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Abstract: When teak (Tectona grandis L. f.) is planted on acrisols in Northeast Thailand, its growth is
suppressed by low pH, infertility, and low water holding capacity. To examine materials capable of
increasing water holding capacity in soil and improving teak growth, we conducted an experiment
with teak seedlings. We selected bentonite, charcoal, and corncob and added these materials at a
rate of 4% to sandy soil from northeast Thailand. Teak seedlings were potted on these soils and
raised from July 2013 to July 2014. We compared growth, photosynthetic rates, leaf water potential,
and concentrations of elements in plant organs among bentonite, charcoal, corncob, and no addition
(control) treatments. Water content in the soils was increased for the bentonite and charcoal treatments.
Teak seedlings potted in these two conditions did not suffer from drought stress. Comparing the
growth traits of the teak seedlings, the charcoal treatment produced larger root growth and promoted
the uptake of phosphorus and potassium, whereas the bentonite treatment did not show positive
effects on growth or nutrient acquisition. In contrast, the corncob treatment decreased water content
in the soil, and teak seedling growth was suppressed. We concluded that charcoal was a useful
material to improve teak growth in sandy soils.
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1. Introduction

Teak (Tectona grandis L. f) is one of the most valuable timber species in tropical regions, and it has
been planted in various countries [1]. The natural distribution of teak is in tropical deciduous forests
in India, Myanmar, Thailand, and Laos [1,2]. In natural teak forests, there are obvious rainy and dry
seasons, and the leaves of teak fall in the dry season [1,3,4].

Water is one of the most important factors for the growth of teak. The period of the rainy and
dry seasons affect the growth of teak, and increasing the length of the dry season shortened the
leaf foliation period [4,5]. In terms of its typical morphological traits, teak has large simple leaves
(maximum size is over 2,500 cm2) [6]. Transpiration and stomatal conductance showed high values
compared with other tropical woody species [7–9]. As a result, teak consumes large amounts of water
for its growth. In addition, the leaves of teak are sensitive to drought stress [10]. Below ground, the
majority of the roots are concentrated within a soil depth of 60 cm [1,11], and ground water at this
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depth can readily run dry [12]. On a suitable substance, teak prefers deep, moist, well-drained sandy
loam soil [1,13]. In contrast, habitats with waterlogging suppressed the growth of teak [1,14].

Representative soils in Southeast Asia are acrisols (ultisols in USDA soil taxonomy) [15,16].
Acrisols are characterized by low pH, low nutrient content, and aluminum toxicity [15,17,18]. The
growth of teak is restricted by nutrient availability, and deficiency of nutrients. In particular, nitrogen,
calcium, and phosphorus affect its growth drastically [3,19,20]. The growth of teak is also suppressed
by low pH and aluminum toxicity [3,21]. Moreover, clays in acrisols at the surface are leached, and the
water holding capacity at the surface is low [16,17]. The growth of teak showed negative correlations
with the content of sand, and a plantation with a high content of sand in the soil showed low growth
potential for teak [3,22,23]. Acrisols in Northeast Thailand are described as a “light textured sandy
soil” (abbreviated to sandy soil), with low content of clay, low pH, low fertility, and low water
holding capacity [24,25]. To improve the low pH and poor fertility of acrisol, correction of acidity and
fertilization could be applied to accelerate the growth of teak [21,26,27]. However, there has been no
research examining how improvements in water holding capacity of acrisols could affect teak growth.

To improve the low water holding capacity of acrisols, some materials have been shown to be
effective. In a previous experiment, Ramesh et al. [28] added fly ash to planted teak growing on
lixisols. The growth of teak was accelerated by the addition of fly ash; however, an obvious increase in
water holding capacity was not observed with this treatment. On the other hand, among materials to
increase water holding capacity, bentonite is a clay consisting mostly of montmorillonite that has a
high water holding capacity [23,29]. In addition, charcoal (biochar) and corncob have a high water
holding capacity [30–34]. We considered that these materials may increase the water holding capacity
of acrisols, and thereby accelerate the growth of teak. However, previous research did not examine the
effects of these materials on the growth of teak.

The aim of our research was to examine the availability of materials to improve suitable water
holding capacity and increase teak growth. We conducted a pot experiment with teak seedlings in
acrisol with the addition of bentonite, charcoal, or corncob. To verify the effects of these three materials,
we examined the ecophysiological traits of teak seedlings, specifically (1) the growth characteristics
of seedlings, (2) leaf water potential, (3) photosynthetic rate, and (4) concentrations of elements in
plant organs. These parameters were compared with seedlings potted in only acrisol. Our research is a
preliminary step to establish silvicultural methods for teak in acrisol in Southeast Asia.

2. Materials and Methods

2.1. Study Site

Our experiment was conducted at the Northeast Forest Seed Center located in Khon Kaen
Province in northeastern Thailand (16˝161 N, 102˝471 E, 191 m a.s.l.). This center has been measuring
meteorological data. The mean annual precipitation was 1104 mm¨ year´1 and annual mean, maximum,
and minimum temperatures were 28.3 ˝C, 40 ˝C, and 13 ˝C, respectively (from 2008 to 2012, Northeast
Forest Seed Center, unpublished data). Precipitation is concentrated from May to October (Northeast
Forest Seed Center, unpublished data). During the experimental period, monthly precipitation and
average maximum and minimum temperatures are shown in Figure 1.

Farmers living in this district are interested in the farming of teak [35]. In Khon Kaen Province,
we previously published a soil suitability map of teak plantation for farmers [36]. Khon Kaen Province
spreads from lowland areas along several rivers (36.9%). These areas suffer waterlogging and are
recognized as unsuitable for teak planting. Sandy soil is also distributed over a large area (13.5%).
These areas are categorized as moderately suitable areas for teak planting. To accelerate the growth
of teak planted in sandy soil, improvement of the water holding capacity is essential. In the case of
agriculture in northeast Thailand, soil improvement using clay could increase a yield in crops [37]. We
considered that the method of soil improvement will also apply for silviculture.
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Figure 1. Monthly precipitation and maximum and minimum temperatures at the Northeast Forest
Seed Center, Khon Kaen (from July 2013 to July 2014). Note: letters under the horizontal axis are the
start of each month. The same format is used in subsequent figures.

2.2. Preparation of Materials, Soil, and Teak Seedlings

For the ratio of bentonite, charcoal, and corncob to add to sandy soil, we established 4% as being
suitable because the literature showed positive effects at this ratio [26,28,38]. In July 2013, we prepared
7 kg each of bentonite and charcoal (made from Acacia sp.) bought from a market in Thailand. For
the corncob treatment, we received 7 kg from a farmer in Khon Kaen Province. Charcoal and corncob
were crushed to particle sizes under 5 mm and 1 cm in diameter, respectively. We also collected 600 kg
of sandy soil from a land at the Northeast Forest Seed Center. Our experiment was conducted without
fertilization because we had to examine the effects of nutrients in bentonite, charcoal, and corncob.

The teak seedlings were prepared by a tissue culture technique. The locality of the teak clone was
the Province of Mae Hong Son (clone number 21), and this clone has been planted in various places
(Royal Forest Department, unpublished data). Teak seedlings were raised from March to June 2013 at
the Teak Improvement Center, Lampang, Thailand. In July 2013, 74 teak seedlings were transported to
the Northeast Forest Seed Center, Khon Kaen. In addition, we prepared eight tables for raising the
teak seedlings.

2.3. Establishment of the Pot Experiment

We established bentonite, charcoal, and corncob treatments by adding them at a rate of 4% into
the sandy soil. We mixed the components, and the total weight of the mixed soil was 153 kg per
treatment. These mixed soils were put into 17 pots (depth: 22.5 cm, diameter: 27 cm, volume: 8.5 L),
and the soil weight per pot was 9 kg. We also prepared 17 pots filled with 9 kg each of sandy soil alone
as the control treatment. Before transplantation, 50 g of soil samples were collected from four pots for
each treatment.

We potted 64 teak seedlings in 16 of pots for each treatment in July 2013. In each seedling, 0.3 kg
of original soil was retained, and this soil was buried in the pot. We also set a soil sensor (ML2,
Delta-T Devices Ltd., Cambridge, UK) in one pot per treatment. The water content of the soil was
measured continuously. The remaining 10 teak seedlings were sampled at this time. Eight pots (two
pots per treatment) were put on the eight tables, and these tables were established in the field in sunny
conditions (Figure 2). The four pots containing the soil sensors were also put on the tables (Figure 2).
The logger connected to the soil sensor was fixed to a pole made of concrete.
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After these works, all pots (including pots with soil sensors) were irrigated with 1 L of water in
the morning of every other day. In rainy days, irrigation was not conducted. Irrigation was carried out
until the end of our experiment (July 2014).
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put on a table.

2.4. Soil Analysis

We measured soil texture and chemical properties including pH and concentrations of C, N,
exchangeable P, base cations, Al, and Fe. Four soils of each treatment sampled before transplantation
were used. We also collected four samples of original soil from seedlings sampled in July 2013.
To determine the pH of the soil, 25 mL of distilled water was added to 10 g fresh soil to make a
homogenized mixture [39]. This mixture was then shaken for 1 h and the pH was measured using a pH
meter (SG2, Mettler Toledo, Zürich, Switzerland). Prior to chemical analysis, we conducted air-drying
of soil samples.



Forests 2016, 7, 36 5 of 21

The soil texture was determined by the hydrometer method [40]. The concentrations of C and N in
dried soils were determined using a nitrogen and carbon analyzer (Flash 2000, Thermo Fisher Scientific,
Waltham, MA, USA). Exchangeable P was separated using dilute acid fluoride [41] by shaking for
1 minute. P in the extracted solution was determined by the molybdenum blue method [42] using a
spectrophotometer (U-1800, Shimadzu, Kyoto, Japan). Exchangeable base cations (Ca, Mg, K, Na) and
Mn were quantified by mixing 4 g of dry soil with 100 ml of 1 M ammonium acetate solution, and
shaking for 1 h [41]. Solutions for exchanged Fe and Al were obtained by adding 20 ml of 1 M KCl to
1 g of dry soil and shaking for 1 h [41]. Base cations in the extracted solutions were analyzed using
an atomic absorption spectrophotometer (AAnalyst 300, Perkin-Elmer, Norwalk, CT). For Al and Fe,
the extracted solution was analyzed using an inductivity coupled plasma (ICP) analyzer (ICPE-9000,
Shimadzu, Kyoto, Japan).

2.5. Measurement of Teak Seedlings

For the measurement of teak seedlings, eight seedlings for each treatment were used for growth
measurements (seedlings put on No.1 to 4 tables, Figure 2). We measured tree height and basal
diameter at six time points (July 2013, October 2013, December 2013, February 2014, April 2014, and
July 2014). We also measured length and width for all leaves of the teak seedlings. The leaf area of teak
seedling was calculated from the equation of Tondjo et al. [43], as follows:

A “ 0.60 ˆ L ˆ Wi

where A is the leaf area, L is the leaf length, and Wi is the leaf width.
From September 2013, some teak seedlings elongated new shoots from the base of the root. Leaves

foliated from new shoots were called “low position leaves”, and separated from other leaves, which
were called “high position leaves”.

From our observations, teak leaves foliated in response to continuous irrigation. To estimate
leaf productivity and turnover, the numbers of leaves of seedlings were counted every week for
eight individuals in each treatment. We calculated the leaf longevity from the dates of occurrence
and defoliation of leaves. In addition, we counted the total number of leaves produced in the
experimental period.

2.6. Measurement of Photosynthetic Rate

We measured area-based photosynthetic rate at light saturation (Psat) and stomatal conductance
(gs) for teak leaves located second from the top. For the measurement of photosynthetic rate and leaf
water potential, the eight teak seedlings not used for the measurement of growth parameters were
used by treatment (seedlings put on No. 5 to 8 tables, Figure 2). There was no irrigation to eliminate
the effects of water in a pot on the day when we conducted these measurements.

When we measured the photosynthetic rate, the leaves of some seedlings were immature or
senescent. To provide uniformly mature teak leaves, we selected four teak leaves among eight
seedlings. We measured Psat five times (October 2013, December 2013, February 2014, April 2014, and
July 2014), and the time of measurement was uniformly from 09:00 to 11:00 (UTC+7).

Measurements were made using a portable gas analyzer (LI-6400, LiCor, Lincoln, NE, USA) under
steady-state conditions, an ambient temperature of 27 ˝C, and ambient CO2 concentration of 38.0 Pa.
The LED light source was adjusted to a saturation light level of 1800 µmol m´2¨ s´1 PPF.

2.7. Measurement of Leaf Water Potential, Concentration of Chlorophyll, and Leaf Mass Per Area

After measurement of photosynthetic rate, we measured the leaf water potential of teak leaves
five times (October 2013, December 2013, February 2014, April 2014, and July 2014). The leaf used to
measure water potential was the same as that used to measure photosynthetic rate. In general, leaf
water potential showed the lowest value in the afternoon by transpiration, and showed the highest
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value by recovery of water during the night [44]. We measured leaf water potential in the afternoon
and predawn. Four teak leaves for each treatment were sampled at 1–2 p.m. and 5:30–6:00 a.m. the
next day (UTC+7). Sampled shoots were put in a plastic bag that contained a wet filter paper, and
kept in a refrigerator. We measured leaf water potential using a pressure chamber (Model 600, PMS
Instrument Co., Albany, OR, USA).

After measuring leaf water potential, we analyzed the concentration of nitrogen, chlorophyll, and
leaf mass per area (LMA). Photosynthetic rate is closely related to concentrations of nitrogen [44–46],
chlorophyll [47,48], and leaf thickness [49,50]. We sampled 0.66 cm2 of teak leaf samples in a freezer.
Chlorophyll was extracted from the leaves using dimethyl sulfoxide (DMSO), and then measured
using a spectrophotometer. The amounts of chlorophylls a and b were calculated in accordance with
the previously reported equation [51]. The remaining leaf samples were oven-dried at 70 ˝C for three
days, and LMA (g¨ m´2) measured by the method of Larcher [44]. Leaf samples were ground to a fine
powder using a sample mill (WB-1; Osaka Chemical Co., Osaka, Japan). The concentration of N was
determined using an NC analyzer (Sumigraph NC-220F, Sumika Chemical Analysis Service, Tokyo,
Japan). The results of the concentration of N were calculated from the area based on N (Narea) from the
data of LMA.

2.8. Analysis of Biomass and Element Concentrations of Teak Seedlings

To determine the biomass of teak seedlings, we measured the dry mass of leaves, stems
and branches, and roots. In July 2014, eight teak seedlings from each treatment used for growth
measurements were sampled (seedlings put on No. 1 to 4 tables, Figure 2). Roots of seedlings were
washed twice with water to remove soil. The washed seedlings were divided into leaves, stems and
branches, and roots. Each component was put into its own envelope and oven-dried at 70 ˝C for
three days. After drying, the dry mass of each component was determined. We also examined the
root/shoot ratio as an indicator of teak growth [10,19,21].

Of the elements in the plant organs, we measured the mass base of concentrations of N, P,
K, Ca, Mg, Al, and Fe in leaves and roots. Dried samples were ground to a fine powder, and N
concentration was determined using the NC analyzer. The remaining samples were digested by the
HNO3-HCl-H2O2 method [52]. Concentrations of K, Ca, Mg, Al, and Fe were analyzed using an ICP
analyzer. During analysis, we analyzed standard solutions of each element after 30 samples to verify
the reliability of the analyses. Concentration of P was determined by the molybdenum blue method
using a spectrophotometer (UV-2500PC, Shimadzu, Kyoto, Japan).

2.9. Statistical Analysis

Significant pairwise differences for each variable were tested by Tukey’s test using Stat View 5.0
(SAS Institute Inc., Cary, NC, USA). Comparisons were made among the bentonite, charcoal, corncob,
and control treatments.

3. Results

3.1. Climate during the Experimental Period

Precipitation in July and September 2013 was high compared with other months (Figure 1).
However, precipitation in August 2013 was low, and precipitation was not stable. Precipitation
decreased from October 2013, and there was no rain in January or February 2014. From March 2014,
precipitation increased gradually.

The maximum temperature was around 29 ˝C, and this value was stable from July 2013 to
November 2013. In December 2013 and January 2014, the maximum temperature decreased below
26 ˝C, then from February 2014, the maximum temperature increased. The maximum temperature
reached the highest value in March 2014 (34.4 ˝C). The minimum temperature was around 23 ˝C from
July 2013 to November 2013. However, the minimum temperature decreased to 15 ˝C in December
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2013 and January 2014. In March 2014, minimum temperature increased to 25 ˝C, and this value was
stable until July 2014.

3.2. Water Contents in Soil

To examine the minimum value of water content in soil for each season, we collected the lowest
water contents before irrigation and rainfall. Averages of these values for each month are shown in
Figure 3. The water content was high for the bentonite treatment throughout the whole period. For the
charcoal treatment, water content increased from September 2013. In contrast, the corncob treatment
showed low water content compared with the other three treatments. Water content in the corncob
treatment increased and approached the value of the control treatment from January 2014. Comparing
months, the water contents in October and November 2013 were lower than those in other months.
From December 2013, water content increased for each treatment, and water content also decreased in
April 2014 for each treatment.
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July 2013 to July 2014, Mean ˘ SE). Note: the values of water content were averaged among several
dates with low values before irrigation.

Water contents for each treatment were increased by rainfall in September 2013. The maximum
values of water contents for each treatment were 0.59 m3¨ m´3 for bentonite, 0.41 m3¨ m´3 for charcoal,
0.27 m3¨ m´3 for corncob, and 0.30 m3¨ m´3 for control.

3.3. Soil Properties

For soil texture, the content of sand was over 88.0% for each treatment (Table 1). The contents
of silt and clay were low for each treatment. However, the clay content of the bentonite treatment
was significantly higher than those for other treatments ( p < 0.05). Clay content for bentonite alone
was 66%.

The pH value was significantly higher for the charcoal treatment than those of other treatments
(p < 0.05). The concentrations of C, N, Ca, and Mg for the charcoal treatment were also significantly
higher than those for the control treatment (p < 0.05). In contrast, bentonite treatment resulted in
significantly higher concentrations of Mg and Na compared with the control treatment (p < 0.05). Fe
concentrations with the bentonite treatment were significantly lower than with the control treatment.
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In the corncob treatment, the concentrations of elements did not show a significant trend. There was
no significant difference in the concentrations of P and Al among the four treatments.

The original soil contained in the seedling pots showed high contents of silt and clay compared
with the sandy soil used for each treatment. Concentrations of C, N, Ca, and Mg showed higher values
than sandy soil.

Table 1. Texture and chemical properties on soils of four treatments and original soil with the seedlings
(Mean ˘ SE, n = 4). Different letters indicate significant differences among the four treatments calculated
by Tukey’s test (p < 0.05).

Treatment
Texture (%) pH

Sand Silt Clay

Bentonite 89.5 ˘ 0.1 b 4.5 ˘ 1.0 a 6.0 ˘ 0.0 a 5.03 ˘ 0.11 c
Charcoal 91.0 ˘ 0.1 ab 5.5 ˘ 1.9 a 3.5 ˘ 1.0 b 6.23 ˘ 0.07 a
Corncob1 88.5 ˘ 0.1 bc 4.3 ˘ 1.0 a 3.4 ˘ 1.0 b 5.47 ˘ 0.10 b
Control 92.0 ˘ 0.0 a 4.0 ˘ 0.0 a 4.0 ˘ 0.0 b 5.24 ˘ 0.06 bc
Original 75.7 ˘ 0.2 15.3 ˘ 0.1 9.0 ˘ 0.0 5.92 ˘ 0.16

C (mol¨kg´1) N (mmol¨kg´1) P (mmol¨kg´1) Ca (mmol¨kg´1)

Bentonite 0.34 ˘ 0.04 b 7 ˘ 0 b 0.267 ˘ 0.127 a 3.3 ˘ 0.2 b
Charcoal 1.57 ˘ 0.17 a 31 ˘ 3 a 0.343 ˘ 0.086 a 10.7 ˘ 1.1 a
Corncob 0.65 ˘ 0.27 b 7 ˘ 0 b 0.102 ˘ 0.035 a 1.9 ˘ 0.0 b
Control 0.54 ˘ 0.21 b 6 ˘ 2 b 0.173 ˘ 0.081 a 2.4 ˘ 0.3 b
Original 2.82 ˘ 1.18 178 ˘ 46 0.406 ˘ 0.066 18.2 ˘ 2.9

Mg (mmol¨kg´1) K (mmol¨kg´1) Na (mmol¨kg´1) Al (mmol¨kg´1)

Bentonite 2.0 ˘ 0.1 a 1.03 ˘ 0.08 b 0.926 ˘ 0.091 a 0.150 ˘ 0.010 a
Charcoal 1.8 ˘ 0.1 a 3.02 ˘ 0.19 a 0.081 ˘ 0.023 b 0.159 ˘ 0.003 a
Corncob 1.3 ˘ 0.0 b 2.79 ˘ 0.88 ab 0.012 ˘ 0.012 b 0.145 ˘ 0.008 a
Control 1.3 ˘ 0.0 b 1.14 ˘ 0.06 ab 0.083 ˘ 0.064 b 0.147 ˘ 0.010 a
Original 11.8 ˘ 1.1 2.48 ˘ 0.20 0.651 ˘ 0.096 0.147 ˘ 0.003

Fe (µmol¨kg´1)

Charcoal 9.4 ˘ 1.1 ab
Bentonite 9.0 ˘ 0.7 b
Corncob 10.9 ˘ 1.5 ab
Control 14.0 ˘ 0.9 a
Original 12.0 ˘ 0.6

Note: 1: For texture in the “Corncob” treatment, corncob (the particle was larger than sand) contained
3.8% ˘ 1.0%.

3.4. Growth Characteristics

The tree height with the corncob treatment was significantly lower than that for the control
treatment in October 2013 and February 2014 (Figure 4, p < 0.05). The basal diameter was also
significantly smaller for the corncob treatment than the other treatments from October 2013 to February
2014 (p < 0.05). In February 2014, some of the original shoots of seedlings in the corncob treatment
had died, and as a result the tree height decreased compared with December 2013. However, these
seedlings elongated new shoots grown from the base of the roots. From April 2014, seedlings in the
corncob treatment accelerated their growth, and the tree height and basal diameter did not show
a significant difference among the four treatments. For growth in the other treatments, charcoal
treatment showed the highest value of basal diameter in December 2013 (p < 0.05); however, this trend
did not show from February 2014.
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Figure 4. Tree height and basal diameter of teak seedlings grown in four treatments (Mean ˘ SE, n = 8).
Note: divisions on horizontal axis over the letters are the first day of each month. The same format is
used in subsequent figures.

3.5. Leaf Dynamics of Teak Seedling

The total leaf area in October 2013 was significantly larger for the charcoal treatment than those
of other treatments (Figure 5, p < 0.001). In contrast, the corncob treatment showed small total
leaf areas compared with other treatments (p < 0.001). However, the total leaf area of the charcoal
treatment decreased in December 2013. From this month, the total leaf area did not show a significant
difference among the four treatments. For the leaf area at high positions, bentonite treatment resulted in
significantly larger areas than those of other treatments in December 2013 and February 2014 (p < 0.05).
In the control treatment, the leaf area at the high position was decreased in December 2013 (p < 0.05)
and showed a small trend after this month.
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Figure 5. Total and high position (located at the top of stem) leaf areas for teak seedlings grown in the
four treatments (Mean ˘ SE, n = 8).

The average leaf longevity at high positions was 116 days for bentonite, 90 days for charcoal,
115 days for corncob, and 76 days for control treatments. Leaf longevity was significantly longer for
the bentonite and corncob treatments than for the control treatment (Tukey’s test, p < 0.01). Comparing
seasons, the trend in leaf longevity was individually specific and did not show a definite trend for
each treatment. During this experiment, the total numbers of leaves produced were 27.6 for bentonite,
28.1 for charcoal, 26.8 for corncob, and 37.4 for control. There was no significant difference in leaf
production among the four treatments.

3.6. Photosynthetic Rate

The Psat was significantly higher for bentonite and charcoal treatments than for the corncob
treatment at each time point (Figure 6, p < 0.05). The Psat for the control treatment decreased drastically
from April 2014. Comparing the five time points, Psat in February 2014 was highest for bentonite,
charcoal, and control treatments. In the corncob treatment, Psat was highest in October 2013.
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Figure 6. Photosynthetic rate at light saturation (Psat) and stomatal conductance (gs) for teak seedlings
grown in the four treatments (9–11 a.m., Mean ˘ SE, n = 4).

The stomatal conductance (gs) with the bentonite treatment was significantly higher than those
for the corncob and control treatments in October 2013 and February and April 2014. In the charcoal
treatment, gs in February was also high compared with those for the corncob and control treatments.
The value of gs decreased in December 2013 and April 2014.

3.7. Leaf Water Potential

Leaf water potential in the afternoon was highest in December 2013 (Figure 7). In contrast,
leaf water potential decreased in April 2014, except for the control treatment. Comparing the four
treatments, leaf water potential in December 2013 was significantly lower for the corncob treatment
than those for the other treatments (p < 0.05). At other time points, leaf water potential did not show a
significant difference among the four treatments.
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Figure 7. Leaf water potential in the afternoon (1–2 p.m.) and predawn (5:30–6:00 a.m.) for teak
seedlings grown in the four treatments (Mean ˘ SE, n = 4).

The predawn leaf water potential was ´0.12 MPa in October and December 2013. The values of
leaf water potential decreased in 2014, and in February and April 2014, the value was significantly
lower for the control treatment than that for the bentonite treatment (p < 0.05).

3.8. Concentrations of Nitrogen and Chlorophyll, and LMA

Narea showed the highest value in February 2014; however, Narea decreased from April 2014
(Figure 8). Compared the treatments, Narea was significantly lower for the charcoal treatment than
for the control treatment in October 2013 (p < 0.05). At other time points, there were no significant
differences among the four treatments.
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The concentration of total chlorophyll was also highest in February 2014 for the bentonite, charcoal,
and control treatments (Figure 8). From April 2014, the concentrations of chlorophyll decreased for
these three treatments. In the case of the corncob treatment, chlorophyll decreased from February 2014,
and the value was significantly lower than the control treatment (p < 0.05). In October and December
2013, the concentrations of chlorophyll were significantly lower for the charcoal treatment than the
control treatment (p < 0.05).

LMA was highest in July 2014 (Figure 9). In the bentonite and charcoal treatments, LMA was 60
to 70 g¨ m´2 until April 2015. In contrast, the corncob and control treatments showed decreased LMA
in February 2014. Comparing the four treatments, LMA in February 2014 was significantly lower for
the corncob treatment than that for the bentonite treatment (p < 0.05).
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Figure 9. Leaf mass per area (LMA) for teak seedlings grown in the four treatments (Mean ˘ SE, n = 4).

3.9. Biomass of Teak Seedling

The dry masses of each organ in July 2014 increased for each treatment compared with those
values in July 2013 (Table 2). For the leaf dry mass, there were no significant differences among the four
treatments. The dry mass of stems and branches was significantly larger for the charcoal treatment
than for the corncob treatment (p < 0.01). In addition, charcoal treatment resulted in significantly
higher root dry mass compared with the other treatments (p < 0.05). In contrast, root dry mass for the
corncob treatment was significantly smaller than the other treatments (p < 0.001). The root:shoot ratio
was significantly lower for the corncob treatment compared with the other treatments (p < 0.05).

Table 2. Dry mass of each organ (leaf, stem and branch, and root) and root:shoot ratio for teak seedlings
before transplantation (Mean ˘ SE, n = 10) and the end of the experiment (July 2014) grown with
four treatments (Mean ˘ SE, n = 8). Different letters indicate significant differences among the four
treatments calculated by Tukey’s test (p < 0.05).

Leaf Stem and Branch Root Root:Shoot Ratio

July 2013 0.9 ˘ 0.1 0.9 ˘ 0.1 2.5 ˘ 0.2 1.48 ˘ 0.14
July 2014
Bentonite 15.4 ˘ 0.6 a 6.9 ˘ 0.2 ab 24.4 ˘ 0.9 b 1.10 ˘ 0.06 a
Charcoal 15.7 ˘ 0.6 a 9.0 ˘ 0.9 a 29.2 ˘ 1.2 a 1.19 ˘ 0.03 a
Corncob 17.5 ˘ 1.5 a 6.2 ˘ 0.3 b 12.8 ˘ 1.3 c 0.58 ˘ 0.10 b
Control 17.4 ˘ 1.6 a 7.3 ˘ 0.6 ab 21.9 ˘ 1.1 b 0.97 ˘ 1.14 a

3.10. Concentration of Elements in Plant Organs

The concentrations of P in the leaves of teak seedlings were significantly higher for the charcoal
and corncob treatments compared with the control treatment (Table 3, p < 0.05). In the charcoal
treatment, the concentration of K was also significantly higher compared with the control treatment.
For other elements in leaves, there were no significant differences among the four treatments (p < 0.05).
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Table 3. Concentrations of elements (N, P, K, Ca, Mg, Al, and Fe; µmol¨ g´1 DM) in leaves and roots of
teak seedlings grown in four treatments (Mean ˘ SE, n = 8).

Elements Leaf Root

N

Bentonite 746 ˘ 33 a 624 ˘ 23 a
Charcoal 723 ˘ 40 a 695 ˘ 38 a
Corncob 788 ˘ 42 a 633 ˘ 24 a
Control 764 ˘ 25 a 729 ˘ 23 a

P

Bentonite 272 ˘ 18 ab 170 ˘ 8 b
Charcoal 351 ˘ 22 a 209 ˘ 13 a
Corncob 324 ˘ 36 a 185 ˘ 12 ab
Control 209 ˘ 15 b 179 ˘ 4 ab

K

Bentonite 243 ˘ 19 ab 193 ˘ 10 bc
Charcoal 265 ˘ 21 a 222 ˘ 16 ab
Corncob 235 ˘ 21 ab 266 ˘ 14 a
Control 187 ˘ 16 b 154 ˘ 12 c

Ca

Bentonite 174 ˘ 12 a 332 ˘ 20 a
Charcoal 177 ˘ 12 a 379 ˘ 48 a
Corncob 174 ˘ 19 a 355 ˘ 30 a
Control 187 ˘ 11 a 372 ˘ 18 a

Mg

Bentonite 111 ˘ 5 a 166 ˘ 8 ab
Charcoal 123 ˘ 7 a 146 ˘ 9 b
Corncob 131 ˘ 15 a 168 ˘ 13 ab
Control 152 ˘ 13 a 201 ˘ 13 a

Al

Bentonite 2.52 ˘ 1.97 a 25.5 ˘ 4.2 a
Charcoal 6.33 ˘ 2.26 a 29.1 ˘ 4.5 a
Corncob 3.34 ˘ 1.45 a 2.2 ˘ 0.9 b
Control 0.77 ˘ 0.62 a 18.0 ˘ 3.7 a

Fe

Bentonite 2.18 ˘ 0.14 a 49.5 ˘ 4.9 a
Charcoal 2.60 ˘ 0.36 a 39.2 ˘ 5.3 ab
Corncob 2.39 ˘ 0.16 a 21.4 ˘ 2.7 b
Control 2.36 ˘ 0.51 a 38.0 ˘ 6.1 ab

Different letters indicate significant differences among the four treatments calculated by Tukey’s test (p < 0.05).

In roots, the concentration of K was significantly higher for the charcoal and corncob treatments
than the control treatment (p < 0.01). In the control treatment, the concentration of Mg was high, and
significantly higher than for the charcoal treatment (p < 0.01). In contrast, the concentration of P in the
bentonite treatment was significantly lower than for the charcoal treatment (p < 0.05). In the corncob
treatment, the concentrations of Al and Fe were low compared with the other treatments.

4. Discussion

Based on the results of the water content before irrigation, the bentonite and charcoal treatments
showed high values (Figure 3). These materials probably have the ability to increase water holding
capacity. In the bentonite treatment, the clay content was increased by 2% compared with the control
treatment (Table 1). Compared with other clay minerals, bentonite has a high liquid limit and high
expansibility as a result of water absorbance [53]. We considered that the slight addition of bentonite
clay probably absorbed more water, and as a result the water content in the soil increased. This trend
was obvious from May 2014 (Figure 3), when precipitation was increased (Figure 1). In the case of
charcoal, we could not confirm an obvious change in soil texture (Table 1). Charcoal contains vast
numbers of pores, and water can be stored in these pores [30,31,54]. In the charcoal treatment, pores
in charcoal can store water, thereby increasing water content in the soil. In corncob, water content
was low in October and November 2013, but at its highest in January 2014 (Figure 3). This change
in water content may be attributed to decomposition of the corncobs. In general, the addition of
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organic amendments to soil shows an increase of water holding capacity, porosity and surface area [55].
However, the increase of water holding capacity of the corncob was probably inferior to charcoal and
bentonite based on the results of the soil water content (Figure 3).

Compared with the bentonite and charcoal treatments, trends in Psat and leaf water potential in
the afternoon and predawn were similar (Figures 6 and 7). Teak seedlings of these treatments could
recover water during the night. Thus, teak seedlings grown in the bentonite and charcoal treatments
did not show the symptom of water deficiency. However, teak seedlings in the bentonite treatment
did not show large values of tree height, basal diameter, or biomass of plant organs (Figure 4, Table 2).
Although the teak seedlings did not suffer from drought stress, this was not reflected in obvious
growth acceleration.

Meanwhile, the charcoal treatment showed large root biomass in July 2014 (Table 2). Of the
differences between bentonite and charcoal treatments, the pH value and the concentrations of N,
Ca, and K were higher for the charcoal treatment than those for the bentonite treatment (Table 1).
However, the concentrations of N, Ca, and K in plant organs did not show significant differences
between the bentonite and charcoal treatments (Figure 8, Table 3). Thus, soil pH and uptakes of
N, Ca, and K are not the main factors that affect the differences of root growth. For other nutrient
parameters, the concentration of P in roots was significantly higher in the charcoal treatment than
in the bentonite treatment (Table 3). However, the concentration of P in soils showed no significant
difference between the charcoal and bentonite treatments (Table 1). In the case of teak, uptake of P is
related to symbiosis with arbuscular mycorrhizal fungi, and their inoculation accelerates the uptake of
P [56,57]. The presence of charcoal promotes infection by arbuscular mycorrhizal fungi [58,59] and root
growth in woody species [60,61]. We consider that the presence of charcoal accelerated root growth in
teak seedlings. In addition, there is a possibility that teak seedlings in the charcoal treatment may have
increased mycorrhizal colonization, and as a result the uptake of P was accelerated.

Compared with bentonite and charcoal, the corncob treatment showed negative effects on the
growth of teak. Tree height, basal diameter, and leaf production were suppressed for teak seedlings in
the corncob treatment until February 2014 (Figures 4 and 5). In addition, root dry mass of the teak
seedlings in July 2014 was smaller for the corncob treatment than those of other treatments (Table 2).
One of the causes was considered to be low photosynthetic productivity; Psat and gs were both low
up to April 2014 (Figure 6). Soil water content in the corncob treatment was lower than in other
treatments (Figure 3), and as a result the stomata of teak leaves were easy to close to prevent water
loss by transpiration. The photosynthetic rate was probably suppressed by decreased CO2 uptake
caused by the closed stomata. Moreover, the concentration of chlorophyll in leaves in the corncob
treatment was low in February 2014 (Figure 8). In general, chlorophyll concentration is decreased by
strong photoinhibition [62,63], and photoinhibition occurs readily in thin leaves [64]. The thin leaves
in the corncob treatment in February 2014 (Figure 9) probably suffered from photoinhibition due to
strong sunshine; as a result, the concentration of chlorophyll decreased.

Growth in the corncob treatment recovered from April 2014 (Figures 4 and 5). In seedlings in the
corncob treatment at the end of experiment, leaf dry mass was not significantly lower than those of
the other treatments (Table 2). It seems that supply of nutrients was probably affected by the increase
in leaf dry mass. Indeed, the concentrations of P in leaves and K in roots were higher than those of
the control treatment (Table 3). Corncob contains little in terms of nutrients [37], and these nutrients
may be available only upon decomposition of the corncob. Moreover, the concentrations of Al and
Fe in the roots in the corncob treatment were lower than those of the other treatments (Table 3). A
previous study showed that the addition of corncob had the capacity to suppress the uptake of Al and
accelerate the uptake of P [37]. Recovery of growth in teak seedlings in the corncob treatment may be
concerned with an improvement in nutrient uptake due to multiple factors.

Regarding the growth traits of teak seedlings in the control treatment, the predawn leaf water
potential of leaves was low (Figure 7), indicating that teak leaves in the control treatment could not
recover water during the night.
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Comparing our results with the literature, when the growth of teak seedlings was suppressed
drastically, the value of the root:shoot ratio increased over 1.0 [10,19,21,65]. In the present study, the
root:shoot ratios were over 1.0 for the bentonite and charcoal treatments (Table 2). We considered
that teak seedlings in bentonite and charcoal suffered suppressed growth, and one of the causes of
this was N deficiency. The Narea of each treatment decreased from April 2014 (Figure 8) when leaf
production increased (Figure 5). The concentration of N in leaves at the end of the experiment (average,
755 µmol¨ g´1) indicated N deficiency (<857 µmol¨ g´1) [14]. In contrast, the concentration of P in
leaves at this time (average, 289 µmol¨ g´1) was much higher and did not indicate any deficiency
(<32 µmol¨ g´1) [14]. Thus, sandy soil was considered as a rather infertile environment, especially for
N. In addition, Psat, gs, and chlorophyll concentrations were also lower from April 2014 (Figures 6
and 8). The photosynthetic rate and chlorophyll concentration show positive correlations with the
concentration of N [19,43–45,66], and these decreases were related to decreased N in leaves. In terms
of stomatal conductance, a leaf suffering from N deficiency can readily suffer from a decrease in leaf
water potential [67]. Thus, N deficiency negatively affects physiological parameters in teak seedlings.
Meanwhile, the concentration of N in leaves was a high value until February 2014 (Figure 8). The
original soil contained with each seedling had a high concentration of N (Table 1), and it seems that the
teak seedlings could absorb N from the original soil, and its supply was enough until February 2014.

Despite the N deficiency, we confirmed that teak seedlings were able to produce large numbers
of leaves from April to July 2014 (Figure 5). In teak, Ca is also important for leaf production, and
Ca deficiency suppresses leaf dry mass [20,21]. Our results showed that the concentration of Ca in
leaves (average, 178 µmol¨ g´1) was higher than that in the deficiency level (<138 µmol¨ g´1) [14]. Teak
seedlings potted on sandy soil probably accelerated leaf production through the supply of Ca.

In terms of specific growth traits of teak, leaf longevity was quite short (average, 99 days) and
leaf turnover was high. Leaf longevity in tropical deciduous tree is three to 12 months [68,69], and the
teak seedling is categorized as a species with short leaf longevity. In addition, Psat and gs in December
2013 were low despite the high Narea (Figures 6 and 8). The date of measurement of Psat showed that
the minimum temperature was 11 ˝C in the morning. In general, teak shows a range of optimum
temperature between 15 and 40 ˝C [2]. In the case of the rubber tree, chilling stress was suffered below
10 ˝C, and Psat and gs decreased at this temperature [70]. There is a possibility that the leaves of the
teak seedlings in December 2013 were suffering from chilling stress, and as a result, Psat and gs could
not recover in the morning.

5. Conclusions

When teak seedlings were potted in sandy soil mixed with charcoal, root growth was accelerated
despite the absence of fertilization. The water content of the soil was also increased, and the teak
seedlings did not show the symptom of water deficiency. Moreover, additional charcoal could increase
soil pH and nutrients such as N and Ca. Thus, we concluded that charcoal is a useful material to
improve the seedling stage of teak growth in sandy soils in northeast Thailand. The application of
charcoal for silviculture has been reported in Laos, and several tree species showed accelerated growth
from its addition [71]. To establish silviculture methods using charcoal, further verification tests with
teak should be conducted in the field with charcoal mixed with sandy soil.

Bentonite also showed a capacity to increase the water content of soil. Teak seedlings potted on
sandy soil with bentonite did not suffer from drought stress, but they did not show accelerated growth.
One of the reasons for the lack of growth acceleration was the absence of nutrients in bentonite. To
apply this treatment for forestry in northeast Thailand, a combination of bentonite and fertilizer would
be needed. Bentonite has a high cation exchange capacity [23,52] and would be expected to have high
nutrient retention capacity. Although the application of bentonite for silviculture has not been widely
reported [72], we would expect its use to be similar to normal agriculture [37].

Corncob was inferior in terms of increasing water content as compared to charcoal and bentonite.
With the addition of corncob, teak seedlings did not show growth acceleration in the first half of the
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experimental period, but growth recovered in the second half. Thus, corncob may provide positive
effects on the growth of teak after its decomposition. For application in silviculture, the composting of
corncob would be essential. Corncob had the capacity to suppress the uptake of Al, and this might be
beneficial for silviculture in acidic environments.
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