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Abstract: Moso bamboo is famous for fast growth and biomass accumulation, as well as high annual
output for timber and bamboo shoots. These high outputs require high nutrient inputs to maintain
and improve stand productivity. Soil nitrogen (N), phosphorus (P), and potassium (K) are important
macronutrients for plant growth and productivity. Due to high variability of soils, analysing spatial
patterns of soil N, P, and K stocks is necessary for scientific nutrient management of Moso bamboo
forests. In this study, soils were sampled from 138 locations across Yong’an City and ordinary kriging
was applied for spatial interpolation of soil N, P, and K stocks within 0–60 cm. The nugget-to-sill ratio
suggested a strong spatial dependence for soil N stock and a moderate spatial dependence for soil P
and K stocks, indicating that soil N stock was mainly controlled by intrinsic factors while soil P and K
stocks were controlled by both intrinsic and extrinsic factors. Different spatial patterns were observed
for soil N, P, and K stocks across the study area, indicating that fertilizations with different ratios of
N:P:K should be applied for different sites to maintain and improve stand productivity. The total soil
N, P, and K stocks within 0–60 cm were 0.624, 0.020, and 0.583 Tg, respectively, indicating soils were
important pools for N, P, and K.
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1. Introduction

Soil nitrogen (N), phosphorus (P), and potassium (K) are important macronutrients which can
limit or co-limit plant growth [1,2]. Human activities, such as fertilization, reclamation, and weeding,
have greatly affected the biogeochemical cycling of N, P, and K, thereby altering the pattern, magnitude,
and extent of nutrient limitation on land [3]. Effective, efficient, and site-specific management and
estimation of soil N, P, and K have attracted great interests for scientists looking to improve nutrient
input efficiency, thus increasing stand productivity and reducing environmental risks [4]. Due to
various climatic conditions [5], parent materials [6], topography [7], vegetation types [8], soil texture [9],
and land use [10], soils are characterized by a highly spatial and temporal variability. This has made the
accurate estimation of spatial nutrient content difficult. However, rational soil management requires
a deep understanding of the spatiotemporal variability of soil N, P, K, and their maps. For example,
areas of particular concern, such as nutrient deficiency, can be identified. Additionally, soil N and P
levels are closely related to soil organic carbon cycling [11], which may lead to dynamic effects on
greenhouse gas emissions that potentially result in feedback to global climate change. Therefore, it is
necessary to improve our understanding of the spatial distribution of soil N, P, and K stocks when
evaluating current and potential soil productivity, identifying potential environmental protections,
and assessing climate change [12].
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Fast developments of geostatistical techniques, such as kriging [11], have significantly advanced
the estimation of spatial variability of soil N, P, and K stocks. The most common interpolation
techniques calculate the unmeasured property at a given place using measured neighbours data with
a weighted mean [13]. The core of geostatistics is that experimental semivariograms are calculated
to analyse the spatial autocorrelation of the edaphic variables and determine the range of spatial
dependence [13]. The spatial data structure, choice of variogram models, search radius, and number of
closest neighbouring points can determine the performance of Kriging approaches. Compared to other
interpolation approaches (e.g., Inverse Distance Weighting and splines methods [14,15]), ordinary
kriging (OK) can provide more accurate estimates of the spatial distribution of soil nutrients because:
(1) OK can provide the best linear unbiased estimates and information on the distribution of the
estimation error [15]; (2) OK has relatively strong statistical advantages [16]. Additionally, OK is easy
to conduct with high accuracy compared to other kriging approaches, such as cokriging, universal
kriging, and factorial kriging. For example, cokriging requires an additional correlated covariant,
which leads to the substantial increase of field and lab work and does not increase the statistical
power [15]. Thus, OK has been widely used in spatial interpolation for different soil properties.
For example, Liu et al. [11] predicted the spatial patterns of soil N and P stocks for the whole Loess
Plateau using OK, and total N and P stocks amounted to 0.217 and 0.205 Pg (1 Pg = 1015 g), respectively.
Martín et al. [17] predicted the spatial distribution of soil carbon stocks within 0–30 cm with OK
across Spain.

Bamboo is an important forest type in Southern China, representing an area of 6.16 million ha,
more than 70% of which are Moso bamboo (Phyllostachys heterocycla (Carr.) Mitford cv. Pubescens)
forests. Moso bamboo forests are famous for their rapid growth and fast biomass accumulation.
However, annual timber harvest and bamboo shoots remove a large amount of nutrients, which
means that Moso bamboo forests require more nutrient input compared to other forest types in
order to maintain high stand productivity. Consequently, intensive management with fertilization,
reclamation, and regular understory removal is becoming increasingly popular in Southern China,
especially in the main bamboo producing provinces, such as Zhejiang and Fujian Provinces [18–20].
These activities have significantly changed the nutrient levels by affecting the microbial processes, soil
structures, and chemical compositions [21,22]. Although many studies focus on the spatial patterns
of soil N, P, and K stocks in different ecosystems [23,24], site specific maps of soil N, P, and K stocks
for scientific management of Moso bamboo forests are still lacking in our study area. In contrast,
a better understanding of the spatial distribution of soil N, P, and K stocks is strongly required for
land management and for maintaining and improving stand productivity of Moso bamboo forests.
Therefore, the objectives of this study were to: (1) predict the spatial variability of soil N, P, and K
stocks of Moso bamboo forests in Yong’an City, China and (2) estimate total soil N, P, and K stocks
within 0–60 cm.

2. Materials and Methods

2.1. Study Area

The study was conducted in the Moso bamboo forests (Figure 1, polygons) across Yong’an City,
Fujian Province, Southern China (117◦56′–117◦47′ E, 25◦33′–26◦12′ N). It has a subtropical southeast
monsoon climate with a mean annual temperature of 19.3 ◦C, while the lowest temperature is −11◦C
and the highest temperature is 40 ◦C. The average annual precipitation is about 1600 mm [25,26].
The elevation of the study area ranged from 580 m to 1605 m above sea level [25]. The accumulated
temperature of ≥10 ◦C is 4520–5800 ◦C, lasting for 225–250 days, and the relative humidity is about
80% [25]. The main soil type is Oxisol. Yong’an City has a forest cover of 82%, including an
area of 5.85 × 104 ha of Moso bamboo forests [26]. Moso bamboo forests are mainly distributed
below 800 m, most of which are pure stands and sometimes mixed with Keteleeria cyclolepis Flous.,
Cunninghamia lanceolata (Lamb.) Hook., Myrica rubra (Lour.) S. et Zucc., Choerospondias axillaris (Roxb.)
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Burtt et Hill., Liriodendron chinense (Roxb.) Burtt et Hill., and Schima Superba Gardn. et Champ.,
etc. To improve the stand productivity and increase the income, fertilization treatment has been
widely applied in most of the Moso bamboo forests. The fertilization treatment was conducted
across the whole study area using the same protocol established by the local Forest Bureau. Similar
fertilization types—organic fertilizers with N, P, and K addition, were offered every year by the Forest
Bureau because the residents can get an economic subsidy if they follow the protocol and use the
recommended fertilizers.
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Figure 1. A map of the study area showing the distribution of bamboo forests (polygons) and sampling
locations (solid circle).

2.2. Soil Sampling

The representative soils were sampled in the sub-compartments of forest resource management
sites in Fujian province, China. These sample sites are established by the local Forest Bureau for soil
mapping according to the protocol of forest management inventory [27] (Figure 1). In the targeted
sub-compartments, a total of 138 sites were selected and a cluster of three circular plots with a size of
33.3 m2 were established for each site. Due to the unfavourable access of sampling plots, most of the
samples were collected in the East and Southern portions of the study area, which covered 78% of the
total Moso bamboo forests. Thus, it is acceptable with these plots to study the spatial distribution of
soil N, P, and K stock across the whole study area using the unbiased interpolation approach of OK
(see below).

In each plot centre, soils were sampled down to 60 cm by the consideration of three layers: 0–20 cm,
20–40 cm, and 40–60 cm. In the field, soil samples in the sample layer were mixed for one cluster of the
three circular plots. In the laboratory, soil samples were air-dried at room temperature and prepared
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for sieving through 2-mm and 0.15-mm for N, P, and K content analysis. Identifiable plant residues and
root materials were removed during sieving. Because the majority of bamboo roots were distributed
within 0–40 cm [28], soil samples down to 60 cm were able to meet the research purpose to study
spatial patterns of soil N, P, and K stocks. Soil bulk density was determined by a cutting ring approach
for each soil layer [29]. During the implementation of fertilization, stones and rocks were removed in
Moso bamboo forests. As a result, few stones and rocks were observed in core samples, thus, we did
not correct for gravel content. Additionally, site information about elevation, coordinate, soil depth,
soil type, soil organic matter content, and bamboo diameters were recorded and determined.

Soil N content (g kg−1) was analysed using the Kjeldahl digestion procedure (5 mL concentrated
H2SO4, 1 g of soil passed through a 0.15-mm sieve, heated for 90 min, titrated with 0.2 mol L−1

standardized Na2B4O7). Soil total phosphorus concentration (g kg−1) was determined by alkaline
digestion (NaOH 0.2 g, <0.25 mm soil 0.25 g, 300 ◦C for 15 min and then 750 ◦C for 15 min) followed by
molybdate colorimetric measurement. Soil K content (g kg−1) was determined by sodium hydroxide
flame photometer (NaOH 0.2 g, <0.25 mm soil 0.25 g, 300 ◦C for 15 min and then 750 ◦C for 15 min,
80 ◦C water 10 mL). All the analyses followed the national standard protocol of China [29].

Thus, soil N, P, and K stocks were calculated as [30–32]:

SON (or P or K) stock = SON (P, K) × BD × D/10 (1)

where SON (or P or K) are the soil N, P, and K contents (g kg−1); BD is bulk density (g cm−3); D is the
depth of soil layer (cm). Total soil N, P, and K stocks within 0–60 cm were summed for all soil layers.

2.3. Statistical and Geostatistical Analyses

A standard statistical analysis (mean, standard deviation, first quartile, third quartile, etc.) was
conducted in R to illustrate trends of the soil N, P, and K stocks [33]. The coefficient of variation
(CV) was used to describe the degree of general variation. To meet the assumption of normality for
geostatistical analysis, the raw data was log-transformed and transformed back by weighted mean in
GS + 10.0 [34]. OK was performed in GS + 10.0 and the distribution maps of soil N, P, and K stocks
were produced in ArcGIS 10.2 [35].

2.4. OK

In the last several decades, many spatial interpolation approaches have been developed, such as
kriging; OK normally performed better and is easier to apply compared to other approaches, thereby
it has been widely used in the spatial interpolation of soil properties [11,17,23]. In the OK process,
semivariograms are used to describe the spatial autocorrelation and provide parameters for optimal
spatial interpolation based on the theory of regionalized variables [36]. Well-known theoretical
models (e.g., exponential, Gaussian, and spherical models) are commonly used to fit the experimental
semivariograms [37]. The experimental semivariograms are expressed as a function of the distance
between the sampled points and calculate the integrity of spatial continuity in one or multiple directions
using the following expression [38]:

γ (h) =
1

2N (h)

N(h)

∑
i=1

[z (xi)− z (xi+h)]
2 (2)

where z (xi), and z (xi + h) are values of z at locations xi and xi +h, respectively; h is the lag, and N(h) is
the number of pairs of sample points separated by h. In this study, spherical, exponential, linear and
Gaussian models were used to attempt to describe the semivariograms of soil N, P, and K stocks within
0–60 cm, then the best models determined by the smallest residuals and the largest determination
coefficients were selected for spatial interpolation.



Forests 2016, 7, 267 5 of 12

In the semevariograms, three major parameters were derived—the nugget (C0), the sill (C + C0),
and the range (A0)—in order to identify the spatial structure of soil N, P, and K stocks at a given
scale. The sill (C + C0) represents the total variation and the ratio of nugget and sill is considered as
a criterion to classify the spatial dependence [17]. The range (A0) represents the separation distance
when semivariogram is stabilized, beyond which the measured data are spatially independent [39].
More details about semivariograms and the kriging approach can be found in Goovaerts [37]. In our
study, OK was applied for the spatial patterns of soil N, P, and K stocks. The most likely value which
could be expected in a particular grid cell when using m neighbouring observations was defined
as [17]:

R (x) =
m

∑
j=1

δjz (xi) (3)

where δj means the optimal weight under the condition of ∑ δj = 1, m = 16 in this study.

2.5. Model Validation

To evaluate the prediction accuracy of soil N, P, and K stocks, leave-one-out cross-validation was
used [11,17,40]. In the validation process, one datum was omitted and this value was estimated by
the remaining data. Thereafter, the estimated value was compared with the real value of the omitted
point [17]. This process was repeated for all the observations. Four commonly used indices (i.e.,
absolute mean error (AME), mean error (ME), root mean square error (RMSE), and determination
coefficient (R2)) were used to compare the interpolation accuracy. These indices were calculated as
follows [11,15]:

AME =
1
n

n

∑
i=1
|(Pi −Mi)| (4)

ME =
1
n

n

∑
i=1

(Pi −Mi) (5)

RMSE =

√
1
n

n

∑
i=1

(Pi −Mi)
2 (6)

R2 = 1− ∑n
i=1 (Pi −Mi)

2

∑n
i=1
(

Mi −M
)2 (7)

where Pi, Mi, and M are predicted values, measured values, and the mean values of the measured
data, respectively.

3. Results and Discussion

3.1. Descriptive Statistics

The summary of statistics of soil N, P, and K stocks within 0–60 cm is shown in Table 1. N stock
in Moso bamboo forest increased from a minimum of 5.30 Mg ha−1 to a maximum of 20.20 Mg ha−1

with an average of 11.57 Mg ha−1. These values fell within the range of N stocks in different forest
types across China (1.0–49.9 Mg ha−1) [41]. However, the mean N stock was even higher than the
average N stock of China’s forests within one meter (8.4 Mg ha−1) [41] and the Moso bamboo in Jiangxi
Province (2.82 Mg ha−1 within 60 cm) [42]. These differences were mainly attributed to the fertilization
application in Moso bamboo forests in the study area, whereas no stand management occurs in most
of China’s forests.

Soil P stock ranged from 0.18 to 0.68 Mg ha−1 and the mean value was 0.38 Mg ha−1. Although
this range lied within the reported values of main Chinese soil types, the mean value was much
lower than the average across China (6 Mg ha−1 within 60 cm) [43]. Similarly, average soil K was
10.80 Mg ha−1 and the lowest soil K stock was 5.73 Mg ha−1 and highest soil K stock was 18.72 Mg ha−1,
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which were lower than soil K stocks in subtropical forests in China [44]. These low values of soil P and
K stocks may be related to the high output of P and K due to the high output of timber and bamboo
shoots every year. In Moso bamboo forests, P is the most limited nutrient for stand productivity [4].
Although fertilization was applied in Moso bamboo forests, P and K input could not compensate for
the P and K output from the stand. This result further indicated that more P and K fertilization should
be applied in Moso bamboo forest in order to maintain and improve stand productivity.

Table 1. Summary of statistics of soil N, P, and K stocks within 0–60 cm (Mg ha−1).

Nutrient Mean Minimum Maximum Median SD CV
(%)

1st
Qu

3rd
Qu Skewness Kurtosis p of

S-W

N Stock 11.57 5.30 20.20 10.98 3.23 27.92 8.81 13.66 0.42 −0.33 0.053
P Stock 0.38 0.18 0.68 0.36 0.11 29.10 0.30 0.45 0.60 −0.14 0.010
K Stock 10.80 5.73 18.72 10.81 3.15 29.17 8.11 13.03 0.32 −0.72 0.014

SD = standard deviation; CV = coefficient of variance; 1st Qu = 25% quartile; 3rd = 75% quartile; S-W test =
Shapiro-Wilk test.

A CV of 10% indicates a low variability and 10%–90% indicates a moderate variability, and
CV >90% indicates higher variability [45]. In this study, the CVs of soil N, P, and K stocks were
28%–29%, indicating a moderate variability of soil N, P, and K stocks within 0–60 cm. p values of
Shapiro-Wilk test were 0.053 for N stock, 0.010 for P stock, and 0.014 for K stock, indicating a normal
distribution of N stock and a non-normal distribution of P and K stocks at a significance level of 0.05.
However, in order to make the comparison of spatial interpolation of soil N, P, and K stocks consistent,
a natural log-transformation was conducted for the three stocks in order to meet the assumption of
normal distribution.

3.2. Geostatistical Analysis of Soil N, P, and K Stocks

The semevariograms are presented in Figure 2 and their parameters are shown in Table 2.
The exponential model performed best for soil N and P stocks while the spherical model was best for
soil K stock based on the smallest residuals and the highest determination coefficient. These models
produced high determination coefficients, ranging from 0.64 to 0.74.
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Figure 2. Experimental semivariograms of soil N (a), P (b), and K (c) stocks.

Table 2. Models and their parameters fitted for the semivariograms of soil N, P, and K stocks within
0–60 cm.

Nutrient Models Nugget
(C0)

Sill
(C0 + C) Nugget/Sill Range

(A0, m)
Determination

Coefficient Residuals

N stock Exponential 0.0111 0.0912 12.17 6100 0.642 0.00458
P stock Exponential 0.0570 0.1340 42.54 30,570 0.741 0.00110
K stock Spherical 0.0343 0.0986 34.79 25,700 0.643 0.00469
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Nugget values present undetectable experimental errors, field variation within the minimum
sampling space, and inherent variability [23]. In this study, nugget values were lowest for soil N stock
(0.0111), and highest for soil P stock (0.0570). These positive values suggested a positive nugget effect,
a sampling error, or random and inherent variability of soil N, P, and K stocks [23]. Sill values represent
total spatial variation [11]. The sill values ranged from 0.0912 for N stock to 0.1340 for P stock.

The ratio of nugget-to-sill represents a spatial dependence. If the ratio is lower than 25%,
it indicates a strong spatial dependence. If the ratio is higher than 75%, it indicates a weak spatial
dependence, while a ratio between 25% and 75% indicates a moderate spatial dependence [46]. A strong
spatial dependence is attributed to soil intrinsic properties, such as soil parent material, soil texture,
topography, and vegetation [23,47]. A weak spatial dependence indicates that the spatial variability
is mainly regulated by extrinsic variations, such as soil fertilization and cultivation practices [23,46].
Therefore, a moderate spatial dependence is controlled by both intrinsic and extrinsic factors. In this
study, the nugget-to-sill ratio was 12% for soil N stock, indicating that soil N stock in the study area
was mainly controlled by intrinsic factors and that external factors exerted little effects on soil N
stock. This may be related to N fertilization application in Moso bamboo forests in that the N input
from fertilization can meet the requirement of N output from timber and bamboo shoot harvest.
This conclusion was also consistent with the above result (Table 1) that N stock in this study area
was higher than other forest types. The nugget-to-sill ratios were 43% for soil P stock and 35% for
soil K stock, indicating a moderate spatial dependence that was controlled by both intrinsic and
extrinsic factors. This was evidenced by local stand management and complex topography. Intensive
managements, such as fertilization and weeding, were widely conducted in Moso bamboo forests in
order to improve timber and bamboo shoot output in the study area [19,25]. Meanwhile, the study area
was characterized by a high variability of elevations varying from 580 to 1605 m above sea level [25],
which could directly affect the soil processes and nutrient contents [11]. In the study area, intensive
fertilization treatment was conducted every year, which was expected to be the dominant factor that
led to the change of the spatial variability of soil N, P, and K stocks. However, our results (nugget-to-sill
ratio) indicated that intrinsic factors played a more important role in controlling spatial patterns of soil
N, P, and K stocks.

The ranges (A0) indicate different influence zones of environmental factors at different scales [23].
Within the range, soil properties are not spatially independent, while beyond the range, soil properties
were spatially independent [39]. In this study, the smallest range was found for soil N stock (6100 m),
and increased to 25,700 m for soil K stock and 30,570 m for soil P stock. The results indicated that
soil N stock was more heterogeneous compared to soil P and K stocks, which was associated with
soil processes because soil N stock was mainly controlled by intrinsic factors (see above). Generally,
the spatial range was larger than the sampling intervals (Figure 1), which suggested that the sampling
strategy in this study was appropriate for studying spatial patterns of soil N, P, and K stocks. However,
only a small number of sampling plots were located in the northwest of the study area due to a low
cover of bamboo forests. In contrast, the majority of the sampling sites were located in the southern and
eastern part of the study area, where most of the bamboo forests were distributed, thus the sampling
strategy could meet our research purpose and could predict the spatial distributions of soil N, P, and K
stocks accurately.

3.3. Cross-Validation of OK

The predicted values of OK were plotted against the measured values to evaluate the interpolation
performance (Figure 3). The linear model and 1:1 dashed line intersected for soil N, P, and K
stocks. Before the intersection, the linear model overestimated soil N, P, and K stocks, and vice
versa. This conclusion supported the findings of many previous studies because of the nature of the
algorithms of OK, which aimed to achieve unbiased predictions of mean values [11,15]. AME, ME,
and RMSE were calculated and presented in Table 3. The closer that the AME, ME, and RMSE values
are to zero, the better the model performed. ME of soil N, P, and K stocks ranged from −0.0022 to



Forests 2016, 7, 267 8 of 12

−0.2115, which were close to zero, indicating that OK produced relatively unbiased values for spatial
interpolation. The ME values were negative, illustrating that OK generally underestimated soil N, P,
and K stocks.

Table 3. Cross-validation indices for ordinary kriging (OK).

Nutrient AME ME RMSE

N stock 2.1506 −0.2115 2.5557
P stock 0.0626 −0.0022 0.0797
K stock 2.0250 −0.1634 2.3942

AME = absolute mean error; ME = mean error; RMSE = root mean square error.
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Figure 3. Cross-validation of OK interpolation for soil N, P, and K stocks.

Determination coefficients ranged from 0.37 to 0.47 (Figure 3), which may appear relatively low,
but they were similar to many previous studies regarding the spatial interpolation of soil properties [47,48].
This problem is associated with the dataset, which was not sampled with a probabilistic design [48].
For example, the majority of sampling plots were allocated in the southern and eastern parts of
Yong’an City in the current study (Figure 1). Therefore, a dataset with a probabilistic design is
recommended for spatial interpolation of soil properties. Another possible explanation might be the
strong local variation of soil N, P, and K stocks caused by the variability in environmental conditions
and fertilization practices. On the other hand, the low correlation between the predicted and measured
data indicates that a better methodology, such as one using Artificial Neural Network and Random
Forest, should be developed to improve the accuracy of spatial interpolation of soil N, P, and K stocks,
including consideration of both intrinsic and extrinsic factors.

3.4. Spatial Prediction of Soil N, ,P and K Stocks

The spatial patterns of soil N, P, and K stocks predicted by OK are shown in Figure 4. Predicted
soil N, P, and K stocks ranged from 7.64 Mg ha−1 to 16.02 Mg ha−1, from 0.19 Mg ha−1 to 0.63 Mg ha−1,
and from 6.85 Mg ha−1 to 17.13 Mg ha−1, respectively. The lowest soil N, P, and K stocks were found
in the middle or southern part of study area, where the city centre was located with a high population,
indicating that human activities led to a significant decrease of soil N, P, and K stocks. The highest soil
N stock was observed in the east of the study area, the highest soil P stock was found in the southwest
and north, and the highest soil K stock was in the north. However, plant growth was constrained by
the most limited nutrient. These different spatial distribution patterns suggested that fertilizers with
different N:P:K ratios should be applied to maintain and improve the stand productivity. For instance,
a relatively lower ratio of P but higher K ratio fertilizer should be applied in the south of the study
area (Figure 4b,c), while a relatively lower ratio of N fertilization should be implemented in the east
(Figure 4a). Further studies are strongly encouraged to study the N:P:K ratio for the whole study
area in order to manage Moso bamboo forests scientifically. The total soil N, P, and K stocks of the
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whole study area were 0.624, 0.020, and 0.583 Tg (1 Tg = 1 × 1012 g), respectively, indicating soils were
important pools of soil N, P, and K.
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Figure 4. Spatial distribution of soil N (a), P (b), and K (c) stocks.

4. Conclusions

In this study, the current status and spatial interpolation of soil N, P, and K stocks within 0–60 cm
were analysed using the measured data from 138 locations in Moso bamboo forests in Yong’an City,
China. OK was applied for spatial interpolation of soil N, P, and K stocks across the whole study area.
Exponential and spherical models performed well in describing the spatial distribution of soil N, P,
and K stocks with determination coefficient from 0.64 to 0.74, and cross-validation demonstrated that
OK performed well for the spatial interpolation of soil N, P, and K stocks. Soil N stocks showed a
strong spatial dependence, indicating soil N stocks were mainly controlled by intrinsic factors. Soil
P and K stocks showed a moderate spatial dependence, suggesting that soil P and K stocks were
controlled by both intrinsic (e.g., soil parent material, soil texture, topography) and extrinsic (e.g., soil
fertilization and cultivation practices) factors. Soil N, P, and K stocks showed different spatial patterns
across the whole study area, indicating that fertilizers with different ratios of N:P:K should be applied
for different sites.
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