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Abstract: Smallholder tree plantations are expanding in the steepland tropics due to demand
for timber and interest in ecosystem services, such as carbon storage. Financial mechanisms are
developing to compensate vegetation carbon stores. However, measuring biomass—necessary for
accessing carbon funds—at small scales is costly and time-intensive. Therefore, we test whether
low-cost drones can accurately estimate height and biomass in monoculture plantations in the tropics.
We used Ecosynth, a drone-based structure from motion technique, to build 3D vegetation models
from drone photographs. These data were filtered to create a digital terrain model (DTM) and digital
surface model (DSM). Two different canopy height models (CHMs) from the Ecosynth DSM were
obtained by subtracting terrain elevations from the Ecosynth DTM and a LIDAR DTM. We compared
height and biomass derived from these CHMs to field data. Both CHMs accurately predicted the
height of all species combined; however, the CHM from the LiDAR DTM predicted heights and
biomass on a per-species basis more accurately. Height and biomass estimates were strong for
evergreen single-stemmed trees, and unreliable for small leaf-off species during the dry season. This
study demonstrates that drones can estimate plantation biomass for select species when used with an
accurate DTM.

Keywords: drone; LiDAR; point cloud; ecosynth; Panama; plantation; inventory; tropics

1. Introduction

Tropical forest plantations play a major role in global timber markets. In 2012, 231 million m3 (41%
of the global total) of industrial roundwood from plantations was produced in tropical countries [1].
In addition to timber, national and international institutions are looking to plantations for ecosystem
services such as carbon sequestration, water filtration, and soil conservation [2–5]. Countries and
multilateral organizations such as the United Nations are implementing vegetation carbon accounting
programs to integrate carbon stores, including those in plantations, into national and global budgets.
These mechanisms are increasingly making funding available to landowners and organizations that
can track changes in biomass and quantify carbon stored.

Performing accurate inventories of plantations is critical for any land manager [6]. Diameter
at breast height is often measured in the field to estimate height, which can then be used to inform
harvest schedules and derive biomass [7]. However, assessing height directly is often cost and
time-prohibitive [8].
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One alternative to measuring height by hand is offered by remote sensing techniques [9]. Light
Detection and Ranging (LiDAR), which records 3D structure based on emitted laser pulses, is often
employed for characterizing 3D vegetation structure [10]. While LiDAR can accurately measure forest,
plantation, and individual tree structure in 3D [11–14], it is prohibitively-expensive for smallholders in
tropical and developing nations [8]. A typical commercial aerial LiDAR acquisition costs at least US
$20,000 per flight [15], significantly more than low-income smallholders can afford.

However, new developments with unmanned aerial vehicles (drones) have significantly lowered
the cost and time needed to conduct inventories [16–18]. Because of this, drones offer the possibility
of empowering landowners or small organizations to conduct forest inventories more frequently.
Nowadays, one can buy a high-quality drone and equip it with an RGB digital camera, thereby
creating a homemade remote sensing tool [19,20]. Photos taken from these cameras can be processed
with open-source software (e.g., Ecosynth) to construct a 3D model using structure from motion
algorithms [21,22]. These algorithms identify features (e.g., trees, buildings) on overlapping photos
taken from different angles and reconstruct the features’ 3D structure [23,24]. The resulting data is a
collection of RGB points that represent the 3D surface of the objects imaged by the drone. This method
has been used to produce LiDAR-like results in measuring canopy heights, structure, roughness, and
biomass [18,21,22,25].

While drones have been used in connection with estimation of height and biomass in mixed
plantations and secondary forest [18], they have never been tested for their ability to support estimation
of height, aboveground biomass (AGB), and total biomass (TB) on a per-species basis in monoculture
plantations in the steepland tropics. Characterized by slopes that average more than 12% in grade, the
steepland tropics provide critical land for smallholders and watersheds for communities and cities [26].
Because the slopes are too treacherous for industrial cultivation, forestry and agriculture are often
practiced by smallholders and are thus an ideal place to test this approach [26–29].

Additionally, past forestry-relevant drone studies have largely focused on the use of drones in
monitoring forest variables and temperate plantation management [17,30,31]. Few of these studies
have been performed for tropical timber plantations and none have been performed on the species
that we studied. As interest in operationalizing drones for forest inventories proliferates, it is critical to
determine the appropriate conditions and purposes for using these tools [32].

In this study, we compare estimates of canopy height and biomass (aboveground and total)
of five different species derived from drone-based models and LiDAR-based models. The study
was performed in the steeplands that surround the Panama Canal. We applied this method to
56–1754 m2 plantations of five different species, and evaluated its performance by comparing
height with field-based measurements and biomass with estimates derived from locally-generated
allometric equations.

2. Materials and Methods

2.1. Study Site

This study was performed at the site of the Smithsonian Tropical Research Institute’s Agua Salud
Project in the Panama Canal Watershed (9◦13′ N, 79◦47′ W). The site receives 2700 mm of annual
rainfall, experiences a dry season from mid-December through early May [33] and is characterized by
short, steep, and highly variable slopes (range of 0–75◦, mean of 24◦) that range from 52 to 343 m above
sea level in elevation. Agua Salud is a mosaic of pastures, successional forests, and plantations (both
native and exotic) and is surrounded by a diverse landscape of agriculture, human settlements, and
forest [34]. The Agua Salud native species plantations consist of 21 treatments of different combinations
of monocultures and mixtures and totals 267 plots, 56 of which are monocultures of native species [35].

This study was carried out in the 56–1754 m2 (45 m× 39 m) monoculture native species plantations
(termed ‘plots’) located in two different blocks (termed ‘Block 1’ and ‘Block 2’) within the Agua Salud
Project area (see Figure 1). Thirty plots are located in Block 1 and 26 plots are in Block 2, all of
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which were established in 2008. Five different species were randomly assigned to the plots and
stratified across slope classes—Terminalia amazonia, Dalbergia retusa, Pachira quinata, Tabebuia rosea, and
Anachardium excelsum. Each plot contained a 27 m × 23.4 m ‘core zone’ of 81 trees (nine rows of nine
trees each), and was surrounded by a buffer zone of three rows of trees on every side—resulting in a
total of 225 trees in each plot. All plots were 7 years old at the time of measurement.
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Figure 1. (a) Agua Salud study site, plots, and blocks locations; and (b) example of field plot.

2.2. Data Collection and Analysis

2.2.1. Field Measurements

Canopy Height

Heights were measured with a 15-meter extendable pole between June and July 2015 for all trees
in each core zone. Heights were measured at the tallest stem. If no tree was present, the record was
marked as null and the entry was omitted from further analysis. Average field height per core zone
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was then calculated, termed ‘field height,’ which was assumed to represent the average height of the
entire plot.

Biomass

Aboveground biomass (AGB) and total biomass (TB) were calculated for each core zone using
species-specific allometric equations that were derived in a separate study [36]. In their study,
Sinacore et al. measured and destructively-harvested 41 trees from six species, five of which are
included in this study. They further excavated, dried, and weighed all roots down to 2 mm thus
providing accurate measures of belowground biomass.

The best species-specific allometric equations from the Sinacore et al. paper, used in this study,
take basal diameter as input parameters [33]. Basal diameters were measured at the same time as tree
heights and were recorded for each stem in the multi-stemmed trees. Out of the 3955 trees that were
present, 351 were multi-stemmed (59% of which were D. retusa). From the 351 multi-stemmed trees,
271 had two stems, 62 had three stems, 15 had four stems, two had five stems, and one had six stems.
Both AGB and TB were calculated for individual stems using basal diameter values. Biomass was then
summed for all the trees in a core zone and divided by the area to get the final dimensions (Mg/Ha).
Since height has been found to predict biomass [18,37], field-estimated AGB and TB were compared to
remotely-sensed height measurements (see below) to determine how well height measurements from
drones could be used to model AGB and TB estimates of these species.

2.2.2. Remote Sensing Measurements

LiDAR Collection

LiDAR data was collected for the study areas in August 2009 by Blom (a surveying company)
using an Optech sensor (Optech Incorporated, ALTM 3100, Toronto, Canada) on board a fixed wing
manned aircraft traveling at 457.2 m above the ground at a flight speed of 66.9 m·s−1 (scanning
frequency of 48 Hz and pulse repetition rate of 70 kHz). Blom then created a model of the terrain,
a DTM, from this data using TerraScan 9.0 (TerraSolid, Helsinki, Finland), with spatial resolution
of 1 × 1 m. LiDAR horizontal and vertical accuracy was evaluated at 36 control points within the
flight area, resulting in a horizontal root mean square error (RMSE) of 7.6 cm, and a vertical RMSE
of 6.9 cm. Due to the age of the LiDAR data relative to the current study (2009 vs. 2015), no surface
measurements of canopy height from the LiDAR were used. Instead, it is expected that there would be
little change in topography over this time, making the 2009 LiDAR DTM a valid dataset for the current
work. This DTM was used in all LiDAR analysis in this study, referred to as the LiDAR DTM, or the
LiDAR terrain model.

Image Collection

Imagery was collected using a multirotor drone following the methods and equipment
specifications of Dandois and Ellis [21], from 16 April 2015 to 19 April 2015. Digital images were taken
with a Canon ELPH 520 (Canon Inc., Tokyo, Japan) HS point and shoot digital camera, which shot
continuously at two frames per second (f·s−1) throughout the flights. Seven flights were required to
capture both Block 1 (five flights) and Block 2 (two flights). Drone flight altitude was fixed to 400 m
above the launch location, which was set at a nominal location and elevation within each flight area.
The drone flew autonomously along a predetermined flight path at roughly 7 m·s−1, resulting in an
average image resolution of 14 cm GSD. In general, flights were conducted between 09:00 and 14:00
local time to minimize the effects of sun angle and to avoid high winds and rain.

Point Cloud Generation

Several processing steps were required prior to creating point clouds from drone images. GPS and
altitude telemetry from the drone were used to provide an initial estimate of the XYZ location of each
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image. Due to the relatively high frame rate of the camera and high altitude, images were collected
with very high forward overlap (≥ 98%), resulting in more image data than is needed so image
sequences were subsampled to every 10th frame [25]. Even though image white balance and contrast
were fixed before each flight to an 18% gray card in full sun, there were still differences in image
quality between flights over the same locations and within flights due to passing clouds and cloud
shadows. A histogram matching technique was used to minimize these effects [38]. Briefly, images
were converted to the HSV (hue-saturation-value) color space, then for each image, the histogram
of the value channel was normalized to that of an exemplar image manually identified to have good
contrast and exposure with no cloud shadows.

Normalized images were then transformed back to the RGB color space. Normalized and
georeferenced images from each flight were then imported into the photogrammetry, structure from
motion software Agisoft Photoscan (version 1.1.6, 64-bit) for each flight area (Block 1 and Block 2) to
create 3D point clouds. This software uses computer vision photogrammetric algorithms to recognize
similar features in multiple images and to simultaneously solve for their locations as well as the
location and orientation of the camera at the time of image capture in 3D space ([21] for further details).
After initial processing, a GeoTIFF orthomosaic (14 cm GSD) was exported from Photoscan.

Additional georeferencing was performed in ArcGIS and Photoscan on the drone orthomosaic by
extracting XYZ data from the LiDAR DTM for ground control points (e.g., building corners, distinct
marks in the roads, small shrubs, etc.). The resulting DTM had a positional RMSE of 1.30 m for Block 1
and 1.89 m for Block 2, relative to the LiDAR DTM error. After this stage, a sparse point cloud was
exported for each block for additional analysis. This point cloud, produced from drone imagery, is
referred to as the Ecosynth point cloud, based on the name of the methodology used [21,22].

Digital Terrain and Canopy Height Models

Digital terrain models were created from the Ecosynth point clouds by refining the data and then
filtering the terrain. The referenced point clouds were clipped to the study area, filtered to remove any
noisy points, and converted into a 1 × 1 m grid of median height values. Terrain filtering algorithms
were then applied to each point cloud using MCC-LiDAR software to produce the DTMs [39]. This
software applies a filter to the point cloud at different scales to estimate whether any given data
point is a local low point—thus classified as ‘terrain’. The terrain points were then interpolated into a
1 m gridded raster DTM using natural neighbor interpolation in ArcGIS 10.1 (ESRI, Redlands, CA,
USA). Canopy height models (CHM) were created from the Ecosynth DTM and LiDAR DTM by
subtracting the underlying DTM value from the elevation of each point in the Ecosynth point cloud.
These canopy height models are hereafter referred to as Ecosynth CHM and LiDAR CHM. As noted
above (Section 2.2.2), due to the age of the LIDAR data, no canopy heights were obtained from LIDAR
canopy surface measurements—the LiDAR CHM refers to the model derived from subtracting the
Ecosynth canopy height measurements from the LiDAR DTM.

A Trimble R8 differential GPS unit was used to record the locations of all the corners of the
study plots via FastStatic. This was done to enable accurate plot-level spatial analysis of the canopy
height models. Coordinates were processed and exported with Trimble Business Center with a median
precision of 7 cm horizontal and 10 cm vertical in Block 1 and 12 cm horizontal and 7 cm vertical in
Block 2.

2.2.3. Data Analysis

Canopy Height and Biomass

Canopy height metrics—mean, minimum, maximum, median, 25th percentile, 75th percentile,
and 95th percentile height—were calculated using points from each CHM with height >0 m on a
per-treatment per-plot basis (N = 56, see Supplementary Materials). These metrics were then plotted
against all field heights, AGB, and TB from each CHM using both simple linear regression and linear
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mixed-effect models to determine which metric and model could best predict field-derived values
based on Akaike information criterion (AIC). Using mixed-effect models allowed us to test whether
treating the species as a random variable improved the model. The same canopy metrics were then
linearly regressed against field heights, AGB, and TB for each species separately to find the best metric
for species-specific predictions, again using AIC as the means for model selection. The best models
were tested for significance by analyzing their p values.

Visual inspection of the imagery and CHMs revealed that the maps of the plots did not capture
crowns that extended outside the plot borders. To include these points in the height analysis, the
plot borders were manually adjusted to include the overhanging crowns, as determined by visual
inspection. Trees that crowded into the plots were similarly excluded (see Figure 2). While this process
was made easier by the clear outline of plantation-style crowns, there is a corresponding level of error
from manual tracing of tree crowns.
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Figure 2. Ecosynth canopy height model with manual canopy delineations of three plots.

Vertical Canopy Profiles

Canopy profiles were made for each CHM on a per-species basis by plotting a vertical histogram
of point heights. This was done to visualize and compare each CHM’s ability to characterize the
vertical canopy distributions of the studied species.

3. Results

3.1. Canopy Height

When modeling height using all treatments from the Ecosynth CHM, we found that the most
parsimonious model (see Figure 3a) is a linear mixed effect model with the median height metric as
the independent variable (AIC: 194.5, see Table 1). This model took species as the random effect and
assessed the model using random slopes. Median canopy height was also the best predictor of field
height with the LiDAR CHM (see Table 1) but with a simple linear model (R2: 0.906, see Figure 3b).
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The LiDAR CHM produced significantly better models of height compared to the Ecosynth CHM, as
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Table 1. A comparison of Ecosynth and LiDAR canopy height models in their ability to predict field
height, aboveground biomass (AGB), and total biomass (TB) for all treatments combined. The table
shows which canopy metric and model were used and the models’ corresponding Akaike information
criterion (AIC). LME stands for ‘Linear Mixed Effect’ and the type of LME used is designated.

Ecosynth CHM LiDAR CHM

Height AGB TB Height AGB TB

Height Metric Median Median Median Median Median Median

Type of Model LME—Random
Slopes

LME—Random
Intercepts

LME—Random
Intercepts Linear Linear Linear

AIC 194.5 421.1 454.9 138.5 347.6 379.1
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Again, the median canopy height metric was the best predictor of field height on a per-species
basis for both canopy height models. When species-specific linear models were created, both LiDAR
and Ecosynth CHMs exhibited the same order of predictive ability for species, as judged from the
R2 and RMSE values (see Table 2). In order of decreasing predictability, the species are T. amazonia,
D. retusa, A. excelsum, T. rosea, and P. quinata. The LiDAR CHM improved the prediction of height for
each species compared to Ecosynth CHM (see Table 2).

Table 2. Results of comparisons between plot-level remotely-sensed height measurements and
field-measured height, aboveground biomass, and total biomass of five species. Models were created
with simple linear regressions. The R2 and RMSE values of each measurement are shown (R2/RMSE).

Ecosynth CHM LiDAR CHM

Field Height AGB TB Field Height AGB TB

Height Metric Median In italics In italics Median In italics In italics

T. amazonia 0.58 */1.29 0.64/8.24 *
Median

0.71/9.64 *
75 Percentile 0.83/0.86 *** 0.64/8.21 *

Median
0.65/10.6 *

Median

D. retusa 0.16/0.84 0.07/9.19
Mean

0.07/13.3
Mean 0.69/0.49 * 0.24/7.37

Maximum
0.24/10.6
Maximum

P. quinata 0.03/0.95 0.06/4.14
25 Percentile

0.06/5.47
25 Percentile 0.04/0.94 0.16/4.03

Median
0.15/5.33
Median

T. rosea 0.05/0.77 0.03/2.64
25 Percentile

0.03/4.01
25 Percentile 0.10/0.79 0.40/2.18

Maximum
0.40/3.31 *
Maximum

A. excelsum 0.09/1.16 0.03/8.65
25 Percentile

0.03/11.4
25 Percentile 0.45/0.89 * 0.82/3.64 **

Maximum
0.83/4.73 **
Maximum

* p < 0.05, ** p < 0.001, *** p < 0.0001.

3.2. Aboveground and Total Biomass

The median canopy height metric was the best predictor for both AGB and TB when examining
the species together using the Ecosynth CHM. The strongest model was a linear mixed effect model
that took species as the random effect and accounted for random y-intercepts (see Figure 4a,b). Using
data from a LiDAR terrain model, via the LiDAR CHM, the median canopy height metric best models
AGB and TB with a simple linear regression (AIC: 347.6 and 379.1 respectively, see Figure 4c,d). The
LiDAR CHM improved the prediction of AGB and TB compared to the Ecosynth CHM (see Table 1).
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Figure 4. Median Ecosynth CHM canopy height metrics as predictors of (a) aboveground biomass; and
(b) total biomass using linear mixed effect modeling with random intercepts; Median LiDAR CHM
canopy height metrics as predictors of (c) aboveground biomass; and (d) total biomass using simple
linear regressions. See Table 1 for model AICs.

When linear models were created to predict AGB and TB for individual species, we found that
the optimal height metric depended on the species and terrain model. For the drone terrain model,
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AGB and TB of most species were best estimated with mean and 25 percentile height metrics, and for
the LiDAR terrain model, maximum and median height metrics most accurately predicted biomass.
The LiDAR CHM more accurately predicted AGB and TB for every species compared to the Ecosynth
CHM; except for when modeling TB for T. amazonia (see Table 2). Unlike the height models, the
species-specific biomass regressions from drone and LiDAR data did not exhibit the same order of
predictive ability (see Table 2).

3.3. Vertical Canopy Profiles

The vertical canopy profiles correctly capture the distinction in vertical stature between species
but the LiDAR profiles better reflect the known vertical structure distribution of the species. This
was determined by comparing the mean heights from the profiles of the different species to the mean
heights of each species from the field data (see Figure 5a,b). For every species except for T. amazonia,
the Ecosynth CHM profile overestimated field height while the LiDAR CHM provided a much closer
approximation to field height.
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demonstrates how those points are distributed vertically per species.

4. Discussion

As expected, drone-derived point clouds more accurately predicted canopy heights during the dry
season when used with a LiDAR DTM than with an Ecosynth DTM. When surveying multiple species
at a time, drone point clouds, combined with LiDAR DTM, can predict plot-level height comparably
to what has been measured with LiDAR point clouds and LiDAR DTMs [37,40]. Comparing the
species-specific height models demonstrates that while the LiDAR CHM more accurately predicts
height for all species than the Ecosynth CHM, both CHMs demonstrate the same order of predictive
ability (see Table 1). Height of T. amazonia and D. retusa were predicted most accurately—with the
T. amazonia models performing significantly better than any other, regardless of which terrain model
was used.

In terms of biomass, the LiDAR CHM more accurately predicted AGB and TB than the Ecosynth
CHM for every species except for T. amazonia. The LiDAR CHM most strongly predicted A. excelsum
while the Ecosynth CHM most strongly predicted T. amazonia. The species with the lowest predictive
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ability for AGB and TB for both models were D. retusa and P. quinata. The results also demonstrate that
the Ecosynth CHM and the LiDAR CHM could predict TB with nearly identical regression coefficients
to AGB models. This is an important step in carbon measurement studies because many remote
sensing studies up to this point have focused primarily on AGB, disregarding a significant portion of a
forest’s carbon—that which is below ground [9,41–46]. By incorporating belowground biomass into
calculations, we can produce more accurate carbon estimates, and with the aid of drones, do so faster
and cheaper in monoculture plantations.

Both the species-specific height and biomass models demonstrate a significant difference in
predictive ability between species. The Ecosynth CHM and LiDAR CHM most accurately predicted
height and biomass for T. amazonia and A. excelsum, and least accurately predicted both metrics
for D. retusa, T. rosea, and P. quinata. The two species with the most accurate models are both
single-stemmed evergreen trees while the other three are deciduous, and one of them is multi-stemmed.
These results suggest that in the steepland tropics, drone point clouds can be used to accurately
measure the plot-level height of tall evergreen trees but not small deciduous ones during the dry
season. This difference is likely because the structure from motion algorithms is not as effective
when the drone photos contain less visible features (i.e., leaves) to identify. While other researchers
have shown a distinction between leaf-on and leaf-off drone accuracy [22], this is the first study
to isolate the experiments on a per-species basis using tropical timber species. This is important
because many plantations in the tropics are either subdivided into mono-specific patches or are entirely
monocultures [47].

In every case, the LiDAR CHM produced more accurate models than the Ecosynth CHM, although
the Ecosynth CHM acceptably predicted height and biomass for certain species. The most likely
explanation for this discrepancy is the terrain-filtering algorithm which is used to create the Ecosynth
CHM. The point cloud creation and terrain filtering processes both work best on flat ground and
in areas with visible terrain [21,48,49]. In this study, many areas of the terrain were covered by
ground vegetation, likely causing elevation overestimation and a source of error in both the Ecosynth
and LiDAR terrain filtering algorithms [39]. As described elsewhere, accuracy can be improved by
placing ground control markers, such as bright targets, to be referenced in the drone imagery [18].
In the steepland tropics, for future studies, we recommend either using ground control markers,
LiDAR-derived terrain models, or GPS-based terrain models.

5. Conclusions

Data collected by drones, when used with accurate terrain models, can accurately measure
biomass and heights of select species in monoculture plantations. Because they are small and
easy-to-operate, drones can be used in hard-to-reach locations as a field tool in mapping and monitoring
plantation growth, given the right species and time of year. Because of their low cost and potential
for rapid deployment, drones overcome the cost and time barriers often associated with LiDAR and
field inventories. However, as we have shown, drone measurements must be used in conjunction with
field-derived biomass equations, high accuracy terrain models, and GPS data collected from the field
to improve survey accuracy.

Canopy height metrics from drone measurements, regardless of the DTM used, can predict
total biomass as well as aboveground biomass. This finding opens the door to further research into
drone-based total biomass estimation, a metric that has too often been overlooked by biomass studies.
Accurately calculating both above and belowground biomass of plantations and forests is a critical
step in improving local and national carbon budgets.

This study also demonstrates that drone point cloud data can be used with LiDAR terrain models
to acquire accurate models of height and biomass for select species. In places where LiDAR terrain
models are already available, drones can be used to cost-effectively re-survey plantation growth and
biomass accumulation.
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While Ecosynth shows promise for plantation assessments, it has its limitations. The Ecosynth
methodology requires a high degree of skill to process the data. New user-friendly applications though,
such as ESRI’s Drone2Map (ESRI, Redlands, CA, USA) are lowering this barrier to entry. Additionally,
variables such as wind, light, and camera settings can change the quality of the data (see [25] for an
outline of optimal conditions).

Drones, especially when used with existing DTMs, can accurately measure monoculture plantation
heights but their ability to characterize all species’ heights and biomass in tropical steeplands depends
on phenology, architecture, and terrain variability. The methodology can be employed rapidly and
holds great promise for measuring small-scale plantations. To realize the full potential of drones,
researchers should continue to test the limitations of the technology. These studies will allow resource
managers to make informed decisions about the use of this technology and identify areas for future
research and development. With continued study, drones can be used to deliver a degree of timeliness
and cost-efficiency to plantation assessments not seen before in forestry.

Supplementary Materials: The following are available online at www.mdpi.com/1999-4907/8/5/168/s1.
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