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Abstract: Little is known about the relationships between treeline elevation and climate at regional
and local scales. It is compelling to fill this research gap with data from the Tibetan Plateau where some
of the highest alpine treelines in the world are found. This research question partially results from the
lack of in situ temperature data at treeline sites. Herein, treeline variables (e.g., elevation, topography,
tree species) and temperature data were collected from published investigations performed during
this decade on the Tibetan Plateau. Temperature conditions near treeline sites were estimated using
global databases and these estimates were corrected by using in situ air temperature measurements.
Correlation analyses and generalized linear models were used to evaluate the effects of different
variables on treeline elevation including thermal (growing-season air temperatures) and non-thermal
(latitude, longitude, elevation, tree species, precipitation, radiation) factors. The commonality analysis
model was applied to explore how several variables (July mean temperature, elevation of mountain
peak, latitude) were related to treeline elevation. July mean temperature was the most significant
predictor of treeline elevation, explaining 55% of the variance in treeline elevation across the Tibetan
Plateau, whereas latitude, tree species, and mountain elevation (mass-elevation effect) explained
30% of the variance in treeline elevation. After considering the multicollinearity among predictors,
July mean temperature (largely due to the influence of minimum temperature) still showed the
strongest association with treeline elevation. We conclude that the coupling of treeline elevation and
July temperature at a regional scale is modulated by non-thermal factors probably acting at local
scales. Our results contribute towards explaining the decoupling between climate warming and
treeline dynamics.
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1. Introduction

One of the most striking biogeographic findings in the recent decades is that alpine treelines occur
at the elevation where seasonal mean temperature is around 6.4 ◦C (see [1]). Due to such surprising
similarity across forest biomes, temperature during the vegetative period is considered the key factor
driving the treeline elevation worldwide [2]. However, treeline studies at the regional and local scales
are needed to give further support to this idea, because often few treeline sites represent some biomes
which could affect the validity of this global pattern [1]. For instance, in Mediterranean or some
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temperate biomes, drought, in addition to low temperatures, constrains tree growth and determines
the treeline elevation [3–5]. In addition, based on new data from New Zealand and Chile, it was found
that southern temperate treelines are driven by similar thermal thresholds as are northern treelines,
thus refuting the postulated taxon-specific limitation hypothesis and confirming that southern treelines
are not climatically depressed [6]. Therefore, more reliable climate data must be recorded in situ to
determine the treeline thermal thresholds at regional and local scales.

The relationships between treeline elevation and thermal factors remain little explored in some
remote areas such as the Tibetan Plateau, where studies on treeline elevations and local thermal
conditions are still rare (but see [7–9]). Furthermore, little information is available about the impacts of
non-temperature factors on treeline dynamics, even though climate warming and treeline dynamics
often appear decoupled. This suggests that treeline shifts are partly determined by non-thermal
variables including lagged treeline responses to climate, biotic interactions, or geomorphic constraints
(e.g., [10–14]).

The world’s highest alpine treelines are found on the Tibetan Plateau [15]. The diverse climatic
types, the different tree species, and the low disturbance intensity of remote treeline sites on the
Tibetan Plateau make this region an ideal place for treeline studies [12,16–19]. Unfortunately, in situ
temperature data are only available at few treeline sites on the Tibetan Plateau, resulting from its
remoteness, poor access, and the harsh climatic conditions prevailing in these sites throughout the
year [8,9].

Despite a lack of in situ microclimatic data, a series of treeline studies have been carried out
recently on the different mountains of the Tibetan Plateau (e.g., [12,17,20–24]). A previous study
evidenced that monthly climatic information provided by a global climate data base with about 1-km2

spatial resolution (WorldClim–Global Climate Data, see more details in [25]) can be downscaled to
treeline climate at local scales [25]. Such easy-to-access meteorological data and treeline inventory data
provide an excellent opportunity to explore the relationships between treeline elevation and climatic
variables on the Tibetan Plateau.

This study aims: (1) to explore the relationships between treeline elevation and environmental
variables at regional to local scales across the Tibetan Plateau; and (2) to assess the roles played by
thermal and non-thermal variables on treeline elevation. Because tree growth and recruitment at
treelines on the Tibetan Plateau is generally linked to July temperature [7,12], we hypothesize that July
temperature is the major driver of treeline elevation on the Tibetan Plateau. Considering the complex
treeline responses to climate and other environmental factors [12], we also hypothesize that the links
between treeline elevation and site temperature are modulated by non-thermal factors.

2. Materials and Methods

2.1. Study Area and Climate

The study area is located on the Tibetan Plateau, covering around 250 million km2, with longitude
and latitude ranging 73◦ E–104◦ E and 26◦ N–40◦ N, respectively [26]. The elevation (1200–7694 m)
increases from the southeastern to the northwestern Tibetan Plateau. The western, eastern, and
southern Tibetan Plateau regions are influenced by the westerlies, and East Asian and Indian monsoons,
respectively [27]. It includes humid, sub-humid, semiarid, and arid climatic zones [26], resulting from
different impacts of atmospheric circulation in Asia. Cold and continental climate conditions dominate
over the Tibetan Plateau. January (mean temperature of −15–10 ◦C) and July (around 10 ◦C) are the
coldest and warmest months, respectively [26].

2.2. Study Sites and Environmental Factors

Basic information of each study site is shown in Table A1 of Appendix A. Most treeline sites
were obtained from previous studies [12,18,28]. Some sites were investigated by our team in
the past three years. Other treeline studies were obtained from literatures published in the last
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decade [15,21,23,24,29,30]. All the treeline studies followed the treeline definition proposed by [10].
Specifically, treeline was defined as the maximum elevation of living trees with stems at least 2 m
high [10]. A total of 57 treeline sites spanning different climatic zones and forest regions were used in
this study (Figure 1).
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Figure 1. Map showing the geographical location of treeline sites and the four different tree species
forming the treelines on the Tibetan Plateau. The site codes (DL1, LZ1, BM1) indicate the location of
sites with in situ climate data taken near treeline sites.

Several variables were considered for each site: treeline elevation, the geographical location
(latitude and longitude), the aspect and mean slope of the treeline site, and tree species forming
the treeline. A composite topographic index “Eastness” that equals sin (aspect) × sin (slope) was
also used in the analyses. The thickness index of short vegetation including shrubs or grasses
(hereafter TI) was defined as the plant height × cover beyond the treeline in following [12]. The TI
was used to evaluate the strength of species interactions, since denser shrublands above treeline can
reduce tree establishment and slow down upward treeline shift [11]. The elevation of the closest
mountain peak at each site was extracted from Google Earth version 7.1 (Google, Santa Clara County,
CA, USA), and it was used to indicate the mass-elevation effect, involving the phenomenon that higher
mountains always have higher treelines and snowlines [31]. The aspect and slope information were
available for most sites, while for other sites the topographic information was extracted from a Digital
Elevation Model of the Tibetan Plateau (spatial resolution: 90 m). Monthly temperatures (maximum,
minimum, and mean temperature), precipitation, and altitude data (spatial resolution: 1 km2) were
downloaded from the Worldclim climate data base. The treeline sites were added to the temperature
map using the ArcMap 10.2 software (Esri, RedLands, CA, USA). Using “Spatial Analyst Tools”
in the ArcToolbox, the temperature and precipitation information were extracted from the climatic
map for each site. Radiation data was downloaded from the gridded Climatic Research Unit (CRU)
dataset (spatial resolution ca. 50 km2) [32]. The elevation of the worldclim data grid cells for each
site (hereafter A) was compared to treeline elevation based on field investigation (hereafter B). Based
on the standard adiabatic lapse rate (0.6 ◦C/100 m) and the elevational difference between A and
B (−529 m ≤ A − B ≤ 264 m), we can downscale the data to the location of the treeline sites. Then,
surface solar radiation (SSR) at each site was derived from radiation map in the ArcMap 10.2. Lastly,
continentality of each treeline site was calculated using the [33] index (K), as K = (1.7 × A/sin ξ) − 20.4,
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where K is continentality, ξ is latitude, and A is the difference between the mean temperatures of the
warmest and coldest months [33].

It is evident that treeline site and related variables mostly interact at local scales. Since these
treeline sites are located in different mountains of the Tibetan Plateau, we can draw the conclusion at
the regional scale. In fact, this argument is frequently used in biogeography (e.g., [7,12,23]).

2.3. Data Analysis

2.3.1. Correlation Analysis

The Pearson correlation coefficients between treeline elevation and the biotic/abiotic factors
were calculated for the compiled treeline dataset. These factors included latitude and longitude of
treeline site, mountain peak corresponding to each treeline site, slope and aspect of the treeline
site, TI, continentality, and radiation. Monthly mean, maximum, and minimum temperatures
and monthly precipitations were correlated to treeline elevations, but only the most significant
temperature/precipitation factors were presented.

2.3.2. Relative Contribution of Environmental Factors to Treeline Elevation

The above site factors and the other two interactive thermal variables (July temperature ×
elevation of mountain peak, July temperature × latitude) were used in the models. Generalized linear
models were employed to evaluate the relative impacts of each predictor variable on treeline elevation.
We calculated the variance explained by each predictor variable using R software system [34] and
the package relaimpo, which evaluates the relative importance of predictors in linear models [35].
Based on the “successive sweep method”, we determined whether growing season temperature was a
significant predictor of treeline elevation.

To avoid the multicollinearity among predictor variables [36], a commonality analysis model was
applied to disentangle the pure effect of thermal factors (July mean temperature, elevation of mountain
peak, latitude) from their joint effects on treeline elevation (see also examples in [37]). If July mean
temperature had the strongest influence on treeline elevation, it should drive the treeline elevation
despite the presence of multicollinearity among predictors.

2.3.3. Comparison between Temperatures Extracted from Worldclim Data and Reference Values

Since tree growth at treelines on the Tibetan Plateau is generally correlated with July
temperature [34], we expect that July temperature drives the treeline elevation on the Tibetan
Plateau. For all the treeline sites, July temperatures derived from the Worldclim dataset were
compared and related to other climatic data sources (in situ climate data, CRU 0.5◦-gridded data,
and interpolated data). Note that CRU 0.5◦-gridded data was interpolated to the nearest location for the
treeline site based on the lapse rate of 0.6 ◦C/100 m. If the mean difference between the temperature
data is less than 0.5 ◦C and they are significantly correlated, the July temperature extracted from
Worldclim dataset reflects the true climate that treeline trees experience.

3. Results

3.1. Relationships between Treeline Elevation and Environmental Factors

Latitude, elevation of mountain peak, and July mean/minimum temperature were significantly
correlated with treeline elevation on the Tibetan Plateau (latitude: r = −0.45; elevation of mountain
peak: r = 0.47; July mean temperature: r = −0.51; July minimum temperature: r = −0.48; in all cases:
n = 57, p < 0.001) (Table 1). Precipitation in May and July maximum temperature were also significantly
associated with treeline elevation, albeit showing a negative correlation (precipitation: r = −0.31,
p = 0.03; temperature: r = −0.32, p = 0.03; n = 57; see Table 1). Other factors, including longitude,
aspect, slope, Eastness, TI, and continentality, were not significantly associated with treeline elevation
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(in all cases: p > 0.05; see Table 2). In short, July mean temperature was the variable most closely
related to treeline elevation across the Tibetan Plateau followed by mountain elevation.

Table 1. Pearson correlation coefficients obtained by relating treeline elevation and different variables
for sites located in the Tibetan Plateau (n = 57 treelines).

Variable Correlation (r) p Value

Latitude −0.45 <0.001
Longitude −0.19 0.13

Elevation of mountain peak 0.47 <0.001
Aspect −0.09 0.50
Slope 0.01 0.79

Eastness −0.18 0.19
Vegetation thickness index −0.13 0.40

July mean temperature −0.51 <0.001
July minimum temperature −0.48 <0.001
July maximum temperature −0.32 0.03

May precipitation −0.31 0.03
Continentality −0.24 0.08

Surface solar radiation −0.26 0.05

The variables included latitude and longitude of treeline, elevation of mountain peak, aspect and slope of the treeline,
vegetation thickness index, July mean/minimum/maximum temperature, May precipitation, continentality index,
and surface solar radiation. A composite topographic index “Eastness” that equals sin (aspect) × sin (slope) was
also used in the analysis. Underlined correlations represent the three most important predictors of treeline elevation.

Table 2. Comparison between the July mean temperatures extracted from the Worldclim global climate
dataset (see more details in [25]) and the reference values obtained from in situ climatic observations.
Sites’ characteristics are described with more detail in the references (first column).

Reference Study Area (Site Code)
July Mean Temperature

Extracted from
Worldclim Data (◦C)

Reference
Value (◦C)

Source of
Climate Data

Period of
Climate Data

Unpublished data Dulan, northeastern TP (DL1) 8.5 8.2 In situ data 2013
[8] Nyingchi, southeastern TP (LZ1) 8.5 8.2 In situ data 2007–2009

[38] Deqin, southeastern TP (BM1) 7.9 7.4 In situ data 1981–1984

3.2. Comparison between July Mean Temperatures Extracted from Worldclim Data and Reference Values

At three treeline sites, July mean temperatures extracted from the Worldclim database were similar
to the reference values obtained from in situ climatic data (Table 2). Specifically, in situ temperature
data taken at treeline sites showed deviations lower than 0.5 ◦C from the temperature data extracted
(Table 2). When considering all the treeline sites, July mean temperatures extracted from the Worldclim
database was significantly correlated with the reference values obtained from other climatic data
sources, including in situ measurements (r = 0.88, p < 0.0001, n = 57). Likewise, reference values
at treelines, derived from interpolated data or CRU gridded data, deviated 0.14 ± 0.63 ◦C from
temperature data extracted from the Worldclim database.

3.3. Predicting Treeline Elevation

A generalized linear model that included the selected variables (tree species forming the treeline,
latitude and longitude of treeline site, aspect and slope, TI, elevation of mountain peak, radiation,
July mean temperature and May precipitation at treelines, continentality index) explained 85.7% of
the variance in treeline elevation across the Tibetan Plateau (Table 3). However, only three predictors
(July mean temperature, latitude, and tree species forming the treeline) explained 72.4% of the variance
in treeline elevation (Table 3). Furthermore, two predictors (July mean temperature and latitude)
explained 44.4% of the variance in treeline elevation (Table 3). In either model, July temperature alone
accounted for over half of the variance in treeline elevation (Table 3). Therefore, even though latitude,
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species forming the treeline, and elevation of mountain peak significantly influenced treeline elevation,
July mean temperature was the main predictor of treeline elevation.

As demonstrated by the commonality analysis (Figure 2), the model including three thermal
factors explained 44.7% of the variance of treeline elevation. In the model, the pure effect of July mean
temperature, latitude, and elevation of mountain peak explained 18.1%, 8.5%, and 0.33% variance of
treeline elevation, respectively. The joint effects of other variables explained very small amounts of the
variance of treeline elevation. To sum up, July mean temperature was the most important predictor of
treeline elevation when considering the multicollinearity among predictors.

Table 3. Relative importance of predictors of treeline elevation across the Tibetan Plateau and variance
explained (R2) by generalized linear models.

Predictors of Treeline Elevation R2 (%)

Species * Lat ** Lon MP * Aspect Slope TI MeanT_7 *** Pre_5 Con SSR 85.7
Species * Lat ** Lon MP * Eastness TI MeanT_7 *** Pre_5 Con SSR 79.1
Species * Lat ** MP MeanT_7 *** 72.6
Species * Lat ** MeanT_7 *** 72.4
Species * MP ** MeanT_7 *** 54.9

Lat ** MP * MeanT_7 *** 44.7
MP ** MeanT_7 *** MeanT_7 × MT 48.4
MP ** MeanT_7 *** 36.2

Lat ** MP * MeanT_7 *** MeanT_7 × Lat *** 44.8
Lat ** MP * MeanT_7 *** 44.8

Lat
*** MeanT_7 *** MeanT_7 × Lat 44.5

Lat ** MeanT_7 *** 44.4

All the models include as predictors: tree species forming the treeline (Species), latitude and longitude of treeline
(Lat, Lon), elevation of mountain peak for the treeline (MP), mean slope of treeline ecotone (Slope), aspect of treeline
ecotone (Aspect), a composite topographic index “Eastness” that equals sin(aspect) × sin(slope), thickness index (TI)
as a surrogate of species interactions, July mean temperature (MeanT_7), precipitation in May (Pre_5), continentality
(Con), and surface solar radiation (SSR). The significance of variables is indicated by different asterisks (*, **, and ***
indicate p < 0.05, p < 0.01, and p < 0.001, respectively).

1 

 

 

Figure 2. Variation of treeline elevation explained by the commonality analysis for the evaluated
variables. The commonality analysis led to seven fractions of explained variations for the response
variable: pure effect of July mean temperature (X1); pure effect of latitude (X2); pure effect of the
elevation of mountain peak (X3); joint effects of X1 and X2 (X4), X1 and X3 (X5), X2 and X3 (X6), three
groups of predictors (X7). The corresponding percentage values represent the explained variance of
each fraction.
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4. Discussion

The Tibetan Plateau is characterized by cold and continental climate conditions [26]. There is
growing evidence that tree growth at treeline is mainly limited by summer temperatures in this
region [16,21,22,39–47], thereby suggesting a coupling of thermal conditions and treeline dynamics.
In some sites and species, moisture availability also constrains tree growth at treelines [4,48].
Furthermore, regardless of non-thermal factors, elevation of treelines on the different parts of Tibetan
Plateau has shifted upwards during the past century, indicating that shifts of treeline elevation are
largely warming-driven, albeit species interactions slow warming-induced upward shift rate [12].
Thus, it seems reasonable to argue that treeline elevations on the Tibetan Plateau are closely tied
to temperatures.

In this study, July mean temperatures at all treeline sites, derived from the Worldclim data, were
consistent with the values obtained from other climatic data sources (e.g., in situ climate data). In fact,
the feasibility of this method has also been evidenced at a global scale [25]. We should keep in mind
that the influence of July mean temperatures is strongly associated with July minimum temperature.
Therefore, our results can be reliably used to estimate treeline temperatures across the Tibetan Plateau.
We further found that July mean temperature was the most important driver of treeline elevation on
the Tibetan Plateau. When considering the multicollinearity among predictor variables, July mean
temperature still had the strongest influence on treeline elevation. These results confirmed our first
hypothesis, namely that July temperature is the major driver of treeline elevation on the Tibetan
Plateau. However, due to the coarse temporal resolution of Worldclim data [25], we cannot precisely
calculate the seasonal temperature threshold that drives treeline elevation on the Tibetan Plateau.
Nevertheless, our result has important implications for current ecological studies on the Tibetan
Plateau, where elevational shifts of tree species forming the uppermost treeline are largely temperature
controlled [12,16,49,50].

Based on results of [25], treeline elevation along the Himalayan Mountains was mainly related
to mean temperature in the growing season [25]. However, very few treeline sites located in other
mountains of the Tibetan Plateau were included in the analysis of [25]. Using the method they
proposed, we found the similar result that treeline elevations in the Tibetan Plateau were primarily
driven by July mean temperature.

Latitude has a significant negative effect on treeline elevation on the Tibetan Plateau. This result
is in line with the results from other parts of the world [1,51]. However, latitude is not a precise
predictor of treeline elevation, since it is a variable indirectly affecting local-scale temperature but
also radiation (see also [1]). This is supported by a previous study showing that treeline elevations
on the southeastern Tibetan Plateau range between 4300 to 4900 m at similar latitude [18]. Based on
the results of generalized linear models, July mean temperature rather than latitude was the most
significant predictor of treeline elevation, suggesting that latitude plays a secondary and indirect role
in driving treeline elevation in comparison with July mean temperature.

In high mountains, slopes can be heated by the enhanced irradiation and reduced evaporative
cooling [52]. This causes isotherms to shift to higher elevations in the center of high mountain massifs,
and so do vegetation boundaries such as alpine treelines [1]. Intriguingly, there is evidence that higher
elevations of mountain peaks are associated with higher snowlines and treelines, which is the so-called
mass elevation effect [53]. In this study, the elevation of mountain peaks was positively associated
with treeline elevation, which is consistent with global models of treeline elevation driven by seasonal
temperatures [25]. Presumably, the mass elevation effect is tightly linked to temperature regime at
the local scale, which ultimately determines the treeline elevation [53,54]. Nevertheless, the detailed
mechanism of the mass elevation effect on treeline dynamics merits further exploration [53,54].

Tree species have a considerable effect on treeline elevation (e.g., [55]). For instance, Juniper
treelines can reach elevations of 4500–4900 m a.s.l. on the southeastern Tibetan Plateau, whereas fir
and spruce treeline elevations are usually located at 4300–4500 m [12,15]. By contrast, the elevation of
birch treelines is less than 4100 m in the Himalayas [4]. In this study, tree species also reached different
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treeline elevations on the Tibetan Plateau which may be attributed to their different traits (e.g., growth
and phenology thresholds, vulnerability to freezing damage, evergreen and deciduous leaf habit,
vegetative vs. sexual reproduction, recruitment limitation), which have far-reaching influence on
treeline responses to climate at local and landscape scales (e.g., [24,56]).

Together with the aforementioned results, the non-thermal factors played important roles in
controlling treeline elevation on the Tibetan Plateau. Indeed, all the assessed predictors explained 86%
of the variance in treeline elevation on the Tibetan Plateau, whereas growing-season thermal factors
explained 55% of the variance. Therefore, our second hypothesis was also supported; namely that
links between treeline elevation and site temperature are modulated by non-thermal factors. Such
findings have far-reaching implications, since they allow for the speculation that treelines would
not respond to climate warming by showing rapid or widespread upward shifts. Alternatively,
treeline inertia [57,58] characterized by treeline stasis, lagged responses to climate warming, or even
treeline-climate decoupling are expected based on the presented data. If climate warming triggers
rapid changes in these ecotones, this may be better reflected in other variables than treeline elevation,
for example tree density [10]. In such cases, temperature-based predictions of treeline dynamics might
underestimate the impacts of non-thermal factors, but overestimate the sensitivity and reaction time of
treeline position to thermal factors [59].

5. Conclusions

We found that July temperature was the most important predictor of treeline elevation on the
Tibetan Plateau. Other variables such as latitude, the mass-elevation effect, and tree species were also
related to treeline elevation. As the world’s highest plateau, the Tibetan Plateau hosts many treeline
types which can be used to monitor the effects of climate warming on mountain forest ecosystems.
The presented research indicates that thermal factors mainly determine treeline elevation at regional
to local scales, but that other non-thermal factors such as tree species also affect treeline elevation.
Further studies should combine both sources of information to understand how treeline dynamics will
respond to climate warming across the Tibetan Plateau.
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Appendix A

Table A1. Basic information for the treeline sites located in the Tibetan Plateau.

Site Code Elevation (m a.s.l.) Aspect Slope (◦) Tree Species Treeline Form Study Region

QL1 3098 N 8 Spruce diffuse Qilian Mts
QL2 3386 N 33 Spruce diffuse Qilian Mts
QL3 3496 NE 37 Spruce diffuse Qilian Mts
QL4 3580 S 31 Juniper abrupt Qilian Mts
QL5 3700 S 32 Juniper abrupt Qilian Mts
DL1 4186 S 18 Juniper abrupt Dulan
DL2 4079 S 39 Juniper abrupt Dulan
WL1 3877 NW 27 Spruce diffuse Wulan
WL2 3847 NE 32 Spruce diffuse Wulan
WL3 3887 NE 24 Spruce diffuse Wulan
MQ1 3845 SE 12 Juniper abrupt Maqu
MQ2 3877 SE 13 Juniper abrupt Maqu
MQ3 3845 SE 20 Juniper abrupt Maqu
PW 3240 N 41 Birch diffuse Pingwu
DZ1 4195 N 28 Spruce diffuse Yushu
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Table A1. Cont.

Site Code Elevation (m a.s.l.) Aspect Slope (◦) Tree Species Treeline Form Study Region

DZ2 4279 N 21 Spruce diffuse Yushu
AB 3968 NW 32 Fir diffuse Aba
BZ1 4462 S 26 Juniper abrupt Yushu
BZ2 4501 S 33 Juniper abrupt Yushu
BZ3 4370 N 26 Spruce abrupt Yushu
CD1 4308 NE 30 Spruce diffuse Changdu
CD2 4472 NW 38 Spruce diffuse Changdu
CD3 4436 NE 40 Spruce diffuse Changdu
CD4 4460 E 30 Spruce diffuse Changdu
CD5 4900 W 28 Juniper abrupt Changdu
LZ1 4390 N 10 Fir Diffuse Nyingchi
LZ2 4387 N 9 Fir diffuse Nyingchi
LZ3 4370 N 15 Fir diffuse Nyingchi
MD1 4095 N 30 Spruce diffuse Maduo
MD2 4116 N 30 Spruce diffuse Maduo
RW1 4471 NE 30 Fir diffuse Ranwu
RW2 4448 NE 33 Fir diffuse Ranwu
RW3 4478 NW 27 Fir diffuse Ranwu
BM1 4397 N 15 Fir diffuse Deqin
BM2 4398 N 22 Fir diffuse Deqin
BM3 4428 NE 26 Fir diffuse Deqin
GG1 3647 SW 42 Fir diffuse Gongga Mts
GG2 3641 SW 37 Fir diffuse Gongga Mts
GG3 3802 SE 31 Fir diffuse Gongga Mts
GLG 3800 N 34 Fir diffuse Gaoligong Mts
DJ1 3920 N 19 Fir diffuse Rikaze
DJ2 3700 N 20 Fir diffuse Rikaze
DJ3 3410 NW 21 Fir diffuse Rikaze
LKZ 4647 SW 39 Juniper abrupt Shannan
SX 4585 SW 38 Juniper abrupt Naqu

LX1 4406 SW 28 Juniper abrupt Langxian
LX2 4378 SE 32 Juniper abrupt Langxian
LT1 4031 NE 30 Birch diffuse Himalayan Mts
LT2 4067 N 35 Birch diffuse Himalayan Mts
EV1 4098 N 26 Fir diffuse Himalayan Mts
EV2 4049 N 24 Fir diffuse Himalayan Mts
MN1 4086 W 33 Birch diffuse Himalayan Mts
MN2 4145 N 31 Birch diffuse Himalayan Mts
MN3 4095 NW 7 Birch diffuse Himalayan Mts

HUM1 4023 NW 31 Birch diffuse Himalayan Mts
HUM2 3990 N 22 Fir diffuse Himalayan Mts
SKB1 4150 NE 8 Birch diffuse Himalayan Mts

a.s.l., above sea level.
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