sub-regions and statistical population to address spatial autocorrelation in land
change modeling. The results show negative relationship between deforestation and protected area
status and edge of previous forest clearing. In addition, the deforestation models found differences in
the processes that are affecting forest clearing in our two sub-periods of 1973–1992 and 1992–2007. The
plantation driven reforestation in the region were attributed to distance to major towns, Bangalore
city, rural centers and major and minor roads suggesting the importance of accessibility to market for
heavy cash crops such as coconut palm and eucalyptus. Finally, the inclusion of different sub-regions
and statistical population facilitated a better understanding of varying driving factors in different
zones within the overall landscape.
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1. Introduction

One of the major research themes of human dimensions of global change, in the recent past,
has been to explain various driving factors of land-use and land-cover change (LULCC). Case study
evidence at the local level (landscape level) has been argued to better support the varying drivers
behind LULCC [1], even though LULCC are studied at various “spatiotemporal scales” [2]. Our study
region, Bannerghatta National Park (BNP) and its surroundings, situated in the southern part of India,
provides an interesting case study for building a spatially explicit model to understand the interactions
between LULCC and its driving factors. BNP is situated just 22 km south of the Bangalore urban
area, which is one of the fastest growing cities in India. In spite of the close proximity to the city of
Bangalore, rapid suburbanization and population growth, BNP and its surroundings have undergone
recovery of forest cover inside the park after an initial deforestation trend between 1973 and 1992.
Simultaneously a spatially distributed and patchy native forest regeneration and tree plantation driven
reforestation trend is observed in the overall landscape [3]. Moreover, the rapid horizontal expansion
of Bangalore urban area also indicates future pressure on the park and the ecosystem services its forest
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cover provides to the region. These localized LULCC patterns and trends certainly raises questions,
e.g., what factors are important and how they are related to these changes.

Spatial-statistical models of LULCC are one of the important tools for quantifying and explaining
the drivers of LULCC and to predict future potential LULCC [4,5]. Empirical models have been widely
used for detailed analysis of case studies and to explore key driving factors affecting LULCC [6,7].
Further, building these empirical models for describing LULCC is made possible by data derived
from satellite remote sensing and geographic information systems (GIS) which provides quantitative
data at different spatial and temporal scales [7,8]. A commonly used empirical model to explain the
spatial and temporal patterns of LULCC is a binary logistic regression model, which explains the
probability of occurrence of a particular land cover category [7,9]. Logistic regression models have
been used to identify proximate and underlying causes of urban development [10–12], agricultural
expansion [5,13], development along rural–urban gradients [14], wildlife habitat studies [15,16], and
deforestation [17–20].

Spatial-statistical models have been widely applied to land change studies, however, it has been
criticized for its inability to incorporate spatial variability in the processes affecting LULCC [5]. LULCC
in most regions of the world are very spatially heterogeneous. Along with the heterogeneity of LULCC
comes the spatial variability in various biophysical, socio-economic, and political driving factors which
affect LULCC at the macro level (regional, national and global level) [5]. This spatial heterogeneity in
LULCC and its driving factors gives rise to spatial variability in its proximate causes affecting LULCC
at the local level. Although the fundamental idea behind modeling LULCC processes is “to transcend
the complexity of context, seeking to identify broad and universally applicable forces of change that
crosscut the circumstances of place and period” [21], it is crucial that we understand the unique
relationship between LULCC and its driving factors operating at a particular geographic location and
time period [17,21]. Aggregating the spatial variability of LULCC and their driving factors or its proxy
variables in one model would obscure the predictability of the model and produce weak links between
the two [5]. To understand the uniqueness of the different LULCC processes, it is thus necessary to
find the optimal spatial entity for each LULCC by choosing a relatively homogenous region where a
particular LULCC is occurring; it would also require different model parameterizations [17].

Methodologically, this study would expand on previous modeling work on LULCC in two ways.
First, to address the optimal spatial entity the research identifies different statistical population to
represent each LULCC, addressed in literature theoretically but not applied statistically. Secondly, this
research addresses spatial autocorrelation eminent in a pixel based regression model of LULCC, which
is a common practice in geographical and ecological studies [22–24]. Spatial autocorrelation has been
addressed in various spatial models by appropriate sampling schemes, scale, quantification of spatial
patterns and various other statistical methods for use with spatial data [19,25–27]. Strength of this
modeling approach is the inclusion of sub-regions as binary explanatory variables after careful study
of residual cluster.

The overall goal of this research is fourfold: (1) to elucidate the relationship between LULCC in
and around BNP and its various proximate causes and to infer about the underlying driving factors;
(2) to determine whether there are differences in processes that drive land cover changes in different
eras; (3) to address spatial autocorrelation and determine whether the explanatory variables that are
driving land cover changes are different in different sub-regions within the BNP and its surroundings;
and (4) to use different statistical populations for different LULCC, as addressed in our Section 3.1.1.
The complexity of the driving factors of land change processes makes it challenging to capture time
(e.g., temporal variations in road connectivity and changes in population density), space (effect of
different spatial scales and different sub-regions) and human decision making (land tenure and policy
changes) in a single model and thus the abundance of various modeling approaches to address different
set of variables [7,28,29]. Our study focuses on distance based variables such as distance to roads,
towns, villages, forest edge, and water bodies; attributes of the physical environment, such as elevation
and slope; and zoning policies, i.e., protected area status in BNP and its surroundings. To account
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for spatial variability in proximate causes as well as address spatial autocorrelation, this research
constructs various zones within the overall landscape after careful analysis of spatial pattern of LULCC
in the region and preliminary statistical analysis. A combination of remote sensing and GIS techniques
are used for data extraction and analysis.

2. Site Description

The total study area (638 km2) encompasses BNP (109 km2) and a zone of 5 km buffer around
the park. It is situated in the southern part of Karnataka State, 22 km south of the city of Bangalore
(Figure 1). BNP consists mainly of dry deciduous and scrub forests under the Terminalia–Anogeissus
latifolia–Tectona series [30] with scattered patches of eucalyptus plantation and moist deciduous forest.
The park is one of the oldest habitats of Asiatic elephants [31]. The study area is undulating with few
rocky hillocks. The elevation within BNP ranges between 700 and 1000 m. Overall, the eastern part of
the study area has a higher elevation than the western part of the study area and could be seen broadly
as two zones of high and low elevation. The study area gets most of its rainfall during June–November
and varies between 625 and 700 mm annually and the mean annual temperature is around 27 ◦C. There
are six village communities inside BNP, which form three major enclosures inside the park. The main
economic activity of the village communities inside the park is farming and animal grazing.
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The 5 km buffer area includes Talli Reserve Forest and Bilikal Reserve Forest, which are situated
in the southeastern and southern part of BNP, respectively, and are contiguous to the national park.
The studies buffer distance is considered a suitable limit since most of the interaction between the
people and park such as illegal logging and non-timber resource extraction took place within a 5 km
buffer (personal communication and interviews). For our statistical analysis, we considered BNP, Talli
and Bilikal Reserve Forest as one single entity of protected area and did not differentiate between
the different levels of protection that is given to a national park and a reserve forest in India. To the
western and eastern parts of BNP lie agricultural fields and several hundred village communities,
village market areas and small towns. To the north and northeastern part of BNP lies the dense built
area of suburban Bangalore, one of the fastest growing metropolitan areas in India. Farming, grazing,
illegal sand mining, stone mining, and factory employment in the larger Bangalore’s Metropolitan area
and surrounding towns are the most important economic activities of the village communities in the
study area. These varied economic activities are reflected in the land-cover and land-use of agricultural
land (includes the grassland and the fallow land), plantation, stone waste/mines, built area, water
bodies and bare area in the buffer area. Furthermore, the park is very well connected with the city of
Bangalore, surrounding village communities in the buffer area and various small towns through both
paved and unpaved roads. Many of these paved and unpaved roads also run through BNP and the
village communities inside the park, making the park accessible to people living in the buffer area.

BNP and its surroundings have experienced two major LULCC transitions between 1973 and 2007
details of which are provided in a previous study [3]. The transition between forest cover to non-forest
cover (deforestation) and non-forest cover to tree plantation (plantation driven reforestation) are the
two major land-use and land-cover changes that have occurred in the region. Most of the deforestation
has occurred between 1973 and 1992 and most of the tree plantation increase has taken place between
1992 and 2007 (Figure 2). Deforestation is located mostly on the north central part of the study area
outside BNP. Some deforestation has also occurred on the edges of the national park and near the
village enclosures. The eastern and western parts of the study region outside BNP have recently
experienced an increase in tree plantations which are mostly agroforestry crops in this region. Some of
these tree plantations are coconut palm (Cocos nucifera), mango (Mangifera indica), teak (Tectona grandis)
and eucalyptus (Eucalyptus cinerea). Many of these tree plantation areas were previously used for
commercial and subsistence agricultural crops such as rice, raggi (finger millets), vegetables, banana,
mulberry and flowers.
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3. Methods

3.1. Spatial Data

Land cover maps of the study site were created using Landsat Multi-Spectral Scanner (MSS)
(United States Geological Survey [32]), Thematic Mapper (TM)(United States Geological Survey [32]),
and Indian Remote Sensing Satellite Linear Imaging Self-Scanning (IRS LISS)(National Remote Sensing
Center, Hyderabad, India) III images for 1973, 1992, and 2007, respectively. For mapping land cover,
we used a hybrid classification approach of combining results from ISODATA clustering method
and a supervised Gaussian maximum-likelihood classification method. All the satellite images were
geometrically corrected and projected to UTM WGS 84. The resampling was done using the nearest
neighborhood algorithm with a root mean square error of less than 0.5 pixels. Additionally a rule based
classification was used to get the land-cover classes of native forest, tree plantation and non-forest.
Our study focused on a simplified spatial extension of forest from a bird’s eye point of view of a
multispectral satellite image, hence, limited our capability to map the complex forest structure.

A post-classification change analysis was applied to image pairs 1973–1992 and 1992–2007 by
multiplying across the two dates for the three classes of native forest, tree plantation and non-forest.
Out of the 27 trajectories, nine trajectories were chosen to show changes representing more than 1% of
landscape. The land-cover maps as well as the changes in the landscape were validated using field
data i.e., training samples used for running accuracy assessment, interviews on historical LULCC
and other ancillary data (topographical maps). The details of image dates, change trajectory results
and interview method have been discussed in a previous study [3,33]. The LULCC map layers were
created using Erdas Imagine 9.3 (Hexagon Geospatial, Madison, AL, USA). Digital elevation model
(DEM) was acquired from the Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) (NASA’s Earth Observing System, Washington, DC, USA) with a spatial resolution of 30 m.
Slope was calculated from the elevation map using ArcGIS (ESRI, San Diego, CA, USA).

The road networks (major and minor roads), towns, villages, and water bodies (stream/rivers
and lakes) were manually digitized from the 1:50,000 Survey of India topographic maps. Any unpaved
roads, village roads and forest pathways were grouped as minor roads. All paved roads such as
national and state highways were grouped as major roads. Park boundary was mapped from the
topographic maps and the park management plan from the Karnataka Forest Department, Bangalore.
Other important data layers were created from the land-cover maps of 1973, 1992 and 2007 i.e., distance
from the edge of the forest. The distance layers (distance to road, water, town and villages) were
created using the Euclidean distance tool of ArcGIS which calculates for each pixel the Euclidean
distance to the closest source. A study area mask was created and used in the model to avoid the
calculation of the background value. All data were resampled to a spatial resolution of 30 m as our
land-cover change data (dependent variable) were at that scale.

3.1.1. Dependent Variables

Two dominant changes were observed in the 30-year time period from 1973 to 2007. The
first dominant change in the region is forest loss in the Bannerghatta National Park (BNP) and
its surroundings. This forest loss is mostly on the edges of the BNP and on the north-central part of
the region outside the BNP. The forest loss is higher in the time period 1973–1992 as compared to the
time period 1992–2007. The second dominant LULCC has been a massive increase in tree plantation
in the region outside the BNP. The quantity of tree plantation gain is more in the second time period
(1992–2007) than in the first time step (1973–1992). One spatial distinction could be made between the
tree plantation on the eastern and the western part of the region. The eastern part of the study area has
more eucalyptus plantation while the western part has more coconut palms and mango plantation
with small patches of teak plantation. Further, the western part of the study area has a higher tree
plantation gain than the eastern part.
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These two dominant changes are modeled in this paper and make our dependent variables
(Table 1), forest loss and tree plantation gain, both of which will be unidirectional models. The forest
loss would be termed as deforestation in the absence of data availability to give a distinction between
deforestation and degradation. Deforestation is defined in this paper as any area that was native
forest on the earlier date and non-forest in the recent date. Similarly, tree plantation gains are areas
which were non-forest in the first time step but became tree plantation in the second time step. The
binary outcome variables of change and no change i.e., areas which were deforested as change (1) and
rest of the landscape as no change (0) were created by masking all change trajectories but forest loss
trajectory. Within the 5 km buffer zone, areas where high density of major roads and towns intersected
in the north and northeastern parts of the study area were clipped out for better predictability of our
deforestation model. To simplify the threshold determination of the clipped area, both the density
maps were classified using natural breaks and a threshold of more than 1.2 km/km2 (road density)
and 0.01 km/km2 (major town density) were considered appropriate threshold for elimination for our
statistical population. This area is also part of the suburban extension of Bangalore city and never had
any forest cover. Similarly, our binary outcome variable of tree plantation gain as change (1) and rest
of the landscape as no change (0) was mapped out. For our tree plantation gain model, BNP, Talli and
Bilikal Reserve Forest were clipped out and not included in the statistical analysis. Tree plantations in
this region are agricultural crops. It has occurred mostly outside these protected areas. The factors that
would drive tree plantation gain inside a protected area would be much different, e.g., reforestation
strategies by various forest management policies. However, tree plantation outside the park should be
driven by factors other than reforestation policies of political institutions.

Table 1. GIS database.

Variables Type Unit Abbreviations

Dependent Variable

Deforestation, 1973–1992 Binary 0–1
Deforestation, 1992–2007 Binary 0–1
Plantation Gain 1973–1992 Binary 0–1
Plantation Gain 1992–2007 Binary 0–1

Independent Variables

Relief Related Variables
Elevation Continuous Meter ELEV
Slope Continuous Degrees SLOPE

Proximity Variables

Distance to roads
All Roads
Major Roads
Village Roads

Continuous Meter
ALLRDDIST
MJRDDIST
MIRDDIST

Distance to edge of the forest
1973

Continuous Meter
FORDIST73

1992 FORDIST92

Zoning Policy

Distance to Bangalore Continuous Meter BANGDIST
Distance to towns Continuous Meter MJTOWNDIST
Distance to villages Continuous Meter VILLDIST
Distance to water Continuous Meter WATERDIST
Presence or absence of protected area Binary 0–1 PA

3.1.2. Independent Variables

For BNP and its surroundings, the independent variables are elevation, slope, distance from the
edge of the forest 1973, 1992 and 2007, distance from the towns, villages, Bangalore, water bodies,
and presence and absence of protected area (Table 1). It is hypothesized that deforestation and tree
plantation gain are influenced by the following mentioned variables.

Elevation and slope: Prior studies found topography to influence the spread and extent of
deforestation [34,35]. Steeper slopes are least favored for land uses such as agricultural practices,
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infrastructure development and residential and commercial development [14,35,36]. Further, studies
have found deforestation and slope gradient to be negatively correlated [25,37], as logging activities
may be limited in the upper slopes because of inaccessibility. Tree plantation is an agricultural crop in
this region and thus we would expect it to be on flatter slopes. Further, forest cover should remain
intact at higher elevations and steeper slopes as steeper slopes are not preferred for land uses such as
agricultural practices, road building, and residential and commercial development.

Distance to road: Various empirical studies have found deforestation to increase with
greater access to forest and markets, with roads, rivers and railroads facilitating this access [38].
Prior studies of spatial regression models found strong relationships between roads and
deforestation [17,36,39,40]. Thus, this variable is important as closer proximity to roads may encourage
deforestation. Agriculturists favor closer proximity to roads as it provides access to market [36] and
thus this variable is important for our tree plantation gain model. Distinctions between major and
minor roads were made to assess the impact of each of them on deforestation and tree plantation gain
separately. Further, we kept all roads as an added explanatory variable as they represented better the
landscape level flow of the road network.

Distance to edge of the forest: Higher deforestation should be taking place closer to the edges of
BNP. Distance to edge of the forest is not important for tree plantation gain as most of the forest cover
is inside the national park and tree plantation gain is unlikely to increase inside the national park, as it
is an agricultural crop in the region.

Distance to Bangalore and other towns (smaller urban centers): We used both statutory and census
towns to represent towns in our study [41]. Statutory towns are places with a municipality, corporation,
cantonment or notified town area. Census towns are defined as urban areas with: (a) minimum
population of 5000; (b) population density of at least 400 per km2; and (c) 75% male population
working on non-agricultural sector. This variable is an important explanatory variable as BNP is
situated just 22 km south of the Bangalore city, which is growing at a fast rate as result of Information
Technology related company development and increasing built area development [42]. Distance to
Bangalore was calculated as a series of buffers of 1 pixel expanding from the center of Bangalore.
A second variable, distance to all towns, was also created using the Euclidean distance tool of ArcGIS
which calculates the Euclidean distance to the closest source (town). Distance to towns and Bangalore
city are not an important explanatory variable for deforestation model as most of the deforestation
took place far away from town. However, these two variables could be important for tree plantation as
these towns provide market for these agricultural crops.

Distance to villages (rural centers): Villages for this study area represents the revenue villages of
India [41]. This variable is important for both the deforestation and tree plantation gain model. There
are seven villages inside the national park, which forms three enclosures inside BNP. The buffer area
has more than 100 villages where population varies from 500 to 4000 people. No distinction was made
between different sizes of the villages because of lack of village level population data. Closer proximity
to villages is preferred by agriculturists for tree plantation crops. Further, people–park conflicts and
various social-economic activities practiced by village communities are described as one of the major
driving factors behind deforestation in heavily populated countries like India where many parks are
situated in densely populated areas [43,44], which makes distance to villages an important variable for
the deforestation model as well.

Distance to water: Closer proximity to water is valued by agriculturalists for tree plantation
crops such as coconut palm, mango and eucalyptus. Additionally, disturbances to forest cover are
expected to be higher near water bodies as wild animals and human beings need regular access to
water. Streams, rivers, lakes and artificial water holes are mapped as water.

Space as a variable: We used the term “space” to denote zones/sub-regions in our larger study
area to capture the optimal spatial entity at which the explanatory variables are driving the land cover
change. The two dummy variables mentioned below are our space variables. Presence or absence
of protected area: This is a dummy variable where presence of park is denoted by 1 and absence by
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0. This variable is important for our deforestation model, as protection to forest should discourage
deforestation inside the park. This variable is not used for our tree plantation gain model as our tree
plantation gain is mostly located outside the park. Even though in the future there could be an increase
in tree plantations inside the park, the driving factors that would be operating inside the park would
be different from the driving factors outside the park.

Higher Plantation Gain Area: This is a dummy variable (DummyWest) (Figure 3) where the study
area is divided into two different zones of East and West after examining the spatial distribution of
residuals of the main effect explanatory variable models. Having higher tree plantation gain in the
western part of the study area as compared to the eastern part justified this dummy variable creation.
The digital form of only these variables, i.e., elevation, slope, distance to forest edge, road, water,
Bangalore, towns and villages and presence or absence of protected areas, were available. Precipitation
although an important variable for modeling LULCC is not considered for this study because of the
small area of our study site, therefore, not much spatial variability of precipitation pattern is expected.
Other variables such as population, land tenure, soil moisture is important to model deforestation
and tree plantation gain in the present landscape but are not available in spatial form and should be
considered as a data limitation of our study.
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3.2. Sampling Procedure

For our present study, a data sample was selected from our spatially explicit LULCC (dependent)
and proximate (independent) variables. Random sampling procedure was used to select our
observations due to the presence of spatial auto-correlation in the data. The sample included 10% of
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the total study area for each model, which resulted in approximately 55,000 to 65,000 observations
for tree plantation and deforestation models respectively, with an unequal number of 0 (no change)
and 1 (change) observations of the dependent variables (Table 2). Unequal sampling of the dependent
variables do not affect the coefficient estimates of the explanatory variables in logit models but only
affect the constant term [5,45]. The entire data sample was imported into SPSS statistical software (IBM
Analytics, Armonk, NY, USA) for our logistic regression analysis (Statistical Package for the Social
Sciences, 2010).

Table 2. Samples.

Sample
Pixels

Deforestation
(1973–1992)

Deforestation
(1992–2007)

Plantation Gain
(1973–1992)

Plantation Gain
(1992–2007)

Absent 30,642 30,861 n/a 23,129
Present 34,826 34,531 n/a 34,516

Total 65,468 65,392 n/a 57,645

Absent and present represents the two strata of “no change area” and “change area”, respectively, from where
samples were collected. n/a = not applicable.

Continuous independent variables that did not show linear behavior were transformed using
either a logarithmic or a square root function. All independent variables were standardized using the
formula below, prior to running the logistic regression analysis.

Z =
X − X

S

where Z is the standardized variable, X is the value of the original variable, X is the mean, and S is
the standard deviation. The unstandardized logit coefficients measure the absolute contribution of
each variable in determining the probability of occurrence of an event and thus could be misleading
to interpret as a unit change in a variable as this is not equal from variable to variable. As such,
the independent variables were standardized to reduce the disparities in scale of measurement and
variance because of different units of the variables [13]. This process ensured that our logit coefficients
and odd ratios are standardized, thus, it is easier to evaluate the contribution of each independent
variable in our models.

3.3. Test of Multicollinearity

The independent variables in our models were tested for multicollinearity, as it is a prerequisite
of any statistical method for the explanatory variable to be independent of each other so that the
importance of each explanatory variable could be ascertained individually. We tested for Pearson’s
correlations among all independent variables (Table A1). A critical value of 0.80 was used to eliminate
variables from our model [46]. All independent variables were used in our logistic regression analysis
as the coefficients were all below 0.50 with the exception of distance to water and minor roads.
We further checked the Variance Inflation Factor (VIF) and tolerance value to diagnose collinearity.
A critical VIF value of 10 and above [47] and a tolerance value of less than 0.1 [46] is considered a cause
of concern. None of the variables showed a VIF of higher than 2.5 and tolerance value lower than 0.1.

3.4. Logistic Regression Model

The relationship between the LULCC (forest loss and tree plantation gain) and environmental and
proximate variables were tested using logistic regression analysis. For a logistic model, the dependent
variable is categorical (binary in our case) presence or absence of any event. In this study, forest loss = 1
and other = 0 and tree plantation = 1 and other = 0 for the periods 1973–1992 and 1992–2007. The
independent variable can be either continuous or categorical. For the present study, all the independent
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variables are continuous layers except for the presence or absence of protected area. The binary logistic
technique produces coefficients for each independent variable based on a sample of data.

The logistic function gives the probability values that can be quantitatively expressed as a function
of the explanatory variables stated in the following form:

p = E(Y)
exp(α + β1X1 + β2X2 + . . . βnXn)

1 + exp(α + β1X1 + β2X2 + . . . βnXn)

where p is the probability of forest loss or tree plantation gain in a pixel, E(Y) is the expected value
of the binary dependent variable Y, α is the intercept, βn a coefficient to be estimated for each
independent variable Xn. The logistic function can be transformed into a linear response with the
logit transformation.

log(p) = log
[

p
1 − p

]
= α + β1X1 + β2X2 + . . . βnXn

Odd ratios are used to enable interpretation of logistic regression models [46]. Odds ratio is an
indicator of the change in odds resulting from a change in one unit of the predictor and thus is a
measure of association of how much more likely (or unlikely) it is for an outcome to be present for a
set of values of independent variables [48]. Estimated odds values are computed as the exponential of
the parameter estimate values [48,49]. The probability, logit and the odds are three different ways of
expressing the same things [46].

odds(p) = exp(α + β1X1 + β2X2 + . . . βnXn)

Model predictability was assessed using the model Wald chi-square statistic (Wald χ2), log
likelihood statistics, parameter estimates (B), estimates of standard errors of the parameter estimates
(SE), and the significance of the probabilities for parameter estimates. Wald χ2 indicates if the parameter
estimates of the independent variable is significantly different from zero and thus indicates the
predictive power of each independent variable in the prediction of an event [47]. The log likelihood
statistics provided an estimate of the variance unaccounted for after the model had been fitted
and thus, larger values of log likelihood statistics indicates a poorly fitted model [47]. Parameter
estimates (B) provided by the models were used to measure the association of independent variables
with deforestation and tree plantation gain. A positive value of the parameter estimate shows that
the likelihood of occurrence of an event increases as the predictor variable increases. Similarly, a
negative value of the parameter estimate shows that an increase in predictor variables will decrease
the likelihood of occurrence of an event. A variable was selected if it was statistically significant at
p < 0.05. The goodness of fit of a logistic model is tested using Nagelkerke’s R2 values in SPSS, which is
an adjusted Cox and Snell coefficient and varies between 0 and 1 [50]. This R2 is also called as pseudo
R2 as it is computed differently from a regular R2 in a linear regression analysis [39]. A pseudo R2 is
interpreted similar to regular R2 where a Nagelkerke’s R2 value of 1 would indicate that the model
predicts the outcome variable perfectly. Nonetheless, unlike the conventional regression analysis, a
Nagelkerke R2 of 0.2 and above is considered as a good fit of a logistic model because of the binary
response variable [5,51]. Classification accuracy also indicates model fitness, with 100% indicating
a perfect model [19]. Overall model fitness is measured by a significant Wald Chi-square value,
Nagelkerke’s R2 of 0.2 and above and a high correct classification percentage. Lastly, variables and
their parameter estimates were also assessed to see if they made sense ecologically. The presence of
outliers was measured using Cook’s distance, leverage and standardized residuals. Cases that had a
standardized residual value more than 2 were excluded from the model [47].

In this study, several runs of backward stepwise logistic regression procedure were performed in
SPSS 18 to select the best set of predictor variables (Figure 4), a widely used approach in land change
modeling [52,53]. Independent variables were entered individually to assess the bivariate logistic
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relationship, entered all simultaneously, and entered in various combinations to assess predictability
of the models. All these steps were run to maximize the predictability of the model. All the models
were rerun after excluding cases which had a standardized residual value of more than 2. Spatial
autocorrelation was run on the rest of the models residual by calculating Moran’s I in ArcGIS. Presence
of spatial autocorrelation results in inefficient parameter estimates and inaccurate measures of statistical
significance [54]. The results for all the models indicated the presence of clustering in our residuals.
Since all the models indicated spatial autocorrelation, cluster and outlier analysis using Anselin Local
Moran’s I was calculated using ArcGIS to check for the spatial distribution of the clustering [55].
Output of this analysis is a Local Moran’s I index, Z-score, p-value and cluster type code (COType).
A high positive Z score for a feature indicates that the surrounding features have similar values
(either high values or low value). The COType field indicates HH for a statistically significant (0.05
level) cluster of high values and LL for a statistically significant (0.05 level) cluster of low values.
A low negative Z score for a feature indicates a statistically significant (0.05 level) spatial outlier. The
COType field indicates if the feature has a high value and is surrounded by features with low values
(HL) or if the feature has a low value and is surrounded by features with high values (LH). Dummy
variables were created and were interacted with our main explanatory variables after careful study
of the residual clusters (Tables 3 and 4). Dummy variable DummyPA (Presence of protected area = 1
and absence of protected area = 0) were interacted with other independent variables for deforestation
models and DummyWest (Dominant tree plantation in west of protected area = 1 and east of protected
are = 0) were interacted with main effect variables in tree plantation model (Table 3). Specifics of
dummy interaction variables for each model are explained in the Result Sections 4.1 and 4.2. Our
exploratory models were rerun with these interaction variables to assess each variable’s strength and
significance and overall predictability of our models. Our models with interaction variables were
compared with our main effect explanatory variable models. Final models of deforestation and tree
plantation gain were run after careful study of the variables that were significant. Spatial distribution
of residual clusters was calculated once again using Anselin Local Moran’s I on our remaining residual.
The Nagelkerke R2 and classification accuracy indicated our model’s overall performance.

Table 3. Logistic regression parameters estimated from deforestation.

Variables B S.E. Wald Sig. Exp(B)
1 Deforestation Model 1973–1992

Constant −0.555 0.020 775.018 0.000 0.574
DummyPA −0.628 0.026 600.853 0.000 0.534
SLOPE 0.583 0.021 806.010 0.000 1.791
ELEV 0.864 0.018 2386.039 0.000 2.373
FORDIST73 −3.862 0.037 10,639.472 0.000 0.021
ZVILLDIST −0.073 0.014 27.842 0.000 0.929
MIRDDIST −0.067 0.018 14.768 0.000 0.935
MJRDDIST 0.157 0.013 145.453 0.000 1.170
ALLRDDIST 0.099 0.013 55.421 0.000 1.104
WATERDIST −0.482 0.019 659.504 0.000 0.617
DummyPA × SLOPE −0.775 0.025 968.927 0.000 0.461
DummyPA × ELEV −0.421 0.029 214.057 0.000 0.656
DummyPA × MIRDDIST −0.384 0.031 155.111 0.000 0.681
DummyPA × WATERDIST 0.613 0.028 474.414 0.000 1.846

2 Deforestation Model 1992–2007
Constant −3.796 0.053 5136.465 0.000 0.022
DummyPA −0.082 0.031 6.915 0.009 0.922
SLOPE 0.257 0.028 84.626 0.000 1.293
ELEV 0.138 0.025 31.656 0.000 1.148
FORDIST92 −11.209 0.110 10,439.912 0.000 1.6 × 10−5

VILLAGEDIST −0.203 0.017 145.991 0.000 0.817
MIRDDIST 0.084 0.024 12.623 0.000 1.088

1 Deforestation Model 1973–1992: Significant at 95% confidence level, R2 = 0.602, Classification Accuracy = 80.2%.
2 Deforestation Model 1992–2007: Significant at 95% confidence level, R2 = 0.761, Classification Accuracy = 87%.
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Table 4. Logistic regression parameters estimated from tree plantation gain.

Variables B S.E. Wald Sig. Exp(B)
1 Tree Plantation Gain Model 1992–2007

Constant 0.061 0.020 8.932 0.003 1.063
SLOPE −0.119 0.017 48.191 0.000 0.887
ELEV −0.411 0.029 201.656 0.000 0.663
VILLDIST −0.230 0.024 90.603 0.000 0.794
WATERDIST −0.058 0.018 10.410 0.001 0.944
MIRDIST2 −0.329 0.020 279.259 0.000 0.720
MJRDIST2 −0.175 0.023 60.370 0.000 0.839
ALLRDDIST2 −0.073 0.012 40.599 0.000 0.929
MJTOWNDIST −0.182 0.031 35.083 0.000 0.834
BANGDIST −0.265 0.016 270.242 0.000 0.767
DUMMYWEST × SLOPE −0.070 0.021 11.345 0.001 0.932
DUMMYWEST × ELEV −1.039 0.056 342.470 0.000 0.354
DUMMYWEST × VILLDIST −0.191 0.029 43.586 0.000 0.826
DUMMYWEST × WATERDIST −0.070 0.024 8.745 0.003 0.932
DUMMYWEST × MIRDIST 0.805 0.027 876.347 0.000 2.238
DUMMYWEST × MJRDIST 0.169 0.025 46.284 0.000 1.184
DUMMYWEST × MJTOWNDIST 0.437 0.034 163.255 0.000 1.548
DUMMYWEST × BANGDIST −0.288 0.030 90.645 0.000 0.749

1 Tree Plantation Gain Model 1992–2007: Significant at 95% level, R2 = 0.223, Classification Accuracy = 68.7%.
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4. Results

4.1. Deforestation Model

Two models were created that described the relationship between the explanatory variables
and deforestation occurring between 1973–1992 and 1992–2007. All the deforestation models had
a Nagelkerke R2 more than our critical value of 0.2 and thus showed a good model fit. For the
first deforestation model, interaction between DummyPA and elevation, slope, distance to minor
roads, major roads, all roads and water were included for time period one after looking at the spatial
distribution of the residuals. Distance to villages was excluded as there are only seven villages inside
the park and most of the high values of residual clustering (under prediction) were away from the
villages. For our second deforestation model, interaction between DummyPA and slope, elevation
and minor roads were included in the model. The remainder of the interaction terms was not relevant
for this time period. Our DummyPA variable also tests the effectiveness of protected area status on
deforestation as compared to the overall landscape. Including the interaction variables in our model
improved the model fit indicated by both an increase in Nagelkerke R2 and classification accuracy of
both time period deforestation models. The signs of estimated coefficients of most of the explanatory
variables made ecological sense for this landscape as a result of inclusion of the dummy interaction
variables in both the deforestation models and thus only the full models with interaction effects have
been presented. However, for the second deforestation model, there were some signs of estimated
coefficients for predictor variables which were not as expected. Both the models of deforestation were
statistically significant at the p = 0.005 level.

Table 3 shows the results of the logistic regression model analysis of deforestation. The relationship
between the explanatory variables and deforestation vary between the two time periods (Tables 3
and 5). In the overall landscape in first time period, distance to forest edge (−) and protected area
status (−) are the dominant drivers of deforestation, whereas, in second time period, distance to forest
edge (−) and all roads (+) are the dominant drivers. Proximity to water bodies (−) also encourages
deforestation in both time periods in overall landscape. Models also show a distinction between the
driving factors inside and outside the park. Deforestation in both the eras in overall landscape has a
positive relationship with elevation and slope. However, inside the protected area, deforestation is
on higher elevation (+) and gentler slope (−) in first time period and lower elevation (−) and gentler
slope (−) in the second time period. Further, proximity to minor roads is an important determinant of
deforestation inside the park. Deforestation occurred closer to minor roads in first time period and
farther away from minor roads in second time period, which is logical, as, in the previous time period,
forests have already been cleared from areas closer to minor roads.

Table 5. Logistic regression signs of parameters estimated.

Independent Variables

Deforestation Tree Plantation Gain

1973–1992 1992–2007 1992–2007

R2 = 0.602 R2 = 0.761 R2 = 0.223

SLOPE + + −
ELEV + + −

ALLRDDIST + + −
MIRDDIST − + −
VILLDIST − − −

WATERDIST − − −
MJRDDIST + n/s −
FORDIST73 − − n/a
FORDIST92 n/a − n/a
TOWNDIST n/a n/a −
BANGIDST n/a n/a −
DummyPA − − n/a
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Table 5. Cont.

Independent Variables

Deforestation Tree Plantation Gain

1973–1992 1992–2007 1992–2007

R2 = 0.602 R2 = 0.761 R2 = 0.223

DummyPA × SLOPE − − n/a
DummyPA × ELEV − − n/a

DummyPA × MIRRDDIST − + n/a
DummyPA × WATERDIST + n/a n/a

DummyWest × SLOPE n/a n/a −
DummyWest × ELEV n/a n/a −

DummyWest × VILLDIST n/a n/a −
DummyWest × WATERDIST n/a n/a −

DummyWest × MIRDIST n/a n/a +
DummyWest × ZMJRDIST n/a n/a −

DummyWest × ALLRDDIST n/a n/a n/s
DummyWest × MJTOWNDIST n/a n/a −

DummyWest × BANGDIST n/a n/a −
All predictors are significant unless indicated. n/s = not significant (was dropped from Backward LR model),
n/a = not applicable.

4.2. Tree Plantation Gain Model

The relationship between tree plantation gain and various explanatory variables were explained
by the two models representing two periods (1973–1992 and 1992–2007). DummyWest was interacted
with the main effect explanatory variables for both the models. Inclusion of DummyWest explained
the explanatory variables dominant in the western part of our study site. Inclusion of DummyWest
also increased our Negelkerke R2 and classification accuracy.

The models for tree plantation gain have a lower explanatory power than the deforestation models
(Table 4). The first model (1973–1992) for tree plantation gain is not significant (Nagelkerke R2 = 0.045)
and also has a low classification accuracy (60.2%) (Table A2), however, the second model (1992–2007)
has a reasonably good fit (Nagelkerke R2 = 0.223, classification accuracy = 68.7%) (Table 4). The signs
of the coefficient of estimates make ecological sense for the second model for tree plantation gain for
explanatory variables. In the overall landscape elevation (−), distance to minor roads (−), distance to
villages (−) and distance to Bangalore (−) play a significant role in explaining tree plantation gain.
Tree plantation gain is likely to occur in lower elevation, closer to major and minor roads, villages and
Bangalore. Tree plantation gain is also most likely to occur on flatter slopes (−). In the western part of
our study area, as our DummyWest interaction variables indicate, tree plantation gain occurred on
flatter slope, lower elevation, and closer to villages. Minor roads showed a positive relationship in this
sub-region which in ecologically unexpected. However, a positive relationship between tree plantation
gain and major towns in the sub-region is logical, as most of the towns are located on the eastern part
of the study site.

4.3. Residual Analysis of Models

Cluster and outlier analysis for the present study was done using the Anselin Local Moran’s I
module of ArcGIS 9.3 (ESRI, San Diego, CA, USA). The spatial distributions of residuals of deforestation
and tree plantation gain models for both the time periods show a high residual inside the national
park even after the inclusion of interaction variables between DummyPA and relevant explanatory
variables. This suggests missing explanatory variables from our deforestation and tree plantation
models, which could be spatially structured and thus causing the residual clusters. It is also possible
that some of our explanatory variables are spatially interacting with each other.
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5. Discussion

Spatial-statistical tools can be very powerful tools to examine the relationship between LULCC
and its proximate causes and infer about the underlying driving factors. Ideally, spatial-statistical
tools provide a means to quantify the impact of various biophysical, social and economic driving
factors (explanatory variables) by mean of analyzing proxy variables affecting LULCC (outcome
variable). Spatial statistics is useful in identifying the type (sign) of relationship and ranking the
relative importance of these explanatory variables by estimating the magnitude (value) of effect
brought by each of them on LULCC. These statistical estimates can further be used to predict future
land-cover changes such as forest cover change [25,56–58].

The relationship between land-cover change and its various explanatory variables are affected
by geographical scale of the study, different sub-regions within the overall system and different time
periods considered [5,25,26,39,54,59,60]. Although our study is done at one scale (landscape level),
different zones and eras are considered in explaining the relationship between explanatory variables
and land-cover change. Our results show differences in the processes affecting deforestation between
1973–1992 and 1992–2007 and within protected and non-protected areas. For tree plantation gain,
a bad model fit (1973–1992) did not allow us to compare between different time periods. However, as a
result of the presence of residual clustering, we divided the study area between eastern and western
zones to check for variation in relationship between explanatory variables and tree plantation gain in
different sub-regions.

In both eras, we found distance to forest edge (indication of previous deforestation) to be the most
important explanatory variable explaining deforestation. Prior studies have shown the spread effect
of deforestation, where deforestation in one period occurs in proximity to previously deforested
areas [25,61,62]. Protection to forest cover is also an important determinant of deforestation in
both time periods, where areas inside BNP, Talli and Bilikal Reserve Forest were less likely to be
deforested shown though the negative correlation between DummyPA and deforestation. Similar
studies analyzing the relationship between various explanatory variables and deforestation found
a negative correlation between protected areas and deforestation [26,54]. Globally, policy makers
heavily depend on establishing protected areas to conserve forest resources [63,64], even though
effectiveness of protected areas in conserving biodiversity has been questioned [44]. However, in
India, it is generally agreed that protected areas are working in reducing deforestation [44,65]. This
negative correlation between deforestation and BNP, Talli and Bilikal Reserve Forest throws light on
the underlying driving factor of policy measures at the national level (establishing protected areas)
and its impact on local level land-cover changes, here deforestation.

The relationship between topography and deforestation in our overall landscape is contradictory
to many other studies that have found slope and elevation to be negatively correlated with
deforestation. Lack of a definite relationship or a positive relationship between deforestation and
topography is not uncommon as found by several studies [19,66]. In both time periods, the relationship
of deforestation with elevation (+) and slope (+) (Table 3) is logical as most of the forest cover
in this area is located in higher elevation and steeper slope areas (Figure 2). Further, the largest
patch of deforestation in the first time period is centralized in the east central part of BNP which
is comparatively in higher elevation, which explains the positive relationship of topography with
deforestation. Conversely, the negative relationship of topography and deforestation inside our
protected area is on par with the general idea that deforestation occurs in flatter slopes and lower
elevation because of easy accessibility of these regions for illegal loggers and encroachers.

Deforestation occurring in both higher elevation and steeper slopes as well as in lower elevation
and flatter slopes brings our attention towards two interlinked ideas. First, deforestation is governed by
different driving factors inside and outside the protected area. Secondly, deforestation in the east central
part of the study area, most of which is outside BNP may not be meditated by topography. Something
else that would have overcome limitations posed by elevation and slope may have caused deforestation
in this region. The most probable cause, as supported by our field interviews, is people–park conflict,
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occurring because of unresolved land ownership. Topography, even though it is not a constraint for
deforestation, was found to be the most important determinant for tree plantation gain in the overall
landscape as well as for the western zone. It is clear from this that land uses such as agriculture are
strongly meditated by topography (see Section 4.1).

Looking at the results, proximity variables in BNP and its surroundings behave largely as expected
for both deforestation and tree plantation gain models, but we find diversity in direction and magnitude
of effect. Proximity to water is an important determinant of deforestation in this region as deforestation
occurred closer to water bodies. Distance to water, however, plays a much more important role in
explaining deforestation in the first than in the second time period. Water bodies, especially, rivers
provide access to loggers, cultivators and encroachers [34]. In this landscape, water bodies are streams,
lakes and ponds, which may not provide access but attract encroachers and illegal loggers as these are
the main sources of water for the local village communities. Relatively small effect of proximity to
water on tree plantations gain may be explained by the fact that these tree plantations (eucalyptus and
coconut palm) do not entirely depend on direct irrigation as opposed to other field crops. However,
finding tree plantations closer to the water bodies may be explained by the cultivation of field crops
near and under coconut palm plantations (field observations).

Roads in general, and rural roads in particular, facilitate deforestation by opening the forested
areas to loggers, encroachers and agriculturalists [34,36,67,68]. Thus, the relationship of deforestation
with minor roads (−) and villages (−) in the first time period is likely a result of forest access that
the minor roads provided to villagers. Major roads are not a significant indicator of forest clearing
both the eras. As our previous study suggested, most of the deforestation in the region occurred as
a result of domestic fuel gathering, animal grazing and illegal sand mining rather than large scale
logging activity that would require highways for transportation of woody products [3]. This could
explain why major roads such as highways are not an important determinant of deforestation in the
region. We, however, find all roads to have significant relationship with deforestation (+) in the second
time period. Overall connectivity and better flow of network provided by all roads might have been
important in explaining deforestation in the second time period.

Negative relationship between tree plantation gain and town, Bangalore, villages, major and
minor roads in the overall landscape is expected and shows the importance of accessibility to market
in explaining agricultural expansion. Cash crop cultivation is promoted by access to road which
connects them to urban markets [66]. Bangalore as one of the fastest growing cities in India, acts as
a major market center for agricultural products from surrounding areas especially cash crops like
coconut palm and eucalyptus. Looking at the beta coefficients, distance to Bangalore is more important
than the distance to villages for tree plantations. As tree plantations such as eucalyptus and coconut
palm trees are considered easy maintenance crops, it reduces the need for farmers to travel between
their home and field. However, minor roads are more important than major roads as these are bulky
agricultural products and minor roads provide access to the major roads for these crops transportation
to the market.

Even though, in the overall landscape, the negative relationship of these distance variables
with tree plantations makes ecological sense, within the western zone, a positive relationship of
tree plantation gain with minor roads is unexpected. Further, all roads in the western zone and our
accessibility to town variable do not show a significant relationship with tree planation. We would
expect all roads to significantly affect our tree plantations in the western zone. These discrepancies
could be because we have considered distance to different types of roads, towns, villages as individual
entities and not part of an overall system of network. A majority of spatial regression model
studies of LULCC define accessibility as a measure of only straight-line distance from roads or
markets [25,26,39,40,68,69]. However, the importance of road should vary based on a combination of
how connected or inter-connected any individual road is, how these roads connect different types of
settlements to market, how the connectivity of roads change as a result of new road development, and
whether these roads are access roads or major roads. It is thus important to remember that roads and
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various populations centers interact spatially. Few recent studies have used advanced measures of
accessibility and found them to better represent their landscape than rather just the use of distance in
kilometer terms [69]. An improved measure of accessibility that includes various network indices that
describes the importance of roads would be a better representation of accessibility in a LULCC model.

Spatial regression models are widely used models in LULCC in explaining a variety of LULCC
processes particularly deforestation and agricultural expansion. Our models provided substantial
information about the relationship between various proximate causes and LULCC in this region.
Additionally, we can also infer about some of the underlying root causes of LULCC and relate it to
some well-established theoretical frameworks by examining the proximate causes as has been done by
prior studies [5,13,69]. For example, our DummyPA explanatory variable highlights the importance
of protected area establishment and its impact on local level LULCC. Additionally, deforestation not
constrained by topography outside BNP may simply be an artifact of presence of forest cover in a
densely populated area “outside” the PA boundary. However, inclusion of land tenure variables may
be necessary to infer about driving forces such as land-use policies. In addition, the relationship of
explanatory variables with the tree plantations may suggest a von Thünen like model where tree
plantations, a bulky agroforestry product in this region, may be controlled by distance to market,
a proxy to transportation cost [70]. Even though our study includes spatial variability of different
proximate and biophysical causes, the present study, specifically our tree plantation models may
be weak in predicting future LULCC as it does not include temporal variations in our explanatory
variables. Including additional explanatory variables such as dynamic road network and changes
in their connectivity, changes in importance of individual roads as a result of new emerging roads,
changes in population density, changing land tenure regimes, and new emerging population centers
in future research endeavors would be essential for predicting future LULCC. Finally, we tried to
address spatial autocorrelation in our model by including dummies representing different parts of
our landscape. Although this improved our model fit and provided coefficient estimates which made
ecological sense, it did not remove our spatial autocorrelation altogether from our residuals.

6. Conclusions

This study integrates remote sensing and spatially explicit data to develop a statistical model
for LULCC in Bannerghatta National Park (BNP) and its surroundings. Relationships between
deforestation and tree plantation gain and their proximate and biophysical driving factors were
quantified using a logistic regression model. Our results reaffirms the importance of protected
area establishment in managing forest resources in densely populated regions and highlights the
importance of including past land-cover changes (previously deforested areas) to explain present
land-cover changes. We found proximity to roads, towns, villages and water sources as one of the
important determinants of plantation driven reforestation in the region. The results also showed
contradictory signs of the estimated parameters (not as expected in this landscape) emphasizing the
need to incorporate weighted measures of accessibility for LULCC model building. Running models
for different eras (1973–1992 and 1992–2007) rather than a single timespan (1973–2007) provided
significant insights into the varying driving factors affecting the LULCC for different eras. The study
also incorporated spatial variability of different proximate and biophysical causes to account for spatial
autocorrelation by creating sub-regions as space variables such as the protected versus unprotected
area and the DummyWest zone. The different directions and magnitude of effects of these proximity
variables in different sub-regions provided us with valuable insights on the different driving factors
for different sub-regions, for example, how the processes that affect deforestation are different inside
and outside the park. Consequently, this research encourages future work on LULCC modeling using
space as an explanatory variable to account for spatial autocorrelation.



Forests 2017, 8, 342 18 of 23

Acknowledgments: We would like to acknowledge University of Florida, USA, and Ashoka Trust for Research
on Ecology and Environment (ATREE), India, for providing data and research equipment for the present study.
We are also thankful to Harini Nagendra for providing the LISS III satellite images for 2007 and to the reviewers
and editors for their valuable comments and contributions to the manuscript.

Author Contributions: Sanchayeeta Adhikari conceived the project as part of her Ph.D. dissertation, ran the
satellite image and statistical analysis and wrote the article. Timothy Fik guided the project as part of dissertation
committee and assisted in designing the statistical analysis for the present project. He was instrumental
in suggesting different zones and statistical populations to remove spatial autocorrelation in the models.
He oversaw the entire statistical analysis for errors and suggested improvements. Puneet Dwivedi assisted
in data standardization in SPSS to run the statistical analysis and reviewed the articles for statistical errors and
suggested improvements.

Conflicts of Interest: The authors declare no conflict of interest.



Forests 2017, 8, 342 19 of 23

Appendix A

Table A1. Pearson Correlation Coefficients.

FORDIST73 FORDIST92 ALLRDDIST MJRDDIST MIRDDIST VILLDIST DWATER MJTOWNDIST BANGDIST SLOPE ELEV PRO_UNPRO DummyWest

FORDIST73 1.000 0.497 −0.032 −0.127 0.067 −0.031 0.020 −0.066 0.085 −0.201 −0.184 −0.173 0.043
FORDIST92 0.497 1.000 −0.083 −0.189 −0.032 −0.151 −0.128 −0.137 −0.023 −0.234 −0.157 −0.417 0.098

ALLRDDIST2 −0.032 −0.083 1.000 0.299 0.280 0.416 0.224 −0.112 0.316 0.205 −0.011 0.161 −0.027
MJRDDIST2 −0.127 −0.189 0.299 1.000 −0.111 0.370 −0.022 0.039 0.213 0.263 −0.120 0.377 −0.061
MIRDDIST2 0.067 −0.032 0.280 −0.111 1.000 0.296 0.677 0.036 0.227 0.042 0.039 −0.012 0.008
VILLDIST −0.031 −0.151 0.416 0.370 0.296 1.000 0.179 0.044 0.156 0.169 −0.152 0.245 −0.033
STWDIST 0.020 −0.128 0.224 −0.022 0.677 0.179 1.000 0.158 0.319 0.084 0.276 0.175 −0.016

MJTOWNDIST −0.066 −0.137 −0.112 0.039 0.036 0.044 0.158 1.000 −0.080 0.088 −0.244 0.221 −0.043
BANGDIST 0.085 −0.023 0.316 0.213 0.227 0.156 0.319 −0.080 1.000 0.067 −0.038 0.125 0.042

SLOPE −0.201 −0.234 0.205 0.263 0.042 0.169 0.084 0.088 0.067 1.000 0.050 0.255 −0.059
ELEV −0.184 −0.157 −0.011 −0.120 0.039 −0.152 0.276 −0.244 −0.038 0.050 1.000 0.083 −0.047

PRO_UNPRO −0.173 −0.417 0.161 0.377 −0.012 0.245 0.175 0.221 0.125 0.255 0.083 1.000 −0.114
Dumy_P7392 0.043 0.098 −0.027 −0.061 0.008 −0.033 −0.016 −0.043 0.042 −0.059 −0.047 −0.114 1.000

Correlation is significant at the 0.01 level (2-tailed).



Forests 2017, 8, 342 20 of 23

Appendix B

Table A2. Logistic regression parameters estimated from tree plantation gain.

Variables B S.E. Wald Sig. Exp(B)

Tree Plantation Gain 1973–1992
Constant 0.566 0.022 662.487 0.000 1.762

ELEV −0.378 0.032 140.957 0.000 0.685
VILLAGEDIST −0.086 0.018 21.905 0.000 0.918
WATERDIST 0.115 0.018 42.848 0.000 1.122

MJTOWNDIST −0.287 0.026 118.837 0.000 0.751
BANGDIST 0.477 0.015 974.628 0.000 1.612

MIRDIST −0.052 0.014 13.843 0.000 0.950
MJRDIST −0.265 0.023 130.639 0.000 0.767

ALLRDDIST 0.046 0.011 18.137 0.000 1.047
DummyWest × SLOPE 0.079 0.019 16.599 0.000 1.082
DummyWest × ELEV 0.796 0.055 213.047 0.000 2.218

DummyWest × VILLAGEDIST 0.155 0.023 46.491 0.000 1.167
DummyWest × MJTOWNDIST 0.300 0.029 105.724 0.000 1.350

DummyWest × MIRDIST 0.050 0.022 5.099 0.024 1.051
DummyWest × MJRDIST 0.216 0.025 73.707 0.000 1.240

DummyWest × WATERDIST −0.359 0.022 262.580 0.000 0.698
DummyWest × BANGDIST −0.145 0.027 29.215 0.000 0.865

Significant at 95% level, R2 = 0.045, Classification Accuracy = 60.2% (1973–1992).
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