
Article

Developing Aboveground Biomass Equations Both
Compatible with Tree Volume Equations and
Additive Systems for Single-Trees in Poplar
Plantations in Jiangsu Province, China

Chao Zhang 1, Dao-Li Peng 1,*, Guo-Sheng Huang 2 and Wei-Sheng Zeng 2

1 Ministry of Education Key Laboratory for Silviculture and Conservation, College of Forestry,
Beijing Forestry University, Beijing 100083, China; izhangcici@sina.com

2 Academy of Forest Inventory and Planning, State Forestry Administration, Beijing 100714, China;
guosheng.huang@263.net (G.-S.H.); zengweisheng@sohu.com (W.-S.Z.)

* Correspondence: dlpeng@bjfu.edu.cn; Tel./Fax: +86-10-6233-8197

Academic Editors: Shibu Jose and Eric J. Jokela
Received: 28 August 2015; Accepted: 25 January 2016; Published: 29 January 2016

Abstract: We developed aboveground biomass equations for poplar plantations in Jiangsu Province,
China, both compatible with tree volume equations and additive systems. Biomass equations were
fitted with 80 selected and previously harvested sample trees. Additivity property was assured
by applying a “controlling directly under total biomass proportion function” approach. Weighted
regression was used to correct heteroscedasticity. Parameters were estimated using a nonlinear
error-in-variable model. The results indicated that (1), on average, stems constituted the largest
proportion (71.5%) of total aboveground biomass; (2) the aboveground biomass equations, both
compatible with tree volume equations and additive systems, obtained good model fitting and
prediction, of which the coefficient of determination ranged from 0.903 to 0.987, and the total
relative error and the mean prediction error were less than 2.0% and 10.0%, respectively; (3) adding
H and CW into the additive system of biomass equations did not improve model fitting and
performance as expected, especially for branches and foliage biomass; and (4) the additive systems of
biomass equations presented here provided more reliable and accurate biomass predictions than the
independent biomass equations fitted by ordinary least square regression. This system of additive
biomass equations will prove to be applicable for estimating biomass of poplar plantations in Jiangsu
Province of China.

Keywords: aboveground tree components; weighted regression; error-in-variable models; compatible
biomass equations; additive system of biomass equations; biomass allocation

1. Introduction

The forest ecosystem plays an important role in the global carbon cycle and climate change [1,2].
Forest biomass estimation is an essential aspect of quantifying the carbon budget [3], as well as the
changes in the forest ecosystem. There is also an increasing interest globally in forest biomass research.
Undoubtedly, the most reliable method to determine tree biomass is harvesting and weighing of all
trees or all their parts in the field [3], but it is destructive, time-consuming, costly and laborious, and
can only be carried out in small areas [4,5]. A large number of allometric relationships between tree
biomass or its components and diameter at breast height (DBH), tree height (H), crown width (CW) and
other easily measurable tree variables have been established during the last decades [6,7]. Allometric
models are useful for non-destructively predicting biomass, and it is often the preferred approach to
accurately estimate biomass of individual trees, plots and even regions [8].
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Because of its fast growth, high-yield and strong adaptability to environmental changes [9,10],
poplar has become one of the most widely distributed afforestation tree genera in China with a high
economic and ecological value. According to the 8th National Forest Inventory (NFI) data, poplar
plantations are of high proportion (67.4%) of the total forested area in Jiangsu Province of China.
Liu et al. [11] have reported that the carbon sequestration of poplar trees is almost 20 times higher than
that of other tree species. So, we believe that poplar plantations can make a considerable contribution to
Jiangsu’s terrestrial carbon cycle. Many studies on poplar biomass and carbon storage at different levels
have been conducted since the 1980s in China [12–14], demonstrating that research on the biomass
models of poplar plantations is of great significance to predicting potential biomass accumulation and
timber production. A great number of equations for individual tree biomass prediction have been
developed for poplar in China, but few studies have been done in Jiangsu Province. These equations
are expressed as [12–16]: M = a DBH b H c, lg M = a lg (DBH 2 H) + b, M = a DBH b, M = a (DBH 2 H) b,
ln M = a ln (DBH 2 H) + b, ln M = a ln DBH + b and ln M = a ln H + b, which can be classified into
nonlinear (power-law relationship) fitting to raw data, and linear fitting to log-transformed data.

A common problem encountered in developing biomass equations is the very small sample size
(usually less than 10 trees) used in many previous studies [12,13,15], which may reduce the model
precision [17]. In addition, heteroscedasticity in biomass data [18] has frequently been ignored, which
would lead to unreliable parameter estimates in biomass modeling. Moreover, previous studies have
reported that biomass equations should ensure the biomass additivity; in other words, the sum of the
predictions for the tree components equals the prediction for the whole tree [18–20]. Unfortunately,
little attention has been devoted to the additivity of total biomass and biomass components for poplar
trees in China. Since tree volume is available in NFI systems, converting tree volume to biomass
through allometric models can be the most convenient and reliable approach to estimating forest
biomass over large areas [21].

Therefore, the goals of this study were: (1) to construct one-, two- and three-variable compatible
biomass equations with tree volume equations for poplar trees in Jiangsu Province of China; (2) to
develop three systems of additive biomass equations for predicting total aboveground biomass and
biomass of its components; and (3) to analyze the biomass allocation for different components of a
single tree afterward. To achieve better parameter estimates, the weighted regression and the nonlinear
error-in-variable simultaneous equations were adopted.

2. Material and Methods

2.1. Site Description

The study was conducted in Jiangsu Province (116˝211–121˝551 E, 30˝461–35˝071 N), which is
located on the east coast of China, lying in the lower regions of both the Yangtze River and Huai
River. The total area is approximately 102,600 km2. The land of Jiangsu Province is generally flat
and low-lying. The elevation ranges from about 2 to 625 m a.s.l. Spanning across the subtropical and
warm-temperate climate zones, Jiangsu Province has four distinct seasons with a temperate climate
and moderate rainfall. The mean annual temperature is 15.3 ˝C, and the mean annual precipitation
is 1030 mm. According to the reference of GB/T 17296-2009 [22], soil types vary and include brown
soil, yellow soil, yellow-brown soil and paddy soil. By the end of 2011, the forest coverage of Jiangsu
Province has reached 2,174,500 ha with 1,815,300 ha of woodland.

2.2. Tree Biomass Data

2.2.1. Selection of Sample Trees

The biomass data, consisting of 80 individual poplar trees in Jiangsu Province of China, were
derived from destructive harvesting between August and October in 2011, excluding rainy days. These
sample trees were selected according to 10 diameter classes of 2, 4, 6, 8, 12, 16, 20, 26, 32, and 38 cm
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equally. Within each diameter class, sample trees were distributed by 3–5 height classes as evenly as
possible. Thus, the sampled trees were representative of poplar in Jiangsu Province. Before conducting
the destructive sampling, DBH (i.e., at 1.30 m aboveground) and crown width (CW) were measured in
the field. CW was determined by averaging measurements of a north-south axis with a diameter taken
at 90 degrees (a west-east axis). Also, the tree height (H) was measured after felling. The aboveground
tree material was then divided into stem wood, bark, branches and foliage components.

2.2.2. Biomass of Aboveground Tree Components

After removal of dead and living branches, the stem was divided into 11 sections at points
corresponding to 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 of tree height. Then, diameter of each
section was measured. The top log was treated as a cone and the volume (Vtop) was calculated as
1/3 g1l1, where g1 is the basal area of the top log, and l1 is the length of the top log. The remaining logs
were treated as a paraboloid frustrum, and the Smalian’s formula was used to calculate the volume.
The total tree volume was computed as the sum of the volume of each log. The stem was cut into three
sections (top, middle, and bottom) and each section was weighed fresh in the field. Two 3-cm-thick
discs were cut from both sides of each stem at a height of 10.0%, 35.0% and 70.0% for stem (stem wood
+ bark) biomass determination. Sample discs were partitioned into stem wood and bark as subsamples.

The crown (branches + foliage) incorporating branches (dead branches + living branches) and
foliage was partitioned into three layers (top, middle and bottom) after felling of sample trees. Dead
branches were firstly selected and weighed. Also, fresh weight of living branches for each layer was
weighed. For each layer, three branches (with medium size, length and leaves) were selected and
all leaves were removed. Branches (without leaves) and foliage within each layer were weighed
respectively in the field. Subsamples of living branches without leaves were selected for three layers,
while mixed subsamples of foliage were selected from all removed leaves. Besides, subsamples of
dead branches were selected from dead sample branches.

Subsamples of different components were weighed fresh in the field. They were stored in plastic
bags, and sent to the laboratory to determine the moisture content. Dry weights were obtained by
drying subsamples at a temperature of 85 ˝C until a constant weight was achieved. The dry weights
of samples were calculated by multiplying the fresh weight with the dry weight/fresh weight ratios
of the corresponding subsamples. According to the ratios of dry weight to fresh weight, the total
aboveground biomass was obtained by summing the dry weights of stem wood, bark, branches
and foliage. The dry weight of the stem wood, bark, branches and foliage were calculated through
fresh weight multiplied by dry weight/fresh weight ratio of the corresponding samples [8]. Total
aboveground tree biomass (AGB) was estimated as the sum of the dry weight of stem wood, bark,
branches and foliage. Tree variables and biomass of different tree components are summarized
in Table 1.

Table 1. Tree characteristics and summary statistics of the aboveground biomass components for poplar
(n = 80) in Jiangsu Province of China.

Statistics
Tree Variables Biomass of Different Aboveground Tree Components (kg)

DBH (cm) H (m) CW (m) Stem
Wood Bark Branches Foliage Aboveground

Tree

Mean 16.4 14.1 5.0 107.0 22.5 40.8 10.9 181.1
Min. 1.7 2.6 0.4 0.1 0.0 0.0 0.1 0.3
Max. 38.6 27.6 13.0 591.0 113.9 245.9 60.0 921.7
S.D. 11.7 7.6 3.2 154.3 30.9 58.0 14.5 254.7

Note: Minimum (Min.); maximum (Max.); standard deviation (SD.).
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2.3. Independent Biomass Equations Development

Based on the destructively harvested biomass data, we plotted the relationships between biomass
of total aboveground tree and its components per tree and tree variables (DBH, H and CW) in Figure 1,
showing obvious nonlinear relationships.Forests 2016, 7, 32  4 of 15 
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Figure 1. The relationships between the biomass components versus tree level variables for poplar in
Jiangsu Province of China (n = 80).

Considering our analysis above, we decided to use nonlinear regressions as base models to
establish different biomass equations, relating biomass of total aboveground tree or its components to
standing tree variables, such as DBH, H and CW [23–25] in this study. The base models were written as:

M “ β0DBHβ1 ` ε (1)

M “ β0DBHβ1 Hβ2 ` ε (2)

M “ β0DBHβ1 Hβ2 CWβ3 ` ε (3)

where M is the biomass of different components of a tree (kg/tree), including stem wood, bark,
branches, foliage and total aboveground tree; DBH (cm), H (m) and CW (m) are the independent
variables; β0, β1, β2 and β3 are the allometric parameters; and ε is a random error which is assumed
to be a normal distribution, N (0, σ2).

2.4. Nonlinear Error-in-Variable Model

Commonly, regression models are fitted by the ordinary least square (OLS), assuming that the
independent variables are without errors and the dependent variables are with errors [26,27]. When
both independent and dependent variables are assumed to have measurement errors, the OLS method
is no longer adequate, and a measurement error model, the error-in-variable method, is introduced
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to such regressions [28]. According to Tang et al. [29], the nonlinear error-in-variable simultaneous
equations can be described as follows:

$

’

&

’

%

f pyi, xi, cq “ 0
Yi “ yi ` ei, i “ 1, 2, ¨ ¨ ¨ n
E peiq “ 0, cov peiq “ σ

2ψ

(4)

where xi is the observed value of q-dimensional error-free-variable, Yi is the observed value of
p-dimensional error-in-variable, ƒ() is the m-dimensional vector function, yi is the unknown true
value of Yi, and E(ei) is the expectation of error ei. The covariance matrix of error ei is denoted as
φ = σ2ψ, where ψ is the structure matrix of error ei, and σ2 is the error of the estimate.

2.5. Compatible Biomass Equations Establishment

The compatible regression models [2] were used to determine the total aboveground biomass
in this study. Firstly, one- and two-variable tree volume equations were fitted by the following
regression functions:

V “ α0DBHα1 ` ε (5)

V “ α0DBHα1 Hα2 ` ε (6)

where V is the tree volume (m3), α0, α1 and α2 are parameters.
On this basis, the compatible regression models, reflecting relationships between tree volume and

biomass, can then be expressed as follows:

M “ γ0DBHγ1 V ` ε (7)

M “ γ0DBHγ1 Hγ2 V ` ε (8)

M “ γ0DBHγ1 Hγ2 CWγ3 V ` ε (9)

Here, M is the total aboveground biomass (kg/tree); γ0, γ1, γ2 and γ3 are parameters for the
conversion function from tree volume to biomass. It should be noted that, in Equation (9), V is still the
two-variable tree volume equation instead of the three-variable tree volume equation. Accordingly, we
can yield the following relations:

β0 “ α0 ˆ γ0,β1 “ α1 ` γ1,β2 “ α2 ` γ2,β3 “ γ3 (10)

To assure the regression parameter compatibility between total aboveground biomass and tree
volume equations, i.e., Equation (10) is true, the nonlinear error-in-variable method was applied
to develop three sets of nonlinear equations based on Equations (5) and (7) for one-variable
models, Equations (6) and (8) for two-variable models, and Equations (6) and (9) for three-variable
models, respectively, where DBH, H and CW were regarded as error-free-variables, and M and V
as error-in-variables. Based on the tree volume and total aboveground biomass data of 80 sample
poplar trees, three sets of compatible biomass equations were fitted by nonlinear error-in-variable
simultaneous equations in the ForStat 2.1 [29].

2.6. Additive Biomass Equations Construction

A “controlling directly under total biomass by proportion function” approach, which separates
total biomass from component biomass (stem wood, bark, branches and foliage) and satisfies the
additivity property (i.e., the predictions of four components biomass sum to the total biomass), was
presented to design the additive system of biomass equations [30]. Firstly, the nonlinear biomass
equations for four tree components (stem wood, bark, branches and foliage) were fitted independently,
and the weighting factor of each component was adopted in the additive systems. Then, let f 0(x)
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represent the total aboveground biomass of a tree (kg/tree), which was fitted independently of this
system by modeling compatible biomass equations with tree volume equations. f 0(x) for one-, two-
and three-variable models can be written as:

f0 pxq “ a0DBHb0 (11)

f0 pxq “ a0DBHb0 Hc0 (12)

f0 pxq “ a0DBHb0 Hc0 CWd0 (13)

where a0, b0, c0 and d0 are the parameters for f 0(x), and a0 = β0, b0 = β1, c0 = β2 and d0 = β3.
Next, it is assumed that the relative proportions of stem wood, bark, branches and foliage to total

biomass are g1(x), g2(x), 1 and g3(x), respectively. The relative proportion function gi(x) for one-, two-
and three-variable models can be determined as:

gi pxq “ aiDBHbi (14)

gi pxq “ aiDBHbi Hci (15)

gi pxq “ aiDBHbi Hci CWdi (16)

where ai, bi, ci and di (i = 1, 2, 3) are the parameters for gi(x).
Finally, the structural equations for the system of additive biomass models can be specified as:

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

y1 “
g1 pxq

1` g1 pxq ` g2 pxq ` g3 pxq
ˆ f0 pxq

y2 “
g2 pxq

1` g1 pxq ` g2 pxq ` g3 pxq
ˆ f0 pxq

y3 “
1

1` g1 pxq ` g2 pxq ` g3 pxq
ˆ f0 pxq

y4 “
g3 pxq

1` g1 pxq ` g2 pxq ` g3 pxq
ˆ f0 pxq

(17)

where y1, y2, y3, y4 are the biomass of stem wood, bark, branches and foliage of a tree (kg/tree); x are
DBH, H and CW.

Parameters of the system were estimated simultaneously by applying the nonlinear
error-in-variable method in Forstat 2.1 [29]. Hence, we can guarantee that (i) the tree volume and
aboveground biomass equations were compatible and (ii) the additive system of biomass equations
meet the biomass “additivity” requirement.

Noting that, in the additive system of biomass equations, the relative ratio of branches’ biomass to
total aboveground biomass was assumed to be 1. Why did we choose branches rather than stem wood,
bark or foliage? If we assumed the relative proportion of stem wood (or bark, or foliage) biomass to total
aboveground biomass was 1, did it make any difference? To make comparisons with the “branches”,
actually, we established another three structural systems of additive biomass equations, and denoted
as the “stem wood system”, “bark system” and “foliage system”, respectively. Also, the goodness-of-fit
statistics for different systems of additive biomass equations were computed subsequently.

2.7. Heteroscedasticity Correction

As Parresol [18] discusses, normally biomass and volume data exhibit obvious heteroscedasticity;
hence, it is necessary to take some countermeasures to eliminate the impact of heteroscedasticity. So far,
the use of logarithmic transformation and weighted regression are two common approaches to calculate
the model parameters in forest science [23,25]. In this paper, we applied weighted regression to correct
bias in parameter estimates. Initially, the nonlinear regression models were fitted independently
by the OLS method. Then, the weight factor of each model was determined as w = 1/DBH q,
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deriving from the regression relationship between DBH and residual squares (e2) of the OLS estimates,
e2 = p ˆ DBH q, where p, q are parameters. Finally, we fitted the nonlinear models by multiplying the
weight factor (w = 1/DBH q) to both sides of the models.

2.8. Model Evaluation

The best-fit models were selected based on four goodness-of-fit statistics, the coefficient of
determination (R2), standard error of estimate (SEE), total relative error (TRE), and mean prediction
error (MPE) [18,31].

The coefficient of determination:

R2 “ 1´
n

ÿ

i“1

pyi ´ ŷiq

2

{

n
ÿ

i“1

pyi ´ yq (18)

Standard error of estimate:

SEE “

g

f

f

e

n
ÿ

i“1

pyi´ ŷiq
2
{ pn´ pq (19)

Total relative error:

TRE “
n

ÿ

i“1

pyi ´ ŷiq{

n
ÿ

i“1

ŷi ˆ 100% (20)

Mean prediction error:
MPE “ tα ˆ pSEE{yq {

?
nˆ 100% (21)

where yi is the observed value, ŷi is the value calculated with the model, y is the mean observed value
for one sample, n is the number of sample trees, p is the number of parameters, and tα is the t value at
confidence level αwith n ´ p degrees of freedom (tα « 1.98 for α = 0.05).

To the best of our knowledge, ideally, an independent dataset is required to further evaluate the
accuracy or applicability of the final biomass models [25]. Traditionally, a split-sample approach, which
partitions the dataset into two portions, was applied for model assessment. In recent years, however,
some researches have argued and claimed that the split-sample method did not provide any additional
information about the parameter estimate and is a waste of money [32,33]. Therefore, it is strongly
recommended that, in current study, we develop biomass models of the total tree and its components
utilizing the full dataset, instead of splitting the dataset into a “fit dataset” and “validation dataset”.
Additionally, to see whether the additive system of biomass equations is superior to independent
equations, ratios of R2, SEE, TRE and MPE of system equation to that of the independent equation
were calculated for each tree component and total aboveground biomass [17,20].

3. Results

3.1. Sample Tree Characterization

According to the mean biomass values of different tree components (Table 1), we computed the
proportion of biomass of different tree components to total aboveground tree biomass. Accordingly,
59.1% of total aboveground biomass was allocated to the stem wood, 12.4% to the bark, 22.5% to the
branches and 6.0% to the foliage. The ratio of stem biomass to total aboveground biomass was 71.5%.

3.2. Independent Biomass Equations

Parameters and goodness-of-fit statistics of one-, two- and three-variable biomass equations for
different tree components are described in Table 2. In general, R2 values were above 0.90 for all
biomass models. For total aboveground tree and stem wood, SEE and MPE generally decreased with
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the addition of variables H and CW. However, for bark, SEE and MPE decreased with the addition of
H and showed a small increase with the inclusion of CW. On the contrary, for branches and foliage,
SEE and MPE increased with the addition of H while there was a small decrease with the inclusion of
CW. The total relative errors (TRE, in %) were less than 2.0% for all tree components, while the mean
prediction errors (MPE, in %) ranged from 3.7% to 9.6%.

Table 2. Parameters and goodness-of-fit statistics for the biomass of different components estimated
for an individual tree (n = 80).

Components Models
Parameters (p < 0.05) Goodness-of-Fit Statistics

β0 β1 β2 β3 R2 SEE (kg) TRE (%) MPE (%)

M0

One-variable 0.053 2.637 / / 0.976 41.2 1.5 5.0
Two-variable 0.024 2.429 0.490 / 0.986 31.0 ´0.0 3.7
Three-variable 0.021 2.480 0.521 ´0.064 0.987 30.6 0.0 3.7

M1

One-variable 0.022 2.752 / / 0.964 31.6 0.6 6.2
Two-variable 0.008 2.363 0.743 / 0.979 24.0 0.0 4.7
Three-variable 0.006 2.490 0.784 ´0.128 0.981 23.2 0.0 4.6

M2

One-variable 0.007 2.611 / / 0.914 9.0 ´0.3 9.0
Two-variable 0.004 2.060 0.775 / 0.942 7.4 1.8 7.4
Three-variable 0.004 2.110 0.766 ´0.054 0.942 7.5 1.9 7.5

M3

One-variable 0.007 2.784 / / 0.961 10.9 ´0.5 6.3
Two-variable 0.011 3.159 ´0.569 / 0.950 12.4 ´0.7 7.1
Three-variable 0.010 3.170 ´0.505 ´0.079 0.952 12.2 ´0.4 7.0

M4

One-variable 0.017 2.133 / / 0.905 4.5 0.3 9.2
Two-variable 0.024 2.407 ´0.402 / 0.900 4.7 0.1 9.6
Three-variable 0.030 2.147 ´0.406 0.302 0.902 4.6 0.2 9.5

Note: M0, M1, M2, M3, M4 are respectively the biomass of total aboveground tree, stem wood, bark,
branches and foliage. The coefficient of determination (R2); standard error of estimate (SEE); total relative
error (TRE); mean prediction error (MPE). For one-variable equations, the weight factors were 1/DBH2.14,
1/DBH2.03, 1/DBH1.82, 1/DBH2.05 and 1/DBH1.28 for M0–M4, respectively; for two-variable equations, the
weight factors were 1/DBH1.51, 1/DBH1.61, 1/DBH2.35, 1/DBH2.15 and 1/DBH1.18 for M0–M4, respectively; for
three-variable equations, the weight factors were 1/DBH1.42, 1/DBH1.45, 1/DBH2.35, 1/DBH1.99 and 1/DBH1.20

for M0–M4, respectively.

3.3. Compatible Biomass Equations

Parameters and goodness-of-fit statistics of three sets of equations for compatible tree volume and
aboveground biomass are given in Tables 3 and 4. As shown in Table 4, R2 values were all above 0.97
for biomass and volume equations. TRE and MPE values for all biomass and volume equations were
both less than 5.0%. For two- and three-variable biomass equations, the four goodness-of-fit statistics
were not very different, which provided slightly better results than one-variable equations, with higher
R2 and lower SEE, TRE and MPE values.

Table 3. Parameters for compatible tree volume and aboveground biomass equations.

Models
Volume Parameters Biomass Parameters Conversion Functions

α0 α1 α2 β0 β1 β2 β3 γ0 γ1 γ2 γ3

One-variable 0.141 2.473 / 0.052 2.642 / / 0.369 0.169 / /
Two-variable 0.055 2.004 0.823 0.024 2.422 0.499 / 0.434 0.418 ´0.324 /
Three-variable / / / 0.022 2.430 0.529 ´0.020 0.408 0.429 ´0.302 ´0.020

Note: The significant level (p < 0.05). The weight factors were 1/DBH2.43 and 1/DBH1.36 for one- and
two-variable tree volume equations. The weight factors for total aboveground biomass were the same with
Table 2. α0, α1 and α2 are parameters for tree volume equations; β0, β1, β2 and β3 are parameters for compatible
biomass equations; γ0, γ1, γ2 and γ3 are parameters for conversion functions. For the three-variable compatible
model, the two-variable tree volume equation instead of the three-variable tree volume equation was used here.
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Table 4. Goodness-of-fit statistics for compatible tree volume and aboveground biomass equations.

Models
Tree Volume Aboveground Biomass

R2 SEE (m3) TRE (%) MPE (%) R2 SEE (kg) TRE (%) MPE (%)

One-variable 0.974 0.06 0.6 4.8 0.976 41.0 1.3 4.9
Two-variable 0.991 0.04 0.0 2.9 0.986 30.9 0.0 3.7
Three-variable / / / / 0.987 30.6 0.0 3.7

Note: the coefficient of determination (R2); standard error of estimate (SEE); total relative error (TRE); mean
prediction error (MPE). For the three-variable compatible model, the two-variable tree volume equation instead
of the three-variable tree volume equation was used here.

3.4. Additive Biomass Equations

Four systems of additive biomass equations—the “stem wood system”, “bark system”, “branches
system” and “foliage system”—were constructed and compared according to the goodness-of-fit
statistics (Table 5). We found that the values of the goodness-of-fit statistics of the “stem wood system”
and “bark system” of additive biomass equations were exactly the same, while those of the remaining
two systems of additive biomass equations were also the same. To sum up, the “branches system” or
“foliage system” performed a little better than the “stem wood system” or “bark system”. Therefore,
using either the “branches system” or “foliage system” can obtain the best results.

Table 5. Goodness-of-fit statistics for different systems of additive biomass equations.

Components Models
Branches or Foliage System Stem Wood or Bark System

R2 SEE (kg) TRE (%) MPE (%) R2 SEE (kg) TRE (%) MPE (%)

M1

One-variable 0.961 32.6 1.9 6.4 0.961 32.6 1.9 6.4
Two-variable 0.979 24.2 0.0 4.8 0.978 24.6 ´0.0 4.9
Three-variable 0.980 23.8 0.0 4.7 0.979 24.2 0.0 4.8

M2

One-variable 0.917 8.8 0.7 8.8 0.917 8.8 0.7 8.8
Two-variable 0.945 7.3 0.6 7.3 0.946 7.2 0.6 7.2
Three-variable 0.944 7.4 0.1 7.4 0.945 7.3 0.1 7.3

M3

One-variable 0.962 10.8 0.2 6.2 0.962 10.8 0.2 6.2
Two-variable 0.956 11.7 ´0.4 6.7 0.956 11.6 ´0.4 6.7
Three-variable 0.957 11.6 ´0.0 6.7 0.958 11.5 ´0.0 6.6

M4

One-variable 0.903 4.5 0.2 9.3 0.903 4.5 0.2 9.3
Two-variable 0.903 4.6 0.0 9.4 0.910 4.4 0.5 9.0
Three-variable 0.903 4.6 0.0 9.4 0.909 4.5 0.1 9.1

Note: “Branches or Foliage System” assumed the relative ratio of branches or foliage biomass to total
aboveground biomass was 1; while “Stem Wood or Bark System” assumed the relative ratio of stem wood or
bark biomass to total aboveground biomass was 1.

To be consistent with the methods section, only the “branches system” of additive biomass
equations was analyzed in detail. Parameters for the “branches system” of additive biomass equations
with one, two and three independent variables are shown in Table 6. In practice, however, parameters
for f 0(x) were directly sourced from the compatible biomass equations as shown in Table 3. It can be
seen from Table 6 that the addition of H has no effect on g3(x), and the inclusion of CW has no effect on
gi(x) (i = 1, 2, 3).

Table 6. Parameters for the “branches system” of additive biomass equations.

Models f 0(x) gi(x) Parameters (p < 0.05)

a1 b1 c1 d1 a2 b2 c2 d2 a3 b3 c3 d3

One-variable (11) (14) 3.434 ´0.054 / / 1.118 ´0.198 / / 2.484 ´0.647 / /
Two-variable (12) (15) 0.970 ´0.715 1.136 / 0.432 ´1.061 1.246 / 1.778 ´0.549 / /
Three-variable (13) (16) 0.837 ´0.667 1.133 / 0.437 ´1.016 1.194 / 1.761 ´0.545 / /

Note: f 0(x) was the total aboveground biomass equation; gi(x) was the proportion function, g1(x), g2(x) and g3(x)
were defined as the relative proportions of stem wood, bark and foliage to total biomass; a1, b1, c1, d1 are the
parameters for g1(x), a2, b2, c2, d2 are the parameters for g2(x) and a3, b3, c3, d3 are the parameters for g3(x); the
weight factors for total aboveground biomass and each component biomass were the same as in Table 2.
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The goodness-of-fit statistics of the “branches system” of additive biomass equations are shown in
Table 5. All biomass equations performed well (R2 ě 0.90). Compared to one-variable models, for stem
wood and bark, R2 values of two- and three-variable models improved slightly; while for branches
and foliage, there was no significant difference for R2 values of one-, two- and three-variable models.
For all models, TRE values were less than 2.0%, and MPE values ranged from 4.7% to 9.4%. For stem
wood, SEE and MPE generally decreased with the addition of variable H and CW; on the contrary, for
foliage, the trend was that of an increase. Unlike with stem wood and foliage, for bark, SEE and MPE
decreased with the addition of H and showed a small increase with the inclusion of CW; but the trend
for branches was exactly opposite to bark.

In comparison to the independent equations which separately fit the biomass equations for the
total tree and its components using OLS and weighted regression, the additive system of biomass
equations provided a slight improvement in most of the goodness-of-fit statistics (Table 7). Values
of the R2 ratio were generally greater than 1 for all components, excluding one- and three-variable
biomass equations for stem wood (0.998 and 0.999) and one-variable equations for foliage (0.998); while
the SEE, TRE and MPE ratios were generally less than 1, except in a few cases, such as the one-variable
equation for stem wood and bark with a TRE ratio of 2.902 and 2.310. Therefore, the system of additive
biomass equations resulted in smaller SEE, TRE, and MPE and better fit to the data.

Table 7. The R2, SEE, TRE and MPE ratios for comparing prediction accuracy of the system of additive
biomass equations and the independent biomass equations.

Components Models R2 Ratio SEE Ratio TRE Ratio MPE Ratio

M0

One-variable 1.000 0.995 0.859 0.995
Two-variable 1.000 0.997 0.203 0.997
Three-variable 1.000 1.000 0.033 1.000

M1

One-variable 0.998 1.032 2.902 1.032
Two-variable 1.000 1.005 0.125 1.005
Three-variable 0.999 1.025 0.141 1.025

M2

One-variable 1.003 0.982 2.310 0.982
Two-variable 1.002 0.980 0.304 0.980
Three-variable 1.003 0.979 0.027 0.979

M3

One-variable 1.001 0.989 0.346 0.989
Two-variable 1.006 0.946 0.561 0.946
Three-variable 1.005 0.948 0.024 0.948

M4

One-variable 0.998 1.011 0.916 1.011
Two-variable 1.005 0.979 0.166 0.979
Three-variable 1.002 0.992 0.003 0.992

Note: M0, M1, M2, M3, M4 are respectively the biomass of total aboveground tree, stem wood, bark, branches
and foliage. “TRE ratio” here was the absolute value.

4. Discussion

4.1. Biomass Allocation

In the present study, the stem components allocated more biomass than the crown components.
Ding [34] reported that component biomass accounted for about 77.1% (stem), 21.0% (branches) and
1.9% (foliage) of total aboveground biomass for individual poplar trees in the north of Jiangsu Province
of China, which was consistent with our results. Sun et al. [35] compared the biomass structure of
four poplar species in Xinyi city of Jiangsu Province, and found that around 65.9%–73.8% of total
aboveground biomass came from the stems, while 9.7%–12.6% could be attributed to the foliage.
Tang et al. [13] reported a similar biomass distribution pattern for poplar trees in Lixiahe Region
of Jiangsu Province; about 74.8% of the aboveground biomass was stem, 22.4% branches and 2.8%
foliage components. Wu et al. [15] found that the percentage of stem biomass (75.2%) was higher than
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that of branches (21.1%) and foliage (3.7%) for poplar trees on beach land in Yangtze River in Anhui
province of China. Globally, the percentage of stem biomass of poplar was the greatest while the
lowest was found in foliage biomass, verifying its high-yield and deciduous characteristics [10]. For
this reason, poplars are selected as the primary timber producer in Jiangsu Province or other regions
lacking natural forests. With the rapid increase of poplar plantations, a thriving timber-based economy
has formed in Jiangsu Province, which is currently the leading timber producing region in China.
In addition, poplar is a fast-growing and high yield species which has a great ability to immobilize
carbon [10,13], so the development of poplar plantations presents great value for the carbon cycle and
carbon mitigation in Jiangsu Province. More recently, the use of woody biomass from managed forests
as a renewable, low-carbon energy source has also been highlighted. Biomass and gross calorific
value of plants are two key factors in selecting plants. In this sense, poplar plantations are more than
adequate for forest management and biomass production because of their fast growth, relatively short
harvest cycles and strong adaptability to environmental changes.

4.2. Independent Biomass Equations at Tree Level

There is limited research about the biomass models for poplar plantation trees in Jiangsu Province
of China. Tang et al. [13] developed biomass regression models for 10-year-old poplar plantation
trees in Lixiahe Region of Jiangsu Province, and in a linear form of lg M = b + a lg (DBH 2 H) (n = 7,
R2 > 0.90), where M denoted the biomass of stem, branches, foliage and root components. The total tree
biomass was calculated by summing the biomass of four components estimated with the logarithmic
equations. In comparison with the independent biomass equations presented in this study, most
reported biomass equations for poplar trees in the literature shared two problems: (1) the bias in
biomass estimation introduced by the use of log transformation [13,16] and (2) the small number
of sample trees (n < 10) [12,13,15] because of the time-consuming nature of destructive biomass
measurements [21]. Generally, the logarithmic regression can simplify the nonlinear models, but the
bias introduced by log transformation should be corrected properly [36–38]. Indeed, to obtain more
efficient parameter estimates, we used the weighted regression to overcome heteroscedasticity in this
study. Previous studies have demonstrated that an adequate number of sample trees can probably
improve the prediction accuracy in biomass modeling and reduce the uncertainties [5,8,25]. Our results
are consistent with this finding, showing that model fits for stem wood, bark, branches, foliage and
total aboveground biomass were generally good (i.e., n = 80, R2 = 0.90–0.99, TRE < 3.0%, MPE < 10.0%),
and could accurately predict the biomass of the felled trees. Overall, the model using DBH as the
independent variable performed the best for branches and foliage biomass, while the model combining
DBH, H and CW as the independent variables was the best for stem wood, bark and total aboveground
biomass. In general, it seemed that DBH explained a large part of the biomass variation, confirming
the previous works of others [3,16,31,36].

Moreover, most reported biomass equations for poplar trees are valid over a narrow DBH [12–16],
and the minimum value of DBH is usually greater than 5.0 cm. For instance, Li et al. [14] developed
biomass equations of different tree components for poplar trees, M = a DBH b (n = 23, R2 = 0.84–0.97),
where DBH ranged from 12.0 to 36.0 cm. Liu et al. [16] constructed single-tree biomass equations of
poplar plantations in Heze, Shandong Province, China, and selected ln M = a ln DBH + b (n = 20,
R2 = 0.879, p < 0.05) as the optimal model for predicting biomass of poplars, where DBH ranged from
6.0 to 25.0 cm. In contrast, the independent biomass equations developed in this study for poplar trees
are valid over a wider DBH range, from 1.7 to 38.6 cm, suggesting that the sample trees are relatively
more representative over large areas than other reported works [12–16].

4.3. Biomass Additivity

Considering additivity within a system of biomass equations can ensure consistency among
the components [37–39]. In this study, the process of additivity was realized with the nonlinear
error-in-variable models and by applying a “controlling directly under total biomass by proportion
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function” approach. Results have indicated that the sum of predictions for the tree components is
relatively in line with the prediction for the total aboveground biomass. In the present work, the
additive systems of biomass equations outperformed the independent biomass equations (Table 7),
providing more consistent and precise models to estimate biomass, which was in accordance with
the results of others [17,20,40]. In this study, we applied four additive systems (i.e., the “stem wood
system”, “bark system”, “branches system” and “foliage system”) of biomass equations to our data
and demonstrated their differences (Table 5). Our results indicated that using either the “branches
system” or the “foliage system” can obtain the best results. In comparison with the additive system of
biomass equations, the compatible single-tree biomass equations for Masson pine (Pinus massoniana) of
southern China developed by Zeng et al. [30] used the “branches system” approach, while Liu et al. [41]
used the “stem wood system” to develop an additive system of biomass equations for spruce (Picea
asperata) in northeastern China. They found that the predictive precisions of different components
biomass estimates were ranked as: total aboveground tree > stem wood > bark > branches > foliage,
which was very similar to our results excluding the reversed order of bark and branches.

Despite the fact that the best-fit models to estimate stem wood and total aboveground biomass
were three-variable biomass equations, and that the two-variable biomass equation for bark performed
the best, we recommend the use of models relying solely on DBH to predict tree biomass, which has a
practical advantage because most of the inventories include DBH measurements [21,36,38]. Besides,
results of this study verified that biomass equations with DBH alone can be used to get satisfactory
estimates of individual tree biomass, and DBH is easy to measure accurately in the field. Models that
incorporate H and CW can usually improve performance [17,30,38,41], but in this study, the inclusion
of H and CW only slightly improved model fitting for stem wood and bark, while for branches and
foliage biomass models, the performance worsened. Although tree height has been measured (usually
3–5 dominant sample trees) in each plot since the 7th NFI, sufficient tree height data is still unavailable
in China. Moreover, the measurements of H and CW are often difficult and time-consuming [31,36]. In
light of the issues described above, we recommend a DBH-based additive system of biomass equations
to be selected as the best model in estimating biomass of individual trees for poplar plantations in
Jiangsu Province, China.

5. Conclusions

For the one-variable compatible equations, the prediction precisions of tree volume and biomass
equations were 97.4% and 97.6%. For the two-variable compatible equations, the prediction precisions
of tree volume and biomass equations were 1.7% and 0.8% higher than those of one-variable equations.
However, for the three-variable biomass equations, the prediction precision was only 0.3% higher than
that for the two-variable biomass equations.

Regarding the “branches system”, one-, two- and three-variable biomass equations were used
in three systems of additive biomass equations that allowed us to accurately predict biomass of stem
wood, bark, branches, foliage and total aboveground tree at the tree level for poplar trees. As expected,
the accuracy of the biomass component equations differed for three additive systems of biomass
equations, and the results show that (1) R2 were generally above 0.90 for all components, and were
ranked as stem wood > branches > bark > foliage; (2) Biomass equations with DBH alone can be
used to get satisfactory biomass estimates, and adding H and CW into the additive system of biomass
equations did not improve R2 as much as we expected, especially for branches and foliage biomass.
We recommend a one-variable additive system of biomass equations to be selected as the best model
to estimate biomass of single trees for poplar plantations in Jiangsu Province of China. The established
biomass equations or the estimation procedure might be extrapolated to other study sites of China,
with a slight variation. In later studies, it will be interesting to validate the equations fitted in the study
in different locations. In order to replicate the results obtained in this work concerning the statistical
analysis, the methodology used in this study is highly recommended to set biomass equations for
poplars species in other locations.
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Moreover, we analyzed the biomass allocation of aboveground components for poplar trees.
Our results were consistent with previous studies in that the stem biomass accounted for the largest
proportion of total aboveground biomass.
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