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Abstract: The main objective of this study was to explore the accuracy of Weise’s rule of 

thumb applied to an estimation of the quadratic mean diameter of a forest stand. Virtual 

stands of European beech (Fagus sylvatica L.) across a range of structure types were 

stochastically generated and random sampling was simulated. We compared the bias and 

accuracy of stand quadratic mean diameter estimates, employing different ranks of 

measured stems from a set of the 10 trees nearest to the sampling point. We proposed 

several modifications of the original Weise’s rule based on the measurement and averaging 

of two different ranks centered to a target rank. In accordance with the original formulation 

of the empirical rule, we recommend the application of the measurement of the 6th stem in 

rank corresponding to the 55% sample percentile of diameter distribution, irrespective of 

mean diameter size and degree of diameter dispersion. The study also revealed that the 

application of appropriate two-measurement modifications of Weise’s method, the 4th and 8th 

ranks or 3rd and 9th ranks averaged to the 6th central rank, should be preferred over the 

classic one-measurement estimation. The modified versions are characterised by an 
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improved accuracy (about 25%) without statistically significant bias and measurement 

costs comparable to the classic Weise method. 

Keywords: quadratic mean diameter; diameter dispersion, sample quantile; rule of thumb; 

simulation; European beech; forest inventory 

 

1. Introduction 

Exact mathematical descriptions of stand diameter distributions are one of the important tasks of 

forest growth modelling [1]. Diameter structure is a basic modelling component of many complex 

forest growth and yield models linking individual tree characteristics with stand variables [2,3]; 

therefore, modelling stand diameter distribution is a rapidly evolving research field [4–7]. Several 

probability density functions based on statistical probability theory are used as a mathematical model of 

diameter distributions. Normal distribution modified by Gramm-Charlier expansion [8], Weibull 

distribution [9,10], Beta distribution [11], Johnson’s SB distribution [12,13], and logit-logistic 

distribution [14] are popular probability density functions. 

Principally, four main approaches are used for parameter estimation of diameter distributions:  

(i) the parameter prediction method [15]; (ii) the parameter recovery and percentile-based parameter 

recovery method [16]; (iii) the non-parametric percentile-based distribution-free method [17]; and (iv) the 

quantile regression method [18]. In particular, the quantile regression method has gained increased 

attention in the last few years [19]. 

Effective, unbiased, and accurate determination of stand mean diameter in the field is an important 

task for forest inventory and empirical modeling. Arithmetic and quadratic mean diameters (QMD) are 

the most important descriptive characteristics of diameter distributions, as derived from the 1st and 2nd 

non-central moments. They are often used for the estimation of parameters of the selected distribution 

model for the application of parameter recovery or percentile-based parameter recovery approaches [18]. 

Stand QMD is a basic input variable for the calculation of growing stock at a particular stand age. 

However, the errors associated with mean diameter determination have four times greater impact on 

the accuracy of growing volume calculations than errors of mean height determination [20]. 

An efficient method to quickly estimate the QMD in the field is an empirical rule known as Weise’s 

rule [21]. It is a rule of thumb for estimating QMD using the 60th percentile from the visually ordered 

set of diameters selected at a given sampling point. A practical procedure of estimation is based on the 

visual ranking of 10 trees nearest to the sampling point according to their size (smallest to largest) and 

measurement of diameter of the 6th stem in rank order. Stand QMD is then calculated as an arithmetic 

mean from the appropriate number of sampling point estimates (approximately 1 sampling point ha−1 is 

empirically suggested). Weise’s rule of thumb is widely used within Slovak and Czech forest state 

surveys and precedes the elaborate forest management plans obligatory for all forest owners in both 

countries [22]. From a broader European perspective, the method has been almost forgotten in spite of 

its rational approach and practical applicability. 

Due to widespread utilization of QMD in forest planning and its empirical character, Weise’s rule has 

become a subject of extensive validation in Slovak natural and forest management conditions [23,24]. 
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The percentiles corresponding to real QMD were empirically determined from a large sample of single 

species forest stands of different tree species covering almost all of Slovakia. Two separate  

surveys revealed two different sets of recommended percentiles according to different diameter 

distributions (Table 1). 

Table 1. Empirical percentiles and ranks of measured stems for QMD estimation. 

Shape of Diameter Distribution 
Percentiles and Rank of Weise’s Stem According to 

[23] [24] 

Negatively (right) skewed 57% (6th) 52% (5th) 

Symmetrical 61% (6th) 55% (5th–6th) 

Positively (left) skewed 66% (7th) 60% (6th) 

Reverse J-shaped 74% (7th) 68% (7th) 

Consequently, two practical problems arose: (i) determining which set is correct; and (ii) how to 

evaluate the shape of the tree diameter distribution before the stand is measured. Both problems likely 

encouraged wider implementation of Weiseʼs rule refinements in forestry practice. Regardless, the 

original simple rule of 6th stem in rank is typically applied irrespective of the actual distribution shape. 

Another issue is that simple estimation of sample percentiles as rank/sample size is not valid for small 

samples [25,26]. The correct percentiles for a sample size of 10 are theoretically derived from a 

cumulative density function of binomial distribution and are displayed in Table 2. 

Table 2. Rank and theoretical sample quantiles at a sample size of 10 [25]. 

Rank 1 2 3 4 5 6 7 8 9 10 

Quantile 6.7 16.2 25.9 35.5 45.2 54.8 64.5 74.1 83.8 93.3 

Table 2 implies that the measurement of the 6th diameter in rank corresponds to approximately the 

55th percentile and not to the desired 60th percentile; for a correct estimation of the 60th percentile, 

the measurement and averaging of the dimater of the 6th and 7th ranked trees should be used instead. 

According to Table 1, the 60th percentile can be considered an optimal estimate of QMD only for  

left-skewed diameter distributions according to [24], or symmetrical distributions according to [23]. 

Obviously, the rules for practical applications of Weise’s method are not clear and the current practice 

of the measurement of the 6th diameter in rank may lead to serious biases in estimated stand QMD. 

Another important issue related the implementation of Weise’s method is a purely empirical 

question regarding the determination of adequate sample size. No information exists regarding the 

variability of sample point estimates in different forest stand types; thus, the determination of correct 

sample size prior to measurement is impossible. Current practice supposes that the estimation accuracy 

meets practical needs, but exact evaluations have not been conducted. 

The objective of this study was to develop clear recommendations and rules for the practical 

application of Weise’s method by employing a simulation approach. Different types of stand structures 

for European beech (Fagus sylvatica L.), the most widespread species of Slovak forests (31.3% or 

approx. 600,000 hectares) across the Western Carpathians, were stochastically generated and randomly 

sampled. The aim was to obtain exact information about the variability, bias, and accuracy of stand QMD 

estimates employing different ranks of measured stems in single species stands of shade-tolerant 
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species growing in Central Europe. In addition, we proposed several modifications of the original Weise’s 

rule based on the measurement and averaging of two measured diameters with different ranks. 

2. Materials and Methods 

2.1. Data Generation and Simulation 

Stochastic generation of adequate numbers, spatial distribution and dimensions of individual trees 

growing at predefined site conditions was modelled for 27 virtual stands, each 9 ha in size. The virtual 

list of tree values and their coordinates in each stand were stochastically generated by an original 

modelling approach utilizing several existing submodels and equations constructed for single species 

beech stands in Slovakia. 

The modelling approach requires some basic predefined values, including site quality, defined by a 

site index of 30 m (mean stand height at reference age of 100 years) commonly found in Slovak beech 

stands, and the arithmetic mean and its degree of dispersion. Stands were differentiated by mean 

diameter size intervals of 5 cm, from 10 to 50 cm, and three categories (low, medium, and high) of 

degree of diameter dispersion (DoD). The DoD description is a qualitative measure of tree diameter 

variability that can be easily estimated in the field by visual inspection of a stand. A low degree of 

variability is typical for even-aged, single-species stands growing on homogenous sites managed by 

silviculture approaches to encourage tree uniformity (e.g., understorey thinning). Conversely, high 

DoD is characteristic of uneven-aged, highly-structured forest stands of variable site conditions tended by 

close-to-nature approaches that preserve high variability of individual tree characteristics [20]. In total, 

27 combinations of 9 mean diameters and 3 DoD yielded 27 virtual beech stands covering almost all 

stand structure types of European beech that can be found in Slovakia on a single predefined site 

quality. An effort was made to adequately capture the whole variety of stand types in order to secure a 

wider generalization of the study results. 

The virtual stands were generated through mathematical modelling using the following approach: 

(1) Estimation of the stand age, number of trees per hectare, and mean height corresponding to  

the selected mean diameter for a given height site index of 30 m from valid growth and yield 

tables [27]; estimation of the diameters coefficients of variation and standard deviations from 

the mean diameters according to different DoD categories through regression equations [28]; 

(2) Estimation of the diameter distribution skewness and curtosis corresponding to selected mean 

diameters and DoD categories from results published by Halaj [23]; 

(3) Mathematical modelling of the diameter distributions based on predefined mean diameter, 

DoD categories, and estimated coefficients of skewness and excess by means of normal 

distribution modified by the second order Gram-Charlier expansion; and 

(4) Stochastic generation of individual tree dimensions (tree diameter, height, and crown width) 

and tree coordinates within the stand area. 

An overview of input variables required for a simulation of virtual stands (results of steps (i)–(iii)) 

is given in Table 3. 
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Table 3. Input variables for simulation of individual trees in virtual stands. 

Stand Variables 
Degree of  

Dispersion 

Mean Diameter (cm) 

10 15 20 25 30 35 40 45 50 

Age (year)  35 45 60 75 90 110 135 155 180 

Number of trees (ha−1)  3788 2160 1227 828 615 455 343 287 241 

Mean height (m)  13.5 17.2 21.7 25.3 28.3 31.5 34.7 36.8 39 

Coefficient of  

variation (%) 

Low 27.5 26.1 25.1 24.5 24.2 24.4 24.9 25.8 27.0 

Medium 37.0 34.6 33.0 32.1 32.0 32.6 34.0 36.2 39.1 

High 46.3 42.9 40.5 39.4 39.3 40.4 42.6 45.9 50.4 

Skewness A 

Low 0.45 0.50 0.60 0.65 0.68 0.65 0.60 0.48 0.30 

Medium 0.40 0.48 0.52 0.55 0.60 0.55 0.50 0.30 0.10 

High 0.30 0.40 0.48 0.52 0.60 0.58 0.50 0.35 0.10 

Kurtosis E 

Low –0.70 0.00 0.20 0.50 0.70 0.65 0.50 0.15 –0.10 

Medium –0.70 –0.20 0.10 0.35 0.40 0.35 0.10 –0.30 –0.80 

High –1.20 –0.50 –0.30 0.00 0.12 –0.05 –0.30 –1.00 –1.20 

The diameter distributions were mathematically expressed by a probability density function of 

normal distribution modified by the Gram-Charlier expansion [29]: 
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where f (dj) is relative frequency for j-th diameter class with 1 cm width. Variable zj is a normalized 

variable for j-th diameter class calculated as dgjj sddz )(  , where dj is the central value of j-th 

diameter class, and gd  is QMD. κ3 and κ4 are the 3rd and 4th cumulated diameter distribution 

modified symmetry and excess of normal distribution, respectively. The cumulants are functions of 

central moments, m2, m3, m4; when κ3 = m3 and κ4 = m4 − 3 m2. The 2nd–4th central moments, mx are 

calculated from estimated values of sd; A and E are listed in Table 3. An overview of all input 

variables in Equation (1) is given in Table 4. The use of the modified normal distribution is justified by 

its flexibility and by the possibility to obtain reliable estimates of its parameters for all considered 

types of beech stands. 

Table 4. Input variables for diameter distribution modelling. 

Variable 
Degree of  

Dispersion 

Mean Diameter (cm) 

10 15 20 25 30 35 40 45 50 

sd 

Low 2.8 3.9 5.0 6.1 7.3 8.5 10.0 11.6 13.5 

Medium 3.7 5.2 6.6 8.0 9.6 11.4 13.6 16.3 19.5 

High 4.6 6.4 8.1 9.8 11.8 14.1 17.0 20.7 25.2 

κ3 

Low 36 42 114 176 269 425 660 982 1111 

Medium 50 108 215 336 627 952 1687 1982 3055 

High 104 231 485 771 1474 2762 4836 9514 6227 

κ4 

Low −134 −94 −51 491 2123 3439 4904 1085 20024 

Medium −934 −587 −510 1326 2796 5266 −3769 −47673 −244450 

High −2530 −2785 −5271 −4588 −5789 −28267 −109209 −545833 −1407101 
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After obtaining the mathematical representation of diameter distributions, the list of individual trees 

and their dimensions for each modelled stand was generated (step iv). Initially, a list of individual 

diameters was stochastically generated from the diameter distribution described by Equation (1). Two 

numbers, r1 and r2 from uniform distribution (0.1), and the random diameter, dr from range 0.1–120 cm, 

calculated using the formula dr = 0.1 + r1120, were determined. The random diameter, dr was assigned 

corresponding to the 1 cm diameter class calculated by Equation (1) and the relative frequency of 

diameters f (dj) in that particular class. The random diameter dr was stochastically accepted if r2 < f (dj); 

otherwise, the stochastic generation was repeated with a new pair of random numbers [r1, r2] The 

process was repeated until the number of accepted tree diameters equaled the expected number of trees 

per hectare (Table 3). 

Individual tree heights were estimated using a generalized height-diameter model [30] and the 

generated tree diameter, d defined mean diameter, gd  and corresponding mean height, gh variables 

(Table 3); regression estimates of heights were stochastically modified. Normal distribution of height 

residuals in a particular diameter class with 0 mean and variance were provided by Halaj [31]. Tree 

crown widths were estimated by non-linear regression from known tree height and diameter [28], and 

the distribution of trees was modelled across the stand area. 

Tree distribution was simulated based on a model parameterised from long-term research plot data 

from Slovak single-species beech stands [32]. This approach was based on the stochastic generation of 

individual tree coordinates (x, y) from a uniform distribution of possible coordinates that was 

stochastically verified by a probability, p (lr) determined by a generalized logistic equation using 

relativised distance, lr. Relativised distance can be considered a special competition index calculated 

from the crown widths and spatial distances between randomly selected pairs of trees. Tree coordinates 

are accepted as long as the random number r generated from uniform distribution with range 0–1 is  

r < p (lr); otherwise, the procedure is repeated with new random coordinates, and the procedure is 

repeated until all generated trees are positioned within the stand area. 

2.2. Methods 

The average of simulated point samples of QMD estimates according to Weise’s rule determined 

the estimated QMD in each virtual stand. For each virtual stand (Table 5), simple systematic sampling 

was used with a sample size calculated to achieve an accuracy of Δ% = 5% at the confidence level  

P = 95%, using the formula: 
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where tα/2,f is a critical value of Student’s t distribution and sd% is the tree diameter coefficient of 

variation (Table 3). 
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Table 5. Number of sampling points for accuracy of Δ% = 5% at the 95% confidence level. 

Degree of Dispersion 
Mean Diameter (cm) 

10 15 20 25 30 35 40 45 50 

Low 121 100 81 81 81 81 81 100 100 

Medium 196 169 144 144 144 144 144 169 196 

High 289 256 225 196 196 225 225 256 289 

Several variants and modifications of Weise rule applied to QMD estimation were examined: 

– Estimations based on the diameter measurement of the 5th, 6th, 7th, and 8th ranked largest 

trees of the 10 individuals nearest to the sampling point 

– Estimations based on the average of the two diameter measurements with appropriately 

selected ranks: 

 Five rank combinations, [5. and 6.]––[4. and 7.]––[3. and 8.]––[2. and 9.]––[1. and 10.], 

centered between the 5th and 6th rank (50% percentile according; Table 2) 

 Four rank combinations, [5. and 7.]––[4. and 8.]––[3. and 9.]––[2. and 10.], centered on 

the 6th rank (55% percentile) 

 Four rank combinations, [6. and 7.]––[5. and 8.]––[4. and 9.]––[3. and 10.], centered on 

between the 6th and 7th rank (60% percentile) 

 Three rank combinations, [6. and 8.]––[5. and 9.]––[4. and 10.], centered on the  

7th rank (65% percentile) 

 Three rank combinations, [7. and 8.]––[6. and 9.]––[5. and 10.], centered between the 

7th and 8th ranks (70% percentile) 

 Two rank combinations, [7. and 9.]––[6. and 10.], centered on the 8th rank  

(75% percentile) 

In principle, all ranks or combinations of ranks that have the potential to produce good estimates of 

the QMD were explored. The two-measurement variants were applied at only half of the sampling  

points to maintain the same number of diameter measurements and to approximate equal field 

sampling time and measurement costs necessary for stand QMD estimation for comparisons between 

one- and two-measurement variants. 

The individual estimates of the QMD at each sampling point, jd  were obtained using Weise’s 

variants. The arithmetic mean of sampling point estimates, gd̂  provided the final estimate of real stand 

QMD, gd  and the relative standard deviation of sampling point estimates, %
jds , provided a measure 

of variability of sampling point estimates within the stand. The standard error of estimation, %es  

describing the precision was determined using the equation: 

1%%  nss
jde  (3) 

where n is the number of sampling points. Relative deviation of the final estimate gd̂  from known 

mean stand diameter gd or the relative estimation bias was determined to be: 

100)ˆ(% ggg ddde   (4) 
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Statistical significance of biases were tested by a t-test at the level of significance α = 5%. Final 

measurements of estimated accuracy were calculated as: 

%%eRMSE 22
es  (5) 

where RMSE denotes the percent root mean square error. 

The generation of virtual stands, the simulations of tree samples, and the application of different 

QMD estimation methods associated with calculations of biases, precisions, and accuracies of applied 

methods were done in the Borland Pascal programming environment [33]. 

3. Results 

A trend of significant under-estimation to significant over-estimation of QMD was evident with 

increasing rank for one-measurement variants of Weise’s rule (Figure 1A). The smallest, but still the 

most significant negative bias (calculated as average of all examined stands differentiated by mean 

diameter size and DoD), was achieved for the 6th rank. Because biases composed a substantial part of 

the accuracy, the smallest average RMSE of 2.8% at 68% confidence level (i.e., approx. 5.6% at 95%) 

was also achieved at the 6th rank. Still, the 6th rank was the most accurate and was higher than the 

originally intended 5.0% at the 95% confidence level. On the other hand, the average precision, se%, 

was rather high for all ranks (1.10%–1.26% at the 68% level) with only small and random variations 

among them (Figure 1B). 

 

Figure 1. Comparison of accuracy (A); and precision (B) for one-measurement variants of 

Weise’s estimation averaged across all examined stands. The stacked accuracy bars 

representing averaged proportions of bias (grey) and precision (white) in terms of 

accuracy were calculated as ratios of squared bias/precision on squared RMSE. Signs in 

the bias proportions shows the prevalent direction of original biases (under- or 

overestimation). The signs denoted by an asterisk indicate the prevalence of statistically 

significant biases at a p-value of 5%. 
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More detailed analysis of the best accuracy results according to different mean diameter size and 

degree of diameter dispersion confirms that the measurement of the 6th stem in rank is the best variant 

in 24 out of 27 cases (Table 6). More than 90% (22 out of 24) of 6th rank RMSE% contained negative 

biases of which approximately 60% (13 out of 22) are significant at a p-value of 5%. The influence of 

different mean diameter size on RMSE was not unambiguous, but a weak tendency of RMSE to 

decrease at larger mean diameters was observed. 

Table 6. The optimal rank, accuracy, and bias of QMD estimation for the best  

one-measurement variants of Weise’s rule (the values in column for each combination of 

QMD and DoD are optimal rank followed by RMSE and bias in %). 

Degree of  

Dispersion 

Real QMD in cm Mode 

10 15 20 25 30 35 40 45 50 Mean/Mean 

Low 

6 6 6 6 6 6 6 6 6 6 

1.38 3.01 1.21 2.08 2.36 1.94 3.00 2.61 2.02 2.18 

−0.81 −2.82 * −0.32 −1.83 −2.16 * −1.70 −2.76 * −2.40 * −1.69 −1.83 

Average 

6 6 6 6 6 6 6 6 6 6 

3.10 1.74 2.40 3.16 2.09 3.46 1.61 1.77 1.44 2.31 

−2.91 * −1.34 −2.17 * −2.99 * −1.87 −3.29 * −1.26 −1.42 −0.90 −2.02 

High 

6 7 6 7 6 7 6 6 6 6  

3.48 4.99 4.08 4.87 3.25 4.26 3.52 3.09 1.19 3.04 1 

−3.31 * 4.89 * 3.95 * 4.77 * −3.07 * 4.16 * −3.35 * −2.88 * 0.14 −2.24 

Mode 6 6 6 6 6 6 6 6 6  

Mean/Mean 
2.65 3.25 2.56 3.37 2.56 3.22 2.71 2.49 1.55  

−2.34 0.25 −2.15 −0.02 −2.36 −0.28 −2.46 −2.23 −0.82  

1 the averages for this DoD category are calculated only for optimal 6th rank values, * the statistically 

significant biases at p-level 5% 

The influence of DoD was more pronounced. The measurement of the 6th stem in rank was the 

most accurate variant for stands with low and medium DoD with mean RMSE% of 2.2% and 2.3%, 

respectively, at the 68% confidence level. In spite of the most significant negative biases, mean 

RMSEs of these categories were smaller than the proposed accuracy of 2.5%. For the high DoD 

category, the results were more complicated, although the 6th rank was generally still optimal. 

However, measurement of the 7th stem in rank was the best option in some cases (particularly with 

smaller mean diameters) because they had smaller RMSE% than the 6th stem in rank. Application of 

7th stem in rank was accompanied by a significant overestimation of QMD in contrast to 

underestimations characteristic of the 6th rank. The mean RMSE% (3.04%) was about 20% higher than 

the proposed accuracy of 2.5%, which was not surprising considering the higher variability of diameters 

in the generated stands of the high DoD category. 

Modification of the classic Weiseʼs method based on averaging of two diameter measurements in 

selected ranks on half the number of sampling points clearly improved the estimation accuracy  

(Figure 2A). The most successful variants of the two-measurement modifications, the 6th rank centroid 

obtained by averaging the measurements of the 4th and 8th stems in rank and the 6th rank centroid 

obtained by averaging the measurements of the 3rd and 9th stems in rank, achieved average RMSE of 
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2.17% and 2.12%, respectively, for all stands. They were approximately 15% lower than the planned 

accuracy of 2.5% and approximately 25% lower than the accuracy at 2.8% of the best 6th rank’s variant 

of the classic one-measurement Weiseʼs method. The 6th variant of 3–9 had a lower positive bias of 

0.86% (on average) in comparison to the 6th variant of 4–8 with a larger negative bias of 1.25%  

(i.e., 33%). Both biases were statistically non-significant at a p-level of 5% in most stands. Precisions 

of the best two-measurement variants varied between 1.25 and 1.55% on average, which was slightly 

worse than the precisions of one-measurement variants of Weise estimation (Figure 2B). More detailed 

analysis of the best two-measurement variants according to different mean diameter sizes and DoD 

revealed no significant differences (Table 7). 

 

Figure 2. Comparison of accuracy (A); and precision (B) for two-measurement 

modifications of Weise’s rule averaged across all stands. The stacked accuracy bars 

representing averaged proportions of bias (grey) and precision (white) on accuracy were 

calculated as ratios of squared bias/precision on squared RMSE. Signs in bias proportion 

parts show the prevalent direction of original biases (under- or overestimation), and the 

signs denoted by an asterisk indicate the prevalence of statistically significant biases at a  

p-value of 5%). 

Almost all biases of the best variants were not statistically significant and two variants identified  

as optimal varied according to different mean diameters and DoD. The 6th variant of 3–9 was the best 

in 13 of 27 cases, while the 6th variant of 4–8 was best in 14 of 27 cases. In general, negative bias was 

prevalent amongst most estimations. The 6th variant of 4–8 had negative biases in 8 of 14 cases and 

the 6th variant of 3–9 had negative biases in 9 of 13 cases. The slight statistically non-significant 

tendency to underestimate existed if the two most accurate two-measurement variants were used for a 

QMD estimation. 
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No clear pattern of optimal two-measurement variants was visible according to the mean diameter 

size of the generated stands, but a weak pattern was detected according to DoD. The 6th variant of  

4–8 occurred with a higher frequency in low DoD (7 of 9 cases), which was opposite to the high DoD 

stands whereby the 6th variant of 3–9 prevailed (6 of 9 cases). Medium DoD was also consistent with 

average frequency analysis, e.g., the 6th variant of 3–9 was identified and recommended due to its 

slight prevalence (in 5 of 9 cases). 

Table 7. The optimal centroid rank/combination of measured ranks, accuracy, and bias of 

QMD estimation for the best two-measurement variants of Weise’s rule (the values in 

columns for each combination of QMD and DoD are optimal rank centroid/combinations 

of measured ranks followed by RMSE and bias in %). 

Degree of  

Dispersion 

Real QMD (cm) Mode 

10 15 20 25 30 35 40 45 50 Mean/Mean 

Low 

6/4–8 6/3–9 6/4–8 6/4–8 6/4–8 6/4–8 6/4–8 6/3–9 6/4–8 6/4–8 

1.56 1.37 1.71 1.62 1.38 1.57 1.65 1.53 1.76 1.57 

–0.77 –0.21 –0.15 –0.97 * –0.51 0.3 0.03 –0.53 1.21 –0.18 

Medium 

6/3–9 6/4–8 6/4–8 6/3–9 6/3–9 6/3–9 6/4–8 6/3–9 6/4–8 6/3–9 

1.29 1.38 1.22 1.5 1.14 2.19 1.50 1.81 1.42 1.49 

–0.06 –0.05 –0.32 –0.60 0.16 –1.68 * 0.01 1.18 0.38 –0.11 

High 

6/3–9 6/3–9 6/4–8 6/3–9 6/4–8 6/3–9 6/3–9 6/4–8 6/3–9 6/3–9 

1.24 1.37 1.62 2.33 1.48 1.49 1.53 1.97 1.34 1.60 

0.26 –0.21 –0.96 * –1.92 * 0.39 –0.32 0.77 –1.46 * –0.36 –0.42 

Mode 6/3–9 6/3–9 6/4–8 6/3–9 6/4–8 6/3–9 6/4–8 6/3–9 6/4–8  

Mean/Mean 
1.36 1.38 1.52 1.82 1.34 1.75 1.56 1.77 1.51  

–0.19 –0.16 –0.48 –1.16 0.01 –0.57 0.27 –0.27 0.41  

* The statistically significant biases were at a p-level of 5%. 

4. Discussion and Conclusions 

A simple QMD estimation using an appropriate sample quantile is an efficient, practical solution to 

quickly estimate the QMD of forest stands in the field. Although QMD estimation using Weise’s rule 

is widely used in Czech and Slovak forest inventory practice, an evaluation of the accuracy of QMD 

quantile estimations and exploration of different estimation alternatives has been missing until now. 

Our study clearly demonstrates the usefulness of Weise’s method for a range of forest structure 

types in the Western Carphatians, particularly for single-species beech forests. The advantage of 

Weise’s method is the estimation of QMD at the sampling point using one diameter measurement; 

systematic group sampling and measurement of ten trees are transformed into a single systematic 

sampling of one specific tree. The inclusion of information about specific stem ranks into the 

mathematical measurements provides variable sample point QMD estimates, similar to the variability 

of sampling point estimates calculated as an average of ten measured diameters. Therefore, the number of 

sampling points required for an arbitrarily selected accuracy and confidence level could remain equal, 

but the number of diameter measurements at the sampling point is ten times smaller. Thus, it seems 

reasonable to expect ten times lower time consumption and measurement costs in comparison to full 

group sampling. 
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This simulation study confirmed the recommendation to apply the 6th rank corresponding to the 

55% percentile of diameter distribution in accordance with the original empirical rule. However, our 

study also revealed that the application of the appropriate two-measurement variants of the modified 

Weise’s method (measurement and averaging of 4th and 8th or 3rd and 9th diameters in rank centered 

to the 6th rank) over a single measurement of the 6th diameter in rank should be preferred in beech 

stands growing in the Western Carphatians. The accuracy of the best variants of the modified Weiseʼs 

method was about 15% higher compared to the original accuracy of 5% at the 95% confidence 

interval, and it was about 25% higher compared to the classic Weise method at comparable 

measurement costs. One advantage of the two-measurement variants was the absence of significant 

bias, which was notably decreased in the final accuracy of the single 6th rank estimation. 

Recommendations for the two-measurement variant application differ according to DoD category. 

The variant of the 6th diameter in rank of the 4th–8th rank measurements is recommended in stands 

with low diameter dispersion, irrespective of the mean diameter size (e.g., artificially regenerated 

even-aged beech stands tended by thinning from below growing on homogeneous sites). Averaging the 

3rd and 9th ranks is suggested for stands with medium and high diameter dispersion, irrespective of the 

mean diameter size (e.g., stands growing on less homogenous sites with more differentiated age 

composition, or more variable spatial and vertical stand structure resulting from the application of 

modern silviculture approaches, such as natural regeneration, intensive crown or target tree thinnings, 

more close-to-nature management, etc.). 

It should be noted that the explicit recommendation of the 6th rank is closely related to the 

characteristics of the empirical material. According to [23], the tendency toward slightly left-skewed 

diameter distributions persists in beech stands in general in the Western Carpathians. This is clearly 

reflected in Table 3, where values of skewness (A) and kurtosis (E) varied between 0.1–0.68 and −1.2–0.7, 

respectively. This indicates that most of the diameter distributions included in the study had a slight left 

asymmetry and a nearly normal kurtosis distribution. In such cases, simple arithmetic and quadratic 

mean diameters are always greater than the median and utilization of percentiles over 50% is to be 

expected as a priori. Because of the slight deviation from normal symmetry, the 60% percentile and 

the 6th rank of measured stem is a natural choice. These stand types were characteristic of managed 

even-aged, normal age-classed stands favored in the past. 

Changing environmental conditions and public demands have encouraged more close-to-nature 

silviculture and management strategies supporting the diversification of tree age composition and stand 

structure. Close-to-nature management of beech stands with natural regeneration under shelterwood 

management supports the desired variability in shapes of diameter distribution curves, where highly 

asymmetric or even reverse J-shaped distributions are becoming more frequent in forest practice. 

Therefore, if it has been found that management approaches have favored practices that encourage a 

divergence of stand structure from normal, even-aged forest structures, we suggest utilizing the  

two-stage approach. In the first preliminary stage, measurements of a small preliminary set of diameters, 

e.g., 10 trees, distributed across the stand area in a systematic fashion are recommended. Therefore, 

sample ordering, estimation of sample quantiles corresponding to measured diameters (for example 

according to Table 2), and the calculation of QMD from the preliminary diameter set are suggested. 

Subsequently, regression estimation of parameters of a cumulative density function for a suitable 

diameter distribution model (e.g., Weibull or SB distribution) according to the principles of  
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percentile-based parameter recovery approaches, and the calculation of exact sample quantile 

corresponding to preliminary QMD are suggested. Alternatively, the exact sample quantile 

corresponding to preliminary QMD can be determined using simple interpolation between sample 

quantiles reported in Table 2. 

The calculation of QMD from a preliminary set of diameters and determination of corresponding 

sample percentile (exact or aproximative) will determine the correct rank (or combination of ranks) of 

measured stem(s) at sampling points in the second phase. The second phase has the character of 

common presently applied approaches, which means: (i) the formation of representative systematic sample 

of sampling points; (ii) visual ordering of ten nearest stems at each sampling point; (iii) measurement 

of the specific proper rank(s) at each sampling point; and (iv) average QMD point estimates over the 

whole stand. 

A key part of all the above-described approaches is a simple non-parametric rank estimation of 

sample quantiles. Different definitions of sample quantiles used in several statistical packages are 

reviewed by [26]. Further research is needed in order to find the optimal definition of sample quantiles 

from QMD estimation and/or growing stock calculation. 

Overall, this study confirmed the usefulness of Weise’s rule of thumb. Original and modified 

versions of Weise’s method attained almost invariant bias and accuracy according to different mean 

diameter sizes, i.e., they achieved similar accuracy in stands with completely different age and site 

quality. Only the degree of diameter dispersion significantly affected QMD accuracy; diameter dispersion 

is easily determined from forest management information records, or on the basis of a simple visual 

inspection of the stand. Two-stage sampling application of Weise’s method is recommended in beech 

stands with very diversified structure, unmanaged or managed by more close-to-nature approaches, to 

ascertain correct rank(s) of stems measured at a sampling point. 

Empirical estimation of QMD by Weise’s method is a simple yet highly effective way to determine 

mean diameter with reasonable accuracy. Moreover, two-measurement modifications of the original 

rule show a tendency to remain unbiased and achieve a high accuracy of QMD estimation compared to 

the original method. Therefore, they could be recommended for application in even- and uneven-aged 

beech forests growing in Central Europe. 
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