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Abstract: The miombo woodland is the most extensive dry forest in the world, with the potential to
store substantial amounts of biomass carbon. Efforts to obtain accurate estimates of carbon stocks
in the miombo woodlands are limited by a general lack of biomass estimation models (BEMs). This
study aimed to evaluate the accuracy of most commonly employed allometric models for estimating
aboveground biomass (AGB) in miombo woodlands, and to develop new models that enable more
accurate estimation of biomass in the miombo woodlands. A generalizable mixed-species allometric
model was developed from 88 trees belonging to 33 species ranging in diameter at breast height
(DBH) from 5 to 105 cm using Bayesian estimation. A power law model with DBH alone performed
better than both a polynomial model with DBH and the square of DBH, and models including height
and crown area as additional variables along with DBH. The accuracy of estimates from published
models varied across different sites and trees of different diameter classes, and was lower than
estimates from our model. The model developed in this study can be used to establish conservative
carbon stocks required to determine avoided emissions in performance-based payment schemes,
for example in afforestation and reforestation activities.
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1. Introduction

The miombo is the largest continuous dry deciduous forest in the world. It extends across
much of Central, Eastern and Southern Africa including parts of Angola, the Democratic Republic
of Congo, Malawi, Mozambique, Tanzania, Zambia and Zimbabwe [1]. The woodlands are rich in
plant diversity and have the potential to contain a substantial amount of carbon, up to 39.6 Mg ha1

in aboveground biomass [2–4]. Though this is only 20% of Sub-Saharan African equatorial forests,
which are estimated to stock between 72 and 152 tonnes of carbon per hectare [5], this carbon pool
could be significant considering that miombo covers 2.7 million km2 [6]. However, there is significant
uncertainty in the amount of biomass carbon in miombo woodlands; only a few studies report reliable
estimates, making the estimation of carbon balance within the ecosystem uncertain.

The miombo woodland vegetation is highly heterogeneous [1,7,8], a phenomenon that makes
it difficult to assess biomass. The density, patch size and shape (configuration) of tree stands are
heavily influenced by variations in environmental conditions and human-induced disturbance factors
(e.g., selective harvesting, frequent fires and grazing). These factors reshape the community structure
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and geometry of individual trees [9]. Naturally, there are distinct woodland types, such as wet
miombo and dry miombo, with different floristic characteristics [6]. Most are dominated by
Brachystegia, Julbernardia and Isoberlinia, but others are dominated by Colophospermum mopane (Benth.),
Vachelia, Combretum, and Terminalia. In addition to the natural variations, the miombo woodlands
have also undergone changes due to heavy use for supply of wood fuel. Carbon stocks in the miombo
woodlands show spatial variability because of these differences in growth conditions and species
composition [10].

Efforts to integrate information on the miombo woodlands’ carbon stocks in national forest
assessment programs are often limited by a lack of BEMs. Biomass models present advantages for
biomass estimation because of their capacity for non-destructive estimation, which, when developed,
yields high accuracy, applications over large areas of calibration, and a potential for follow-up
measurements. Biomass models are typically developed and tested from destructive sampling,
although there have been recent attempts with non-destructive approaches such as fractal branch
analysis [11]. A large number of BEMs have been developed for sub-Saharan Africa from destructive
harvest data [12], with models archived in the GlobAllomeTree database [13]. The wide range of
BEMs presents challenges to users including the choice between: (1) existing models and developing
new ones; (2) species-specific and mixed-species models; (3) simple bivariate power-law functions
and models with multiple predictors; and (4) single predictors (e.g., DBH) and groups of predictors
(e.g., DBH in combination with height, and/or wood density) [14]. Ultimately, the choice of model
affects the accuracy of the resultant carbon estimates. This study builds on those discussions to
address the challenge of choosing between existing models and developing new ones.

A study by Kuyah et al. [15] reported a general lack of biomass models for tree species
and environmental conditions in Malawi, possibly because earlier efforts in the region were
directed towards wood volume models [16,17]. Of the more than 800 models reviewed by
Henry et al. [12], only 21 volume models (thirteen species specific and eight generalized) are available
for Malawi. These models thoroughly cover the species commonly found in the miombo woodland,
i.e., Brachystegia boehmii (Taub.), Brachystegia floribunda (Benth.), Brachystegia spiciformis (Benth.),
Brachystegia utilis (Hutch. & Burtt Davy), Julbernardia paniculata (Benth.) and Pterocarpus angolensis
(DC.). However, they focused mainly on the bole and the merchantable compartments, and estimate
biomass through conversion of modeled bio-volume using wood density. Estimation of biomass in
the country therefore largely relies on general purpose models cited in Brown [18–20], and those from
neighboring miombo countries such as Mozambique [21], and Tanzania [8,22,23].

The lack of BEMs can constrain a country’s ability to develop a database on the biomass
available within and outside forests, the potential to participate in the global carbon trade through
Reducing Emission from Deforestation and Forest Degradation (REDD+), and the national obligation
to communicate to the United Nations Framework Convention on Climate Change emissions and
removals from all sources and sinks. There is need therefore to either identify appropriate allometric
models from the literature or develop new valid models that account for the diversity of trees within
the miombo woodland ecosystem in Malawi. We develop a simple diameter-based power-law model
for estimating aboveground biomass in the miombo woodlands and associated land use systems.
We further demonstrate how the model compares with existing regional models commonly used in
the miombo eco-region of southern Africa.

2. Materials and Methods

2.1. Study Site

The study was conducted in the districts of Kasungu, Salima and Neno in Malawi. Kasungu
and Salima are located in the central region while Neno is located in the southern region of Malawi.
Table 1 provides a detailed description of the location, climatic conditions and edaphic characteristics
of each site.
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Table 1. Biophysical and climatic characteristics at the study areas in the districts of Kaungu, Salima
and Neno.

District Location
Altitude

(m)
Rainfall
(mm) * Rainfall Period

Annual Temperature (˝C)
Minimum Maximum

Kasungu 12˝481 S,
33˝211 E 1020–1130 800–1000 November–April 12 24

Salima 13˝401 S,
34˝171 E 520–640 1000–1200 October–May 19.6 29.2

Neno 15˝311 S,
34˝411 E 320–730 <800 November–March 8 32

* Mean annual rainfall source: http://www.metmalawi.com/climate/climate.php.

The natural vegetation across the three sites consists mainly of miombo woodland interspersed
with marsh and grassy river channels in Kasungu, scattered fallows with dry grasslands in Salima,
and montane grassland in Neno. The three sites are characterized by declining tree cover, particularly
on communal land. Reducing tree cover is attributed to increasing pressure from agricultural
expansion from an increasing population. Trees are also felled for wood fuel and charcoal,
which supplies most of the domestic energy needs, for curing bricks in Neno, and for curing and
construction of tobacco-curing structures in Kasungu.

2.2. Selection of Trees for Harvesting

Trees for building allometric models were sampled from three 10 km ˆ 10 km sites located
in the districts of Kasungu, Salima and Neno. The sites are part of 100 km2 benchmark designed
by the Africa Soil Information Service (AfSIS) for surveillance of land degradation in Malawi [24].
Each 100 km2 site is divided into 16 clusters of 2.5 km ˆ 2.5 km; each cluster has 10 randomly
placed centroids that can be used to draw plots. Out of the 10 centroids per cluster, 3 centroids
were randomly selected and located using a GPS device. Plots measuring 30 m ˆ 30 m were
drawn for selected centroids, and an inventory of all trees within the plot boundary generated.
This inventory was used to inform the diversity of species and sizes, and to create the list of trees
for destructive sampling.

Trees inventoried in each site were grouped into six diameter classes of below 10 cm, between
10–20, 20–30, 30–40, 40–50, and above 50 cm to cover the entire range of sizes spanned by the trees
in the area. A randomized pre-sample of trees from each site was generated from the inventory
list with respect of the stratified diameter class. Trees to be harvested were chosen through a blind
selection without tree species association. In addition to random selection of trees for harvesting in
each diameter class from the inventory list, larger trees which could not be found in the inventoried
plots were purposively sought in the landscape. Tree DBHs (measured at 1.3 m above the ground)
greater than 2 cm were considered for harvesting. The lower DBH threshold of 2 cm was adopted to
take into account the high number of low biomass trees in the study [25,26].

2.3. Tree Measurements and Biomass Sampling

A total of 88 trees ranging in DBH from 5.1 to 105 cm were harvested in 28 plots: 6 plots in
Kasungu, 17 plots in Salima, and 5 plots in Neno. There were 33 species of tree. A summary
of the characteristics of the dataset are presented in Table 2. The DBH of each tree was measured
using diameter tape. The diameters were determined over-bark to the nearest 0.1 cm, with the tape
held horizontally and tightly at the stem. Trees with abnormalities, including multi-stemmed trees
were measured using guidelines described by West (2009). To determine the crown area, the largest
extension of the crown was visually identified, and the crown edge of tall trees was located using
a clinometer and a percent scale. The crown diameter was measured twice with a measuring tape:
the crown diameter at its widest point (l), and the distance directly perpendicular to the maximum
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extension, at the same height (w). The crown area (CrA) in m2 was then calculated using the formula
of an ellipse:

CrA “ πˆ

ˆ

l
2

˙

ˆ

´ w
2

¯

(1)

The species name was recorded, and, when scientific names could not be established in the field,
the local name was provided by the local people who participated in the data collection.

Selected trees were felled by cutting at the lowest possible point using a chainsaw. The length
of the felled tree was measured along the longest axis with a measuring tape. This measurement
was used as the total tree height in the analysis. Felled trees were separated into stem, branches
and twigs (leaves and small branches). The stem and larger branches were cut into smaller pieces of
approximately 1 m in length. The fresh weights of the smaller stem and branch sections, as well as
that of the leaves, were determined in the field on a 300-kg weighing scale to the nearest 0.1 decimal.

2.4. Sub-Sampling and Drying

Sub-samples were taken from the stems, branches and twigs for the determination of their fresh
weight in the field and dry weight in the laboratory. Three discs, about 3 cm thick, were taken around
the DBH, at the middle of the stem and towards the end of the stem axis. Similarly, three small discs,
about 3 cm thick, were cut from the main branches at the proximal, middle and end of the branch.
The three discs were taken across the stem and branch axis to account for possible variation in wood
density. The samples were weighed on a 3 kg balance, labeled and transported to the laboratory for
dry weight determination. In the laboratory, the labeled samples were put in the oven and allowed
to dry for about 24 h at 105 ˝C [27]. Samples were subsequently removed from the oven and weighed
to establish any change in weight, after which the dry weight was recorded. The ratio of sub-sample
dry weight to fresh weight was used to convert component fresh weight to dry weight.

Table 2. Summary of variables measured and biomass of trees harvested across the three sites in
Malawi. CV is the coefficient of variation.

Site No of
Trees

DBH (cm) Height (m) Crown Area (m2) Aboveground Biomass (kg)
Range Mean CV% Range Mean CV% Range Mean CV% Range Mean CV%

Kasungu 21 5.1–55.8 18.8 68% 3.3–15.7 7.9 39% 0.1–114.7 32.4 104% 4.3–1967.6 254.0 174%
Salima 47 6.5–105 38.9 65% 4.1–24.2 11.1 45% 2.1–397.2 100.1 95% 6.2–5357.8 806.5 143%
Neno 20 6.8–74.6 29.1 61% 4.2–19.8 9.8 44% 3.5–236.8 82.0 83% 6–2554.5 548.1 125%

2.5. Development and Evaluation of Biomass Models

The total biomass of aboveground woody parts and the DBH of each tree were used to fit
regression models to the logarithmic form (Model 2), or to the power-law function (Model 3), where
a and b, respectively, are the proportionality and power coefficients of the models. The models
were built for aboveground biomass with DBH alone as the predictor variable (Model 2), DBH in
combination with the height (Model 4), and DBH in combination with the crown area (Model 5).

ln pAGBq “ ln paq ` b plnDBHq (2)

AGB “ aDBHb (3)

ln pAGBq “ ln paq ` b plnDBHq ` c plnHq (4)

ln pAGBq “ ln paq ` b plnDBHq ` c plnCrAq (5)

Allometric coefficients for biomass models were estimated from the data using hierarchical
Bayesian analysis, and compared with those constructed using ordinary least squares (OLS)
regression. In the hierarchical Bayesian, the analysis included a hierarchical structure to explicitly
account for the nested structure of the dataset, i.e., trees nested within sites to account for
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dissimilarities among the sites in climate (Table 1) and vegetation structure (Table 2). Bayesian
analysis was chosen because violation of statistical assumptions of error can lead to biased point
estimates if OLS or maximum likelihood estimation are applied, especially with small samples [14].
Bayesian estimation methods need a much smaller sample size to estimate parameters accurately [28],
and the hierarchical Bayesian approach has recently been proposed for estimating allometric
parameters [29,30]. Unlike the traditional approaches, in the Bayesian framework, the model
parameters are treated as random variables, and inferences are based on their posterior distributions
given the data. Thus, the conditional probability of a, b and the dispersion parameter (ϕ) were
estimated from the posterior distribution of samples using the GENMOD procedure of the SAS
system. GENMOD uses a Markov Chain Monte Carlo simulation by Gibbs sampling to simulate
samples from posterior distributions. By default, GENMOD assumes a uniform prior distribution
on the regression coefficients. Since we did not have prior knowledge of the distribution of a and b,
we compared various non-informative priors (normal, uniform, Jeffrey’s) and decided on the one
that gave the smallest deviance information criterion (DIC). We assumed the prior distribution of
ϕ to be inverse gamma and we monitored convergence by running two chains with initial values
of the parameters from the maximum likelihood estimation. We specified a burn-in period of
5000 iterations, and additional numbers of Monte Carlo chains (NMCs) ranging from 10,000 to
500,000 after each burn-in depending on the diagnostics (Gelman-Rubin, Geweke, Raftery-Lewis and
Heidelberger-Welch). In some instances, the Raftery-Lewis diagnostic indicated failure to produce
a valid first-order Markov chain in the posterior samples of the parameters after 100,000 NMCs.
Therefore, the NMC was increased until the test passed the set criteria. The parameter estimates
and their credible intervals were considered valid only when the analysis passed all the diagnostics.

The literature was reviewed to identify potentially suitable biomass models from countries
with agro-ecological settings similar to Malawi. Only power-law models with information on the
sample size, the range of diameters and the tree components included in building the allometry were
selected for evaluation. These descriptive metadata were considered important since they indicate
the valid range within which the models can be used. Table 3 provides a summary of biomass models
considered useful, while noting that the differences in ecological conditions of the source data could
be a major cause of bias in the application. The accuracy of published and developed models was
evaluated by calculating the mean relative error (MRE), the root mean square error (RMSE), and the
mean absolute percentage error (MAPE) in the total biomass of the harvested trees. Better models
have lower MRE, RMSE, DIC, and MAPE.

Table 3. Allometric models commonly used for estimating aboveground biomass (ABG) in the
miombo woodlands.

Author Allometric Model N DBH Country MRE RMSE MAPE

Chamshama
et al. [22] AGB = 0.0625 ˆ DBH2.553 30 1–50 Tanzania 17 937 36.4

Chidumayo [8]
Model 1 AGB = 0.0446 ˆ DBH2.765 113 2–39 Zambia 50 1491 58.3

Chidumayo [8]
Model 2 AGB = 0.0799 ˆ DBH2.5553 113 2–39 Zambia 73 2584 80.8

Mugasha
et al. [23] AGB = 0.1027 ˆ DBH2.4798 167 1.1–110 Tanzania 50 1278 56.5

Brown [18] AGB = 0.1359 ˆ DBH2.2320 28 5–40 Global dry forests 17 506 32.7
Ryan et al. [21] * AGB = 0.0265 ˆ DBH2.601 29 5–73 Mozambique 24 1169 41.6

N is the number of trees (sample size) used for constructing the model; MRE is the mean relative errors,
RMSE is the root mean square error, and MAPE is the mean absolute percentage error; * Calculate the mass of
carbon in the trees. The estimate is therefore multiplied by 2.13 (1/0.47) to obtain dry mass of trees.
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3. Results and Discussion

3.1. Relationship between Aboveground Biomass and Predictor Variables

Trees harvested for development of allometric models thoroughly captured the variability of the
miombo woodland vegetation in Malawi in terms of species diversity and tree sizes. This is important
because the parameters of allometric models (a and b) have been shown to vary with tree species
and ecological conditions [29]. It has been recommended that allometric models be developed using
a dataset of about 50 sample trees because sample sizes below this lead to underestimation of the
allometric exponent [14]. The sample size used was considered adequate to develop a generalizable
model that is applicable to a large set of species of different sizes across the miombo woodland
in Malawi.

The diameter at breast height was significantly correlated with the aboveground biomass of
harvested trees, accounting for over 95% (p < 0.001) of the variation in aboveground biomass for
trees harvested across the three sites (Figure 1a). The scatter plots of height and crown area against
aboveground biomass show positive correlation, but also reveal greater variance compared to those
of DBH (Figure 1b,c). The positive correlation observed between tree height or crown area and
aboveground biomass is expected because of a fundamental allometric scaling law that operates
between these variables. The greater variance between the height/crown area and aboveground
biomass scatter is attributed to the variable tree height and crown area, even for trees of the same
diameter class and species. This variation can be explained by differences in environmental condition
and the historical disturbance levels at the different sites. For example, extraction of wood for fuel and
charcoal production, livestock grazing and conversion of woodlands to cultivated fields are the main
factors that change community structure and geometry of individual trees in the miombo [7,8,31].Forests 2015, 6, page–page 
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3.2. Performance of New Allometric Models

Generalizable allometric models were developed for estimating biomass in the miombo
woodlands in Malawi (Table 4). Evaluation of the models indicates that the quality of biomass
estimates varies among models and depends on how the models are developed. A common approach
to developing allometric models is to regress total tree biomass or the biomass of components
against the DBH using ordinary least squares. A major limitation with such simple linear regression
is heteroscedasticity—the variation in tree weight increases with increasing diameter. The data
are therefore log transformed, although back transformation of logarithmic values to arithmetic
units introduces bias that must be corrected [32]. Model development techniques, such as the
hierarchical Bayesian approach, have been recommended for circumventing many problems involved
in allometry development [14]. In this study, the Bayesian method performed better compared to
ordinary least square regression. The DIC of 59.02 for the model built with ordinary least squares
(Model 2) was larger than 51.04 for Bayesian (Model 1). The MAPE of 27.98% for ordinary least
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squares was larger than MAPE of 27.20% for Bayesian. This means that the Bayesian estimation is
more accurate because even a small difference in absolute terms in the performance of two models
indicates a better performance. Figure 2 also indicates that the model built using ordinary least
squares tended to overestimate aboveground biomass. Previous studies have shown that the Bayesian
approach provides a robust approach for estimating allometric coefficients [29,30].

Table 4. Parameter estimates and Bayesian posterior credible intervals (CI) for biomass estimation
models developed in this study. Allometric models for the parameter estimates of respective models
are AGB = 0.102 * DBH2.242 (Model 1), AGB = 0.143 * DBH2.271 (Model 2), AGB = 0.134 * DBH2.187

(Model 3), AGB = 0.159 * DBH2.150 (Model 4), AGB = 0.148 * DBH2.019 (Model 5).

Model
Parameter Estimate

DIC MRE MAPE VIFIntercept (CI) lnDBH (CI ‡) lnH (CI) lnCrA (CI)

1 ´2.284
(´2.635, ´1.933)

2.300
(2.242, 2.438) 51.04 ´17.34 27.20

2 ´1.946 (0.158) 2.271 (0.048) 59.02 5.34 27.98 None

3 ´2.013
(´2.350, ´1.683)

2.187
(2.00, 2.368)

0.154
(´0.137, 0.452) NS 59.96 5.41 27.94 Acceptable

4 ´1.838
(´2.180, ´0.494)

2.150
(1.967, 2.334)

0.0747
(´0.023, 0.173) NS 58.76 5.31 27.54 Acceptable

5 ´1.910
(´2.255, ´1.565)

2.019
(1.762, 2.276)

0.203
(´0.084, 0.491) NS

0.087
(´0.009, 0.183) NS 58.84 5.07 27.24 Moderate

Model 1–2 are built from the diameter at breast height (DBH) alone using Bayesian and least square regression,
respectively. Models 3–5 were built with DBH in combination with height and crown area (CrA) using
Bayesian methods. The criteria for the choice of model included the deviance information criterion (DIC),
mean absolute percentage error (MAPE) and variance inflation factor (VIF). ‡ represents the 95% credible
intervals in Model 1,2, 3–5 and the standard error of the parameter estimate in Model 2. NS Parameters are not
significantly different from zero.
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Figure 2. Performance of biomass models developed using ordinary least squares and hierarchical
Bayesian methods. AGB curve represents a trend line fit against harvested aboveground
biomass (AGB).

The power law model (Model 1) was better than the polynomial model with DBH and square of
DBH. Model diagnosis showed that parameters of Model 1 were stable, and there were also not many
outliers and influential observations as indicated by studentized residuals. The scaling exponent
of this model is close to the theoretical value of the Metabolic Scaling Theory (8/3) [30]. The use
of power law models is supported in the literature because they are simple to construct and use,
and their parameters have biological meaning [33,34]. Although polynomial regression models with
DBH and square of DBH (not shown) present lower DIC (48.83), diagnostics showed that the model
was unstable, as indicated by highly inflated variance (variance inflation >10) and the standard error
for ln(DBH2).
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Model 1 with DBH alone as the predictor variable was also better than models that include
height and crown area as additional predictor variables (Table 4). The null hypothesis that parameter
estimates for height and crown area are not significantly different from zero could not be rejected.
Inclusion of these variables in the DBH model also did not substantially reduce the MAPE; instead,
the bias (MRE) changed from underestimation to overestimation. The parameters of models with
height and crown area were also unstable due to large values of influence statistics. Our findings
that height and/or crown area does not substantially improve the predictive power of diameter
models contradict recent findings in Peru, which show that crown radius greatly improves model
performance, especially for the largest trees [35]. The majority of allometric models in the miombo
ecoregion use DBH as the sole predictor variable, e.g., Chamshama et al. [22], Ryan et al. [21]
Chidumayo et al. [8] and Mugasha et al. [23]. There are few models that include height as a second
variable to DBH, e.g., Chamshama et al. [22]. The lack of models that include height and crown area
may be attributed to difficulties associated with measuring these variables and an inability to measure
them accurately—errors are pronounced for taller trees and trees with intersecting crowns [36]—and
to the marginal value in improving the accuracy of allometric models when included as predictor
variables along with DBH [33,37].

3.3. Performance of Published Allometric Models

Published models overestimated biomass with an MRE between 17% and 73%, and biomass with
a MAPE between 33% and 81% (Table 3). The accuracy of the models varied across the evaluated sites
and trees of different diameter classes (Figure 3). In the absence of local or country-specific allometric
models, mixed species models by Chamshama et al. [22] and Ryan et al. [21] appear as the most
appropriate for estimating aboveground biomass in Kasungu and Neno, which were both dominated
by small diameter trees. Breaking down the error into DBH size classes showed that all published
models overestimated biomass with a greater bias in trees with a DBH greater than 30 cm. The model
by Brown [18] was best for trees with a DBH between 10 and 30 cm in diameter.
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Published models overestimated biomass in Salima and larger diameter class, indicating that
models should be used within their DBH range. For example, 38% (18 out of 47) of the trees
from Salima exceeded the maximum DBH of trees used to build the models by Brown [18] and
Chidumayo [8] (Table 3). This demonstrates the need to consider the DBH range in applying biomass
models—applying models outside their DBH range will result in bigger errors, especially for the
larger trees. Information on error breakdown is important since uncertainty in the resultant biomass
depends on the size of the tree, and the individual trees of a particular size. For example, though the
small diameter trees hold a small fraction of biomass in most landscapes [15,33], their contribution
is significant when aggregated in areas where they occur in large number. Selection of models
can therefore be informed by uncertainty introduced in the biomass estimated in trees of different
diameter classes.

4. Conclusions

The power law model with DBH alone as the predictor variable developed using the Hierarchical
Bayesian performed better than both the polynomial model with DBH and models that include height
and crown area as additional predictor variables. The model can be used to establish conservative
carbon stocks required to determine carbon sequestration in performance-based payment schemes,
for example in afforestation and reforestation activities. This model should be evaluated for its
applicability across land-use systems where logging and extensive extraction for fuel wood and wild
fire are known to affect the structure of trees in the miombo woodlands.
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Appendix

Table A1. Elements of the 94 trees harvested in three 10 ˆ 10 blocks in Kasungu, Neno and Salima
in Malawi. Eighty-eight trees were used to develop and test allometric equations for estimating
aboveground biomass (AGB) in miombo woodlands. Entries with an asterisk were identified as
outliers during the analysis.

Site Species Name DBH
(cm)

Height
(m)

Crown
Area (m2)

Biomass (kg)
Stem Branch Twigs AGB

Kasungu

Bauhinia thonningii 5.1 4.3 5.11 3.41 0.45 0.45 4.31
Zanha africana 5.6 3.3 2.27 3.18 0.96 0.58 4.73

Bauhinia thonningii 6.1 4.2 3.96 3.23 0.80 0.72 4.76
Antidesma venosum 7.6 4.3 7.78 11.63 4.39 0.51 16.53
Bauhinia thonningii 7.8 4.2 9.11 6.16 11.99 1.32 19.47

Diplorhynchus condylocarpon 9.5 6.3 2.97 15.15 1.70 1.22 18.07
* Brachystegia utilis 10.1 6.3 15.22 41.25 15.59 4.30 61.15

Julbernardia paniculata 10.2 7.2 16.98 25.22 16.07 8.12 49.41
Brachystegia spiciformis 10.9 10.7 0.09 34.33 8.10 3.32 45.75

Diplorhynchus condylocarpon 12.2 9.2 6.83 22.30 40.00 16.60 78.90
Brachystegia spiciformis 13.2 6.4 10.75 25.46 2.67 10.53 38.66

Brachystegia utilis 19.1 9.8 18.73 70.64 35.62 14.65 120.91
S. cauescens 19.4 6.9 37.32 92.81 89.47 6.61 188.89

Bauhinia petersiana 21.9 8.1 26.41 106.67 67.18 7.65 181.50
Julbernardia paniculata 21.9 9.1 32.68 134.58 73.80 16.56 224.93

Bauhinia thonningii 22.0 10.2 80.11 92.47 107.51 10.14 210.13
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Table A1. Cont.

Site Species Name DBH
(cm)

Height
(m)

Crown
Area (m2)

Biomass (kg)
Stem Branch Twigs AGB

Brachystegia utilis 24.1 9.4 36.19 122.33 237.64 39.83 399.80
Bauhinia petersiana 25.8 7.1 44.15 109.59 117.66 4.24 231.49

Bobgunnia madagascariensis 25.9 7.2 59.97 82.58 265.23 19.69 367.50
Terminalia sericea 27.5 9.2 62.67 130.40 135.51 16.66 282.58

* Khaya anthotheca 30.9 9.2 99.35 314.56 556.79 27.60 898.95
* Senna siamea 31.8 16.0 115.92 282.60 479.05 23.27 784.93
Ficus capensis 44.1 13.0 102.10 219.14 626.66 32.66 878.47

Khaya anthotheca 55.8 15.7 114.72 939.03 901.38 127.19 1967.60

Neno

Acacia nigrescens 19.2 9.8 20.73 95.16 45.13 0.00 140.30
Combretum fragrans 6.8 5.6 10.15 15.50 0.89 16.39

Diplorhynchus condylocarpon 6.8 4.4 3.46 4.82 0.65 0.48 5.95
Combretum fragrans 7.3 4.2 12.53 3.75 2.91 1.01 7.66
Philenoptera violacea 8.2 4.5 9.01 7.13 3.86 2.56 13.55
Anisophyllea boehmii 17.2 6.8 77.74 57.14 66.33 7.22 130.68
Combretum fragrans 18.0 6.8 22.78 56.03 25.14 6.42 87.58
Combretum fragrans 18.5 8.3 42.88 72.36 94.17 11.61 178.14
Anisophyllea boehmii 20.2 7.1 74.66 65.29 90.15 35.67 191.11

Terminalia sericea 26.7 7.1 65.74 117.81 127.91 19.63 265.36
Piliostigma thonningii 28.8 8.3 69.39 99.84 277.94 377.77

* Terminalia sericea 29.5 8.4 133.24 185.02 463.52 67.92 716.46
Celtis durandii 34.4 13.0 75.23 271.52 158.82 430.34
Celtis durandii 34.6 11.8 96.76 203.75 233.62 437.38
Celtis durandii 35.1 11.9 101.08 211.10 83.74 294.84
Celtis durandii 38.9 15.2 77.31 451.82 253.18 705.00

Sclerocarya caffra 41.4 10.4 122.52 275.12 345.71 64.86 685.68
* Acacia nigrescens 43.2 13.0 87.65 456.88 666.88 827.52 1951.27
Sclerocarya caffra 46.1 12.2 123.65 582.75 633.84 77.85 1294.44
Sclerocarya caffra 49.0 16.0 230.99 570.34 1144.01 55.91 1770.26
Sclerocarya caffra 50.8 13.5 167.13 485.08 833.14 56.10 1374.31

Celtis durandii 74.6 19.8 236.80 1177.87 1376.60 2554.47
* Sterculia africana 76.0 11.9 86.56 603.34 637.29 1240.64

Salima

Albizia harveyi 6.5 4.1 13.95 4.13 2.04 6.16
Cassia spectabilis 7.9 4.7 2.14 10.78 6.97 17.76

Philenoptera violacea 8.2 4.3 3.96 9.17 2.18 2.01 13.36
Piliostigma thonningii 9.0 4.6 11.95 10.46 10.20 20.65

Bauhinia spp 13.6 4.8 16.24 19.94 19.73 14.51 54.17
Nchezime 15.0 10.0 31.65 77.22 11.95 89.17

Faidherbia albida 16.9 8.9 19.23 42.35 13.88 56.24
Combretum fragrans 17.0 5.8 33.51 39.81 54.03 15.14 108.98
Combretum fragrans 17.4 7.4 30.66 63.00 22.80 18.26 104.07

Faidherbia albida 19.0 9.3 14.45 51.05 29.81 80.87
Kigelia aethiopica 19.0 5.5 20.40 52.05 32.88 19.33 104.26

Piliostigma thonningii 22.3 6.7 30.68 67.96 41.34 14.62 123.92
Sclerocarya caffra 22.7 8.6 26.64 67.96 34.07 13.90 115.93
Mangifera indica 23.3 4.8 35.74 39.32 135.28 31.44 206.04

Bauhinia spp 24.5 9.0 72.35 91.02 200.20 57.14 348.37
Philenoptera violacea 26.1 7.8 16.82 128.96 43.68 25.54 198.17
Acacia polyacantha 26.6 9.7 70.85 87.93 161.13 249.07
Acacia polyacantha 27.3 9.9 78.04 96.18 125.21 27.41 248.81

Albizia lebbeck 28.0 10.8 83.20 125.49 70.53 17.60 213.62
Kigelia pinnata 28.5 7.8 49.07 152.42 242.70 39.45 434.57

Nchezime 28.5 15.8 111.23 289.11 182.50 22.23 493.83
Bauhinia spp 29.3 6.3 80.58 125.97 219.23 51.88 397.09

Piliostigma thonningii 30.7 4.3 61.50 99.18 127.56 39.65 266.39
Albizia lebbeck 30.9 11.8 83.13 161.34 65.12 16.80 243.26

Faidherbia albida 31.1 12.1 60.08 110.42 61.54 13.69 185.65
Acacia polyacantha 32.5 10.0 116.77 199.62 188.98 35.04 423.64
Acacia polyacantha 36.4 12.3 120.87 306.70 271.39 35.41 613.50
Sclerocarya caffra 38.6 8.1 96.70 205.85 271.08 42.03 518.96
Faidherbia albida 39.4 15.7 70.12 232.24 160.90 44.08 437.22
Faidherbia albida 39.6 17.2 61.43 297.39 113.73 26.14 437.25
Faidherbia albida 44.0 17.0 72.98 354.88 196.06 35.39 586.33
Faidherbia albida 44.1 15.4 148.94 375.38 249.36 70.69 695.43
Albizia lebbeck 45.4 13.0 195.78 279.41 579.44 62.78 921.62
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Table A1. Cont.

Site Species Name DBH
(cm)

Height
(m)

Crown
Area (m2)

Biomass (kg)
Stem Branch Twigs AGB

Kigelia aethiopica 46.0 9.3 65.05 324.12 531.16 67.24 922.52
Sclerocarya caffra 46.4 13.6 136.46 578.18 156.67 66.22 801.07
Faidherbia albida 47.9 16.6 128.21 389.47 260.11 77.01 726.59
Albizia lebbeck 49.7 13.4 191.01 430.27 416.73 63.53 910.53

Sclerocarya caffra 50.3 9.3 134.40 271.75 501.66 93.85 867.26
Acacia polyacantha 58.5 14.1 316.86 814.47 942.17 34.80 1791.44
Faidherbia albida 67.2 16.4 151.62 527.68 686.63 160.51 1374.82
Faidherbia albida 67.2 18.7 161.57 790.38 1029.40 205.53 2025.30

Pterocarpus angolensis 73.4 11.0 157.02 1309.04 40.40 1349.44
Kigelia aethiopica 76.4 14.6 53.98 728.05 889.06 47.48 1664.59
Faidherbia albida 96.0 24.2 383.47 1989.51 1570.40 64.22 3624.12
Faidherbia albida 98.0 23.1 168.96 2028.05 1156.51 207.61 3392.16
Sclerocarya caffra 98.4 15.8 315.26 2166.89 3008.87 182.03 5357.80
Faidherbia albida 105.0 16.7 397.22 1938.55 1986.92 159.30 4084.76
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