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Abstract: Natural and anthropogenic disturbances alter canopy structure, understory vegetation,
amount of woody debris, and the litter and soil layers in forest ecosystems. These environmental
changes impact forest communities, including ground-dwelling invertebrates that are key regulators
of ecosystem processes. Variation in frequency, intensity, duration, and spatial scale of disturbances
affect the magnitude of these environmental changes and how forest communities and ecosystems
are impacted over time. We propose conceptual models that describe the dynamic temporal effects
of disturbance caused by invasive insects, wind, and salvage logging on canopy gap formation and
accumulation of coarse woody debris (CWD), and their impacts on ground-dwelling invertebrate
communities. In the context of this framework, predictions are generated and their implications for
ground-dwelling invertebrate communities are discussed.
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1. Disturbance in Forest Ecosystems

Disturbances are inherently variable events that generate spatial and temporal heterogeneity in
forest ecosystems by altering habitat structure, energy and nutrient flow, and species composition,
thereby shaping long-term patterns in community dynamics and ecosystem processes [1–4]. In forest
ecosystems, disturbances are natural (e.g., fire, wind, floods, ice, insect and disease outbreaks) or
anthropogenic (e.g., invasive species, forest management practices, land-use change) [5–9]. Natural
and anthropogenic disturbances impact forest communities directly through tree mortality and
indirectly through changes in resource availability, habitat structure, competitive interactions, and
ecosystem processes [10,11]. Disturbance events can be characterized by properties including type,
intensity, frequency, severity, extent, and duration [1,12,13] that determine their impact on forest
structure and function. These events range on a continuum from small-scale, low intensity, frequent
disturbances affecting individual trees to large-scale, high intensity, infrequent disturbances affecting
entire stands [3]. Depending on their nature, the effects of disturbance on forest communities and
ecosystems can have major ecological and economic impacts [14–16].

Establishment and spread of invasive species is a significant driver of anthropogenic
environmental change, and has been identified as a threat to natural ecosystems, second only to habitat
destruction [17–19]. The frequency of biological invasions continues to increase worldwide [20,21],
causing unprecedented economic impacts while threatening native habitat, biodiversity, and ecosystem
services [11,17,22–24]. Moreover, invasive species are capable of modifying as well as creating new
disturbances with potentially novel combinations of properties [5,9].

Forests 2017, 8, 174; doi:10.3390/f8050174 www.mdpi.com/journal/forests

http://www.mdpi.com/journal/forests
http://www.mdpi.com
http://dx.doi.org/10.3390/f8050174
http://www.mdpi.com/journal/forests


Forests 2017, 8, 174 2 of 13

Climate change may result in unexpected ecological and economic impacts in forest ecosystems
due to altered disturbance regimes [25]. Patterns of forest disturbance and their effects on communities
are influenced by climate change by means of altered disturbance properties [26]. For example, climate
change is predicted to increase the intensity and frequency of strong storms that can cause extensive
stand-replacing disturbance in forests [25,26]. This likely would affect land management decisions by
increasing pressures to salvage timber in order to recover economic losses, perhaps with effects that
counter conservation objectives such as retaining structural legacies created by natural disturbances.

Disturbances maintain local and landscape heterogeneity through the creation and spatial
arrangement of biological legacies [2,27,28], which have been defined as “organisms, organically
derived structures, and organically produced patterns” remaining in the disturbed patch [29].
Such legacies include living residual trees, snags, newly downed boles and existing woody debris,
tip-up mounds and pits from fallen trees, intact ground-level understory vegetation, advanced
regeneration, and patches of undisturbed forest [2,27,30]. Anthropogenic disturbances alone or
in combination with natural disturbances may deplete these structural features [29], resulting in
altered or exacerbated effects on community and ecosystem dynamics [31]. Natural and anthropogenic
disturbances often result in tree mortality, which creates biological legacies that include altered canopy
structure and accumulation of woody debris on the forest floor. Outbreaks of invasive insects and
strong winds are two disturbances that cause tree mortality in forest ecosystems [3,9,32–36], and affect
millions of hectares of forest globally [37]. These agents form canopy gaps and alter the amount of
CWD on the forest floor, which has the potential to affect populations of ground-dwelling invertebrates.

Responses of ground-dwelling invertebrates to natural and anthropogenic disturbances have
implications for ecosystem services, including decomposition, nutrient cycling, and maintenance of
soil structure [38–43]. Invertebrates respond quickly to changes in forest structure and microclimate
such as soil moisture [44], leaf litter [45], and vegetation cover [46]. Because of this, several taxa,
including ground beetles, spiders, ants, and springtails, have been used as biological indicators [47–50].
High taxonomic and functional diversity of ground-dwelling invertebrate communities makes them a
fundamental component of the forest ecosystem, and their sensitivity to environmental change makes
them useful for detecting and characterizing forest responses to disturbance [51].

Formation of canopy gaps of varying sizes is a consequence of disturbances that cause tree
mortality. Gaps alter the forest floor environment by increasing light availability, altering soil
temperature and moisture regimes, stimulating understory vegetation regeneration and growth,
and decreasing leaf litter moisture and depth [52–58]. The magnitude of differences on the forest floor
environment between a gap and the surrounding undisturbed forest is determined by local (gap size,
shape, orientation, structure, and amount of edge) and landscape (gap isolation, number of gaps, and
forest structure) characteristics [46,59]. Canopy gaps and their associated environmental changes on
the forest floor impact the abundance, diversity, and distribution of ground-dwelling invertebrates,
including insects and spiders [46,53,60–64].

Woody debris accumulates on the forest floor as trees fall including fine woody debris (FWD; stems
and small branches <10 cm in diameter at the large end) and coarse woody debris (CWD; logs and large
branches ≥10 cm in diameter at the large end). Downed CWD is a fundamental structural component
that increases habitat complexity in forests [65] and provides resources for flora and fauna, including
nutrients, habitat, and sites for sprouting, breeding, and overwintering [66–68]. As CWD decays
over time, the communities utilizing this resource change with the physical and chemical properties
of the wood [67,69,70]. During early stages of decay when the bark is still firmly attached, CWD
primarily regulates abiotic conditions at the soil surface for ground-dwelling invertebrates [67,71,72],
whereas nutrients and habitat become abundant following fungal and insect colonization as decay
progresses [67,69]. Because wood decomposition occurs on timescales of 50–200 years [67,69,73],
the effects of downed woody debris on ground-dwelling invertebrate communities can be
long-lasting [67,69,73].
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Canopy gaps consistently influence the structure of invertebrate communities [53,60,74,75], as do
the presence and amount of CWD [76–79], suggesting that both are key structural features in forests.
Formation of canopy gaps and accumulation of CWD may have interacting effects on ground-dwelling
invertebrate communities due to their differing impacts on the forest floor environment. Isolating
the individual effects of canopy gaps and CWD on ground-dwelling invertebrates after natural and
anthropogenic disturbances is a challenge because these two factors are often intricately linked.
Dynamic patterns of effects of canopy gap formation and CWD accumulation may shift the relative
importance of these factors over time, altering the impacts on ground-dwelling invertebrate community
structure and function.

2. Temporal Responses of Forests to Disturbance

Effects of disturbances on canopy gap formation and accumulation of CWD on forest communities
change over time. The spatial and temporal scales at which these changes occur are ultimately
determined by the properties of the disturbance event. Here, we develop conceptual models of
dynamic effects of disturbances caused by invasive insects, wind, and salvage logging on canopy gaps
and downed CWD, and their implications for ground-dwelling invertebrate communities (Table 1).

Table 1. Descriptions of the predicted impacts of canopy gap formation, accumulation and removal of
coarse woody debris (CWD), and soil disturbance caused by invasive insect-induced tree mortality,
wind, and intensive salvage logging after natural disturbance on ground-dwelling invertebrate
communities. When these factors are predicted to have the greatest impact on invertebrates is indicated
by early and late.

Disturbance Agent Canopy Gaps
Coarse Woody Debris

Soil
Accumulation Removal

Invasive Insects High, Early High, Late – Minimal
Wind High, Early High, Early – Minimal to Moderate

Salvage Logging High, Early – High, Early High

2.1. Invasive Insects

In eastern deciduous forests of North America, gap-phase dynamics caused by native insects such
as wood-boring beetles result in the formation of small-scale canopy gaps that are unevenly distributed
throughout the stand, as most tree species exist in diverse communities. However, populations
of native insects such as spruce budworm (Choristoneura fumiferana [Clem.]) [80,81] and forest tent
caterpillar (Malacosoma disstria Hbn.) [82,83] can cause large-scale tree mortality during outbreak years.
Tree mortality caused by invasive insect species such as gypsy moth (Lymantria dispar L.), hemlock
woolly adelgid (Adelges tsugae Annand), beech scale (Cryptococcus fagisuga Lind.), and emerald ash
borer (Agrilus planipennis Fairmaire) can produce more spatially extensive patterns of gap formation in
forests [9,18,84].

Emerald ash borer (EAB) has killed hundreds of millions of ash trees (Fraxinus spp.) in eastern
North America since its accidental introduction from southeast Asia [85]. Ash tree mortality causes
widespread, nearly simultaneous formation of canopy gaps in forests [86,87], owing to the low
resistance of North American ash species to EAB [88]. The speed, synchrony, and specificity of ash
mortality differs from gap-phase dynamics caused by other forest insects. EAB-induced ash mortality
increases both the frequency of canopy gaps as ash trees die (Figure 1A) and the accumulation of
ash CWD as trees fall (Figure 1B) [78,89]. Our model predicts that this pattern of tree mortality has
an inverse temporal relationship in the effect sizes of canopy gaps and accumulation of ash CWD
on ground-dwelling invertebrate communities (Table 1), as the effects of canopy gaps diminish with
canopy closure, while the effects of ash CWD are predicted to increase and change over time as trees
fall and decompose [60].
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Figure 1. Canopy gaps created by the death of ash trees during early stages of ash mortality (A) and
the accumulation of CWD on the forest floor during late stages of ash mortality (B).

Based on this conceptual model, canopy gaps are predicted to have their greatest impact on
ground-dwelling invertebrates soon after they form, with these effects dissipating over time as growth
from suppressed understory trees and surrounding canopy trees close the gaps. Gaps are presumably
at their maximum size soon after tree death, and gaps created by EAB-induced tree mortality averaged
18.8% (±1.8) to 26.5% (±2.0) canopy openness [53,89]. Growth from understory and canopy trees
closed the gaps, decreasing their canopy openness to 1–10% during late stages of ash mortality [78,90].

Accumulation of ash CWD is predicted to have the greatest effects on ground-dwelling
invertebrates during late stages of EAB-induced ash mortality. Ash trees fall relatively quickly after
they are killed by EAB but can remain standing for several years. Thus, rate of CWD accumulation
above background levels is initially low. An average of 2.2% cover of downed CWD was observed in
forests experiencing early stages of ash mortality [91]. However, as more ash trees fall, larger volumes
of CWD accumulate on the forest floor. In forests experiencing late stages of ash mortality, an average
of 19.3% cover of downed CWD was observed [90]. Hence, our model predicts that rate and volume of
ash CWD accumulation increase as gaps caused by ash mortality close.

Studies investigating the impacts of ash mortality caused by EAB on ground-dwelling invertebrates
support these predicted effects of canopy gaps and CWD. During early stages of ash mortality,
decreased invertebrate richness and diversity was reported in canopy gaps, owing to the
decreased activity-abundances of harvestmen, scarab beetles, camel crickets, and springtails [60].
Activity-abundance of ground beetles initially was lower in canopy gaps, but these effects were
ephemeral, suggesting some degree of resilience to small-scale canopy gaps [53,89]. During late stages
of ash mortality, higher densities of ground-dwelling invertebrates were observed near ash CWD,
including earthworms, spiders, harvestmen, isopods, millipedes, beetles, and springtails [78]. Further
investigation revealed increased activity-abundance, evenness, and diversity of invertebrates near
recently fallen than more decayed ash CWD [90].

Effects of tree mortality caused by other invasive insects on ground-dwelling invertebrates
were more variable. Early stages of eastern hemlock (Tsuga canadensis (L.)) mortality from hemlock
woolly adelgid (HWA) increased ant activity-abundance and species richness [92], which is consistent
with predictions of the model. Sackett et al. [93] reported altered composition of spider and beetle
assemblages in stands where hemlock were experimentally girdled to emulate gaps created by
HWA-induced tree mortality compared to undisturbed hemlock stands, but CWD accumulation
was not investigated. To our knowledge, effects of late stages of hemlock mortality on invertebrates
have not been investigated. Decline and mortality of American beech (Fagus grandifolia (Ehrh.)) from
beech bark disease [a complex of beech scale and the fungal species (Nectria coccinae var faginata
Lohman, Watson and Ayers)] had no clear impacts on ground-dwelling invertebrates [94]. However,
information on the size of gaps created by beech mortality was not reported, nor was the amount
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of CWD on the forest floor [94], which limits the ability to compare these patterns to predictions of
the model.

2.2. Wind

Tree mortality can occur at small scales (tens of meters or less) from windthrow or large
scales (thousands of hectares) from intense storms such as tornados, downbursts, derechos, and
hurricanes [8,36,62,95]. When trees are felled by wind, canopy gaps form and CWD accumulates
simultaneously (Figure 2A). Therefore, a negative temporal relationship is predicted for the effect sizes
of both gaps and CWD on ground-dwelling invertebrate communities [60], with the greatest impacts
occurring immediately after the wind storm and then decreasing over time (Table 1).Forests 2017, 8, 174    6 of 13 
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Severe wind storms generally fell a high proportion of canopy trees forming large, patchy gaps,
although some trees lose only branches and remain standing [96]. Tipped trees form pits and mounds
that mix organic and mineral layers, expose rocks and roots, and create distinct microsites that
differ from neighboring undisturbed soil [97–101]. Trees fall nearly simultaneously and often in
the same direction, resulting in accumulation of CWD of different species, types, and sizes [36,96].
The probability that a tree will fall is influenced by species-specific characteristics (size, root and
canopy structure, wood strength, and prior insect or disease infestation) and abiotic site factors (local
topography and soil properties) [2,36].

Studies investigating the impacts of wind disturbance on ground-dwelling invertebrate
communities generally reported initial impacts of canopy gaps and accumulation of CWD,
but the long-term impacts of wind storms are understudied. Richardson et al. [74] reported
lower ground-dwelling invertebrate diversity and biomass in canopy gaps owing to decreased
activity-abundance of large predators and detritivores, but found no effects of woody debris following
a manipulative experiment designed to emulate hurricane disturbance. Similarly, Greenberg and
Forrest [52] observed lower invertebrate biomass and activity-abundances of millipedes, centipedes,
spiders, and ground beetles in canopy gaps created by Hurricane Opal than in undisturbed forest.
In the year following a tornado, invertebrate activity-abundance was higher, diversity was lower,
and community composition was altered in windthrow gaps compared to nearby undisturbed forest,
but these differences disappeared by year three [102]. Activity-abundances of millipedes (Spirobolidae),
spiders, harvestmen, ants, ground beetles, bark beetles, featherwing beetles, and rove beetles were
higher in canopy gaps, but were lower for centipedes, millipedes (Julidae), earth-boring dung beetles,
and small dung beetles. Windthrow gaps were characterized by increased growth of understory
vegetation as well as high volume of downed CWD [102], making it difficult to determine which
factors had the greatest impact on ground-dwelling invertebrates.
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2.3. Salvage Logging

Salvage logging, or post-disturbance logging, is the practice of harvesting commercially valuable
standing and downed damaged, dying, and dead trees, as well as undamaged living trees from forest
stands following natural disturbance [29,30,103] to recover economic losses [104], prevent subsequent
insect or disease outbreaks, and reduce the risk of fire [30,36]. Salvage logging tends to remove
biological legacies created by natural disturbances [30], although effects very widely based on the
harvesting methods [30,105] and site-specific conditions such as soil type and water content [105,106].
Removal of biological legacies simplifies stand structure, decreases habitat connectivity, and influences
patterns of forest recovery [29,30].

Intensive and extensive salvage logging increases the size of canopy gaps by removing undamaged
living trees as well as downed timber (Figure 2B). Therefore, the greatest effect of canopy gap formation
on ground-dwelling invertebrate communities is predicted to occur soon after the logging operation
when gap size is at its maximum (Table 1). Moreover, removal of living and dead trees significantly
reduces the amount of CWD, leaving forests depauperate in the diversity of sizes, types, and decay
classes characteristic of undisturbed or naturally disturbed forests [27,107–109]. Hence, we predict
that the greatest effects of CWD accumulation on invertebrates occur soon after natural disturbance
(e.g., wind), while the effects of CWD removal are predicted to be greatest soon after the logging
operation (Table 1).

Ground-based salvage logging methods that use heavy machinery, roads, and skid trails for timber
removal increase erosion and compaction of organic and mineral soil layers [110,111]. Following
salvage operations, increased bulk density has been detected 15–60 cm below the soil surface [110,112–115]
with changes to soil structure that decreased aeration, porosity, water infiltration and retention, gas
exchange, and root growth [103,105,106,112,116–118]. Soil erosion and compaction are predicted to
have the greatest effects on ground-dwelling invertebrates immediately after the salvaging operation
(Table 1), and relax slowly over time as the organic layer accumulates and compaction decreases.

Studies investigating the impacts of salvage logging on ground-dwelling invertebrates reported
taxon-specific responses. Greenberg and Forrest [119] observed higher activity-abundance of
harvestmen and ants in salvaged gaps than in intact windthrow gaps created by Hurricane Opal.
Urbanovičová et al. [120,121] observed increased dominance of springtails and mites in salvaged
gaps after wind disturbance in spruce forest, resulting in lower arthropod evenness and diversity.
Thorn et al. [75] found that the formation of canopy gaps was the most important factor structuring
ground beetle and epigeal spider assemblages after experimentally decoupling the effects of gaps and
forest floor microhabitats created by windthrow and salvage logging. Activity-abundance and species
richness of spiders was higher in windthrow gaps, while ground beetles were more abundant under
closed canopy [75]. In gaps created by a tornado, activity-abundance of ground-dwelling invertebrates
was lower one year and higher two years after salvage logging compared to adjacent unsalvaged
windthrow gaps [102]. Snails and slugs, true dung beetles, and crickets were more abundant, while
two families of millipedes and three families of Collembola were less abundant in salvaged gaps [102].
Invertebrate communities showed resilience in windthrow gaps, which had similar composition to
those in the undisturbed neighboring deciduous forest, whereas invertebrate communities in salvage
logged gaps were distinctly different [102], highlighting the importance of biological legacies such as
downed CWD following disturbance.

Responses of ground beetle assemblages to salvage logging have been studied extensively.
Species richness and diversity of ground beetles were higher in salvaged gaps following severe wind
disturbance (>70% tree mortality) [61], and activity-abundance was higher in salvaged gaps following
wildfire [122]. Koivula and Spence [123] reported increased activity-abundance and species richness
with increasing salvage logging intensity (low: 23–30% timber removed, moderate: 40–50%, and high:
60–70%) following wildfire compared to unsalvaged patches. Activity-abundance, richness, and (or)
diversity of ground beetles often increases because open-habitat and generalist species quickly colonize
the disturbed patch, while the presence of forest species decline more slowly. Perhaps retention of
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biological legacies in salvaged areas would support long-term populations of forest ground beetle
species in these disturbed areas.

3. Conclusions

Natural disturbances are essential to the structure and function of ecosystems and contribute to the
maintenance of biodiversity [2,10]. We proposed conceptual models describing temporal relationships
in the effect sizes of disturbance from invasive insect-induced tree mortality, wind storms, and salvage
logging on canopy gap formation, accumulation (and removal) of CWD, and soil disturbance, and
their effects on ground-dwelling invertebrate communities. Responses to EAB-induced ash mortality
supported predictions of the first conceptual model of an inverse temporal relationship in the effect
sizes of canopy gaps and CWD accumulation, but responses to tree mortality caused by other invasive
insects were inconsistent and understudied. The initial effects of canopy gaps and CWD caused
by wind storms and salvage logging predicted by the second and third conceptual models were
generally supported, but we are not aware of data that can test predictions of longer-term impacts on
ground-dwelling invertebrate communities. These models provide a conceptual framework that can
interpret results of existing studies and enlighten the design of future experiments.

This review highlights key knowledge gaps in understanding the temporal effects of natural
and anthropogenic disturbances on ground-dwelling invertebrate communities. Most studies
have investigated the initial short-term effects of disturbance events, but longer-term studies are
under-represented in the literature. Moreover, effects of soil disturbance following salvage logging
were not quantitatively assessed in most studies, and thus are confounded with impacts of decreased
volumes of CWD. Combined effects of canopy and ground-level factors need to be experimentally
decoupled in order to assess their individual effect sizes on ground-dwelling invertebrate communities,
as well as other forest flora and fauna.

Forest ecosystems are innately dynamic, which complicates land management decisions made
following small- and large-scale disturbances to achieve economic and ecological objectives.
Ecologically sustainable forestry practices based on natural disturbance regimes and processes of
forest stand development are intended to provide economically valuable resources while maintaining
ecosystem integrity [104,124–126]. The combined, interacting impacts of natural disturbance followed
quickly by salvage logging may decrease the capacity of forest ecosystems to recover [29,30]. Potential
ecological impacts of salvage logging can be mitigated by employing alternative lower-impact
harvesting methods such as timber removal by cable or helicopter. Moreover, incorporating biological
legacies into management plans by selectively retaining downed and standing woody debris as well
as patches of undisturbed forest within the landscape can help maintain structural complexity and
provide habitat [27,30,127] for forest species including ground-dwelling invertebrates.
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