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Abstract: Fire is an intrinsic element of many forest ecosystems; it shapes their ecological 
processes, determines species composition and influences landscape structure. However, 
wildfires may: have undesirable effects on biodiversity and vegetation coverage; produce 
carbon emissions to the atmosphere; release smoke affecting human health; and cause loss 
of lives and property. There have been increasing concerns about the potential impacts of 
climate variability and change on forest fires. Climate change can alter factors that influence 
the occurrence of fire ignitions, fuel availability and fuel flammability. This review paper 
aims to identify tools and methods used for gathering information about the impacts of 
climate variability and change on forest fires, forest fuels and the probability of fires. Tools 
to assess the impacts of climate variability and change on forest fires include: remote sensing, 
dynamic global vegetation and landscape models, integrated fire-vegetation models, fire 
danger rating systems, empirical models and fire behavior models. This review outlines each 
tool in terms of its characteristics, spatial and temporal resolution, limitations and 
applicability of the results. To enhance and improve tool performance, each must be 
continuously tested in all types of forest ecosystems. 
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1. Introduction 

Fire is an important driver of ecological processes in many forests and determines their species 
composition and landscape structure [1]. Wildfires are natural processes in many forest ecosystems, but 
they can have undesired on-site effects [2], such as degradation of vegetation, impacts on biodiversity, 
loss of lives and property, and off-site effects, such as smoke, impacts on human health and carbon emissions 
to the global atmosphere. These undesired impacts may intensify because fire activity is projected to increase 
for many regions of the world under the current change in climate [3–7]. 

According to the Intergovernmental Panel on Climate Change (IPCC) fifth assessment report (AR5) [8], 
there is strong evidence of warming atmosphere and temperatures that can affect extreme events. At the 
end of the twenty-first century (2081–2100), the global mean surface temperature may be higher by 
approximately 1 °C–3.7 °C, the intensity and/or duration of droughts on regional to global scales are 
likely to increase, and tropical cyclone activity (e.g., in the Western North Pacific) may increase 
compared to 1986–2005 [8]. Subsequently, climate change may induce global variations in potential fire 
hazard [5,9], causing an increase in the probability of fire occurrence [4,7], due to more and larger fires 
projected under climate change scenarios [10,11]. 

Defining the occurrence, extent and impact of forest fires requires knowledge about different factors 
influencing the initiation, spread and impact of forest fires, together with an assessment of the 
vulnerability of the resources affected by fire. Fires will start and spread when there are ignition sources, 
fuel availability and favorable flammability conditions (Figure 1). Fires may be ignited 
anthropogenically or naturally, the relative importance of each of the ignition causes is specific to the 
region of study and are influenced by social and environmental factors [12,13] Once an ignition occurs, 
fires may spread if fuels are available and flammability conditions are conducive. The influence of forest 
fuels both dead and alive on fire behavior depends on their quantity, continuity and condition [14]. The 
capacity of the fuels to sustain combustion (flammability) depends on the fuel characteristics, such as 
fuel moisture content and chemical composition. The chemical composition of the forest fuels is directly 
related to the floristic composition of the forest [15], whereas the moisture content depends both on the 
type of fuels (e.g., size, dead/alive, biophysical structure) and the climatic conditions present before the 
fire occurred [16]. Although climate is the main determinant in large-scale variations of fuel 
flammability [11], other factors that control the build-up of dead fuels include stand age, stability and 
health as well as interactions with other disturbances (e.g., pests, diseases) [17,18]. The natural 
development of a forest defines the availability of forest fuels; human activity, through forest 
management, can modify the species composition and structure of the living fuels, playing an important 
role in explaining the behavior of fires and their effect on the remaining vegetation [19,20]. 
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Figure 1. Fire factors and possible impacts of climate variability and change on forest fires. 

The recent and future change in climate is expected to modify several factors influencing the 
occurrence of ignitions, fuel availability and flammability (Figure 1). Climate change for example may 
alter the regime of storms, and so directly modify the number of lightning-caused fires [21] and indirectly 
modify the number of human-caused fires [22]. Climate change may also lead to shifts in the floristic 
composition and structure of forests [4,23]. Furthermore, changing climate may modify short-term 
climate variability, leading to higher temperatures, lower humidity and stronger winds, which may be 
undesirable in some cases. These conditions may increase fuel flammability and fire spread [21,24]. 

Addressing the impact of climate change on forest fires is not an easy task and can be tackled in 
multiple ways, depending on the specific objectives of the study, the temporal and spatial framework, 
the available data, and the modeling approach. This paper will identify and describe tools that can be 
used to assess the impacts of climate variability and change on forests, fuels and forest fires. 

We reviewed the literature, reports and gray/white papers on tools and methods used to assess or 
calculate the current activity of forest fires and fire hazard. The review included systems used for 
predicting the future evolution of forest fuels, models to assess factors influencing the probability of fire 
occurrence, models generating scenarios regarding the combined evolution of forests and fires, and 
models simulating the behavior of fire under current or future climate conditions. We obtained this 
literature from several sources. We searched for articles using Web of Knowledge/Science 
(http://apps.webofknowledge.com, published in 2000–2013) using keywords of “Topic = (climat* AND 
chang*) AND Topic = (forest* AND fire* OR wildfire*)”. We also obtained articles from Google 
Scholar (http://scholar.google.com) search engine, libraries’ and authors’ collections. 
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2. Remote Sensing Approaches: Monitoring and Mapping Fires and Fuel Characteristics 

Remote sensing data and methods can model the possible impacts of climate variability, changes in 
forest fire regimes and provide the required information on early warning systems. Information from 
remote sensing can be used to assess fuel characteristics, define historic fire regimes, measure potential 
fire hazards and monitor active fires. Fuel flammability, availability and types are crucial factors 
determining the possibility of fuel ignition and potential fire behavior, including the speed of fire spread. By 
providing information about fire regimes over large areas and the current status of vegetation, remote-sensing 
tools can generate baseline information on the impact of fires and provide information on the current fire 
hazard that can be used to generate scenarios under climate change. Remote sensing data can be used as 
inputs to other tools such as empirical ignition models and fire behavior models to study the potential 
fire behavior and fire occurrence probability [25]. 

Remote-sensing technologies provide information about fire at different spatial and temporal scales. 
For example, mapping active fires requires monitoring systems that can capture data on fire events at 
near real time so that  satellite data with daily revisit time but less than 250 m resolution is often used. 
In contrast, monitoring burned scar areas needs data at higher spatial resolution (i.e., 15–30 m resolution) 
to differentiate burned areas from other land cover types, but may not require data on daily basis. Satellite 
sensors with moderate temporal resolution (i.e., 16–30 days resolution) are useful to characterize 
medium to large sized burned areas. 

Several satellites and aerial sensors are available for monitoring active fires, burned areas, fuel 
availability and fuel flammability (Table 1). Most of the approaches rely on satellites, which integrate 
multispectral sensors (ASTER, AVIRIS, Ikonos, Landsat, MASTER, MODIS, NOAA-AVHRR, 
RapidEye). Sensors that incorporate infrared and near-infrared bands can identify vegetation presence, 
changes or stress status, and heat release from active fires. Another approach is to fuse synthetic aperture 
radar (SAR) and laser scanning data (LIDAR). These provide interesting features as they can disregard 
clouds or vegetation when measuring soil moisture (SAR), or generate a three-dimensional image of the 
vegetation/fuel distribution (LIDAR). 

The National Oceanic and Atmospheric Administration-Advanced Very High Resolution Radiometer 
(NOAA-AVHRR) has a coarse spatial resolution of 1 km but has high temporal resolution (1 day). It 
provides a good platform for detecting active wildfires and mapping burned scars and has been used in 
different biomes [26–29]. It also has important features for producing daily information on the 
normalized difference vegetation index (NDVI) [30], which can be used to map forest vegetation, identify 
changes in the distribution of land uses and provide information about the vigor and water stress of 
vegetation. Such daily vegetation indices can be applied to estimate changes in vegetation, fuel moisture and 
subsequently be adapted for fuel availability and flammability assessment. There are at least two NOAA 
polar-orbiting satellite platforms bearing AVHRR sensors, but omission/commission errors of active fire 
detection may still occur as a result of atmospheric and diurnal conditions that are not always optimal 
for data retrieval. 
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Table 1. Examples and description of current remote sensing applications and their capabilities for monitoring and/or mapping active forest 
fires, burned areas, fuel availability, fuel flammability (marked with a √ whenever the tool was found suitable for each specific purpose). 

Sensor 
Spatial 

Resolution 

Temporal 

Resolution 
Study Area 

Analyzing, Monitoring and/or Mapping 

Product Features Area Coverage Sources/Reference Active 

Fires 

Burned 

Areas 

Fuel 

Availability 

Fuel 

Flammability 

NOAA-AVHRR 1000 m  1 day 

Australia, Brazil, Central 

Africa, Indonesia, 

Mediterranean, North 

America, North and South 

Korea, Russia 

√ √ √ √ 
Multispectral optical data, 6 bands. 

Red and near-infrared bands (NDVI) 
Large [26–29,31–39] 

RapidEye 5 m 1 day Germany, Indonesia, USA  √ √ √ 
Multispectral optical data, 5 bands 

(400–850 nm) 
Small [40–43] 

AVIRIS 15–20 m User defined USA    √ √ 

Hyperspectral optical data, 220 

bands. Visible, near-infrared to 

shortwave infrared spectral band 

Small to medium [37,39,44,45] 

Landsat 

TM/ETM 
15–60 m 16 days 

Brazil, France, Greece, 

Indonesia, Portugal,  

Spain, USA 

√ √ √ √ 

Multispectral optical data,  

7 bands. Red and near-infrared 

bands, thermal band 

Small to medium [26,37,39,46–52] 

MODIS 250–1000 m 1-2 days 

Africa, Australia, Brazil, 

Canada, Indonesia, Russia, 

Spain, USA 

√ √ √ √ 

Multispectral optical data, 36 bands. 

Availability of active fire and burned 

areas products 

Medium to large [37,39,50,53–62] 

BIRD 370 m User defined 
Australia, Benin, China, 

India, Indonesia 
√    

Mid-infrared band (MIR)=3.4–4.2 

μm; Visible and infrared sensor 

(VIS) = 0.60–0.67 μm; thermal 

infrared band (TIR) = 8.5–9.3 μm; 

near-infrared band  

(NIR) = 0.84–0.90 μm 

Small to medium  [52,56,63,64] 
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Table 1. Cont. 

Sensor 
Spatial 

Resolution 

Temporal 

Resolution 
Study Area 

Analyzing, Monitoring and/or Mapping 

Product Features Area Coverage Sources/Reference Active 

Fires 

Burned 

Areas 

Fuel 

Availability 

Fuel 

Flammability 

ASTER 15–90 m  4-16 days 
Brazil, Greece, Southern 

Africa, USA 
√  √ √ 

Multispectral optical data, 14 bands. 

Visible and near-infrared, shortwave 

infrared, thermal infrared 

Small to medium [39,54,61,65–67] 

MASTER 5–50 m User defined USA  √ √ √ 

50 bands (0.4–13 μm), (Visible and 

near-infrared (VNIR), shortwave 

infrared (SWIR), mid-infrared 

(MIR) and thermal infrared (TIR)) 

Small to medium [68,69] 

Ikonos 1 m 
3–5 days 

(off nadir) 
Greece  √ √ √ Multispectral optical data Small [70] 

ERS SAR 25 m 35 days 
Canada, France, Greece, 

Indonesia, Spain, USA 
 √ √ √ Synthetic aperture radar Small to medium [33,46,71–75] 

Airborne LIDAR 0.5 m User defined  
Germany, Indonesia, 

Portugal, Spain, USA 
  √ √ 

Laser scanner, capability to be 

integrated for modeling fire behavior 
Small [25,76–82] 
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RapidEye is a multispectral system that uses five satellites to collect 4 million km2 of data per day 
with high spatial resolutions (5 m) [83]. The instrument is suitable to map fuel availability by monitoring 
forest fragmentation [40], changes in vegetation cover or land uses [42], and fuel flammability by 
detecting forests under stress [41]. The primary disadvantage of any spectral sensor is that it cannot 
penetrate cloud cover [40]. 

The Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) provides high spatial resolution data 
(15–20 m) using spectral bands from visible and near infrared to shortwave infrared. It has been used in 
the US to analyze fuel availability and fuel flammability [37,44]. 

Landsat data is widely applied for multiple purposes, ranging from vegetation, biomass, fuel and 
burned area mapping [33,36,37]. This sensor has multispectral bands (i.e., from visible green to near 
infrared bands), thermal bands and one panchromatic band. The most recent Landsat 8 or Landsat Data 
Continuity Mission (LDCM) has similar capabilities to previous Landsat generations, but includes 
additional bands to characterize aerosols and cirrus cloud combinations [84]. 

Moderate Resolution Imaging Spectroradiometer (MODIS) provides multispectral imagery at mid-range 
spatial resolutions (250–1000 m) that incorporates an ‘active fire product’ and ‘burned area product’ 
providing information on burning fires locations and the extent of burn scars on a daily basis. With a 
temporal resolution of one to two days, MODIS data are widely used for near-real-time monitoring of 
active fires and analyzing burned areas in the tropics and subtropics [50,53,55–57,59,61,62]. One 
interesting feature of MODIS active fires product is that it provides information on image quality and 
how it influences the possible misclassification of fire events. 

Bispectral and Infrared Remote Detection (BIRD) is a German Aerospace Center (DLR) satellite 
mission that was designed to support the detection of active fires and volcanoes through the capture and 
analysis of emitted infrared radiation. This satellite is used to calibrate MODIS sensors as BIRD has 
higher spatial resolution (370 m) and better capability to detect smaller and less intense fires than 
MODIS. Nevertheless, BIRD only collected satellite imagery of selected ESA project FUEGOSAT 
target areas during 2001–2004, e.g., in Australia, China, India and Indonesia [64]. 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an optical 
sensor similar to MODIS and Landsat but it collects data at a higher spatial resolution of 15 m and has 
16 days of revisit time. ASTER visible and near infrared bands can characterize active fires, map  
forest fuels/fuel availability and assess fuel flammability. Similar to MODIS and Landsat Thematic 
Mapper/Enhanced Thematic Mapper (TM/ETM), ASTER has been used for detecting fires in different 
ecosystems, and for the characterization and mapping of vegetation/fuels [54,61,65]. 

The MODIS/ASTER Airborne Simulator (MASTER) collects data sets that have higher spatial 
resolution (5–50 m) than the spaceborne data sets [69]. The instrument can capture images from different 
altitudes. The sensor has good spectral and spatial resolution, but it is expensive for regional fire severity 
mapping [68]. The image is processed using a radiative transfer model (MODTRAN). The instrument 
has been used in the US to analyze burned areas, fuel availability and flammability [68,69]. 

Ikonos is an example of a satellite with a high spatial resolution, at 1 m. It is used in Greece [70] to 
assess fire affected areas, fuel availability and flammability. 

Similar to thermal spectroscopic sensors, Synthetic Aperture Radar (SAR) can penetrate cloud cover 
so it is useful for detecting changes in vegetation cover and obtaining information on soil moisture and 
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vegetation dryness through haze [33,46,71,72]. The ALOS Phased Array type L-band Synthetic Aperture 
Radar (PALSAR) and the European Remote Sensing (ERS) SAR are examples of SAR. 

Airborne Light Detection And Ranging (LIDAR) is an instrument that provides three-dimensional 
information on the arrangement of a number of features, including vegetation and fuel distribution. 
Information from airborne LIDAR can be used to produce fuel maps/availability, which can be incorporated 
into fire behavior models. The LIDAR technique is used to model surface fuels [25,77,78,81], measure 
canopy related variables needed for predicting crown fire activity [76] and measure aboveground 
biomass at fine spatial resolution (0.5 m) [79]. 

Based on the previously mentioned remote sensing instruments, several initiatives have been 
established to develop global burned area data sets. Examples of these initiatives and their status are 
given in Table 2.  The table illustrates an overview of global burned area products developed from 1982 
to the present by different sensors and algorithms. The data sets have a range of spatial and temporal 
resolutions.  They are useful in assessing and monitoring historic and current fires, and estimating fuel 
load/availability when coupled with global land cover and vegetation models. 

Table 2. Global forest fire initiatives developed from remote sensing tools. 

Modified from Mouillot et al. 2014 [85]. Note: GFED3=Global Fire Emissions Database; MODIS=Moderate 
Resolution Imaging Spectroradiometer; TRMM=Tropical Rainfall Measuring Mission; VIRS=Visible and 
Infrared Scanner; MCD45A1=MODIS Burned Area Product; ATSR=A Long-Track Scanner Radiometer; 
GBA=Global Burned Area; SPOT=Satellite Pour l'Observation de la Terre (Satellite for observation of Earth); 
L3JRC=SPOT Burned Area Product; AATSR=Advanced ATSR; GBS=Global Burnt Surface;  
NOAA-AVHRR=National Oceanic and Atmospheric Administration-Advanced Very High-Resolution 
Radiometers; GLOBSCAR=ATSR World Burned Surface Atlas. 

3. Dynamic Global Vegetation and Landscape Models 

Dynamic global vegetation and landscape models can assess the effect of climate variability and 
change on fire regimes through vegetation evolution assessment. They simulate vegetation (fuel/fire 
hazard) dynamics at different spatial scales. These models calculate long-term and large-scale 
predictions of vegetation evolution under changing conditions. They consider disturbances as one of the 
main drivers of vegetation dynamics and changes in landscape configuration. Vegetation simulation 
models include The Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM) [86], 
LANDIS II [87], LANDCLIM [88,89], HyLand [90], the Hybrid DGVM [90], ORCHIDEE [90], 
Sheffield DGVM [90], TRIFFID [90] and CACTOS [91], but here we focus on two that have been used 

Data Set Time Span Satellite 
Spatial 

Resolution 
Temporal 
Resolution 

Status 

GFED3 1996–present MODIS, TRMM/VIRS, ATSR 0.5° × 0.5° Monthly Operational 
MCD45A1 2000–2009 MODIS 500 m Monthly Operational 

L3JRC 2000–2007 SPOT VEGETATION 1 km Daily Finished 
GBA2000 2000 SPOT VEGETATION 1 km Monthly Finished 

GLOBCARBON 1998–2007 
SPOT VEGETATION,  

ATSR-2, AATSR 
1 km Monthly Finished 

GBS 1982–1999 NOAA-AVHRR GAC 8 km Weekly Finished 
GLOBSCAR >2000 ERS2-ATSR2 1 km Monthly  Finished 
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to assess how fire activity evolves with respect to climate, vegetation dynamics, and landscape pattern. 
These two models are described below. 

The Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM) combines process-based, 
land-atmosphere carbon and water exchanges and terrestrial vegetation dynamics [92]. The model is 
useful in showing multiple aspects of biospheric vulnerability to climate and land-use change and the 
feedback from land surface change [86]. This tool has been run with the HADCM2 historical and future 
climate simulation to predict impacts of climate change on historical and future (up to 2100) global 
vegetation carbon sequestration and fuel availability [90,93]. The model predicts a positive cumulative 
net carbon uptake by 2099; the peak annual carbon uptake will take place in the mid-2050s and then 
drop thereafter [90]. 

LANDIS II and LANDCLIM simulate forest succession, disturbances, forest management, climate 
change and seed dispersal across large landscapes for long periods of time, with a relative fine spatial 
resolution of 25 m. LANDIS II is essentially tailored for data and knowledge from the US, but it has 
been implemented in other areas such as northeastern China [87]. LANDCLIM has been tested and 
adapted to the European Alps, the American Rocky Mountains [88,89], and the Mediterranean 
ecosystem [94]. LANDCLIM has been used for assessing the effect of climate change and fires on the 
vegetation dynamics of the European Alps for the period 2071–2100 using the A2 scenario and the 
CHRM regional climate model, while evaluating future fire danger in the region [88]. The model predicts 
that climate change will affect forest vegetation significantly, especially in terms of biomass distribution 
and species composition along altitudinal gradients. 

4. Modeling Fuel Characteristics and Fire: Integrated Fire-Vegetation Models 

Integrated fire-vegetation models (IFVMs) can also be used to study how fire activity may change in 
the future. DGVMs and IFVMs differ in terms of their focus. IFVMs integrate fire and vegetation models 
and study the combined effect of changing conditions on vegetation dynamics and fire regime, and their 
interactions. DGVMs study the impact of fire and other disturbances on vegetation dynamics, including 
how they shape future landscapes. The limitations of IFVMs come from their often large-scale 
assessments that require generalized inputs. IFVMs and DGVMs study the effect of climate 
variability/change and other factors on fuel availability and fire regime and analyze their interactions. IFVMs 
for example can predict fire occurrence. Some examples of IFVMs used to predict fire activity include:  

The Global FIRe Model (GlobFIRM) can simulate fires to occur globally or in a fraction of the study 
area, depending on the probability of fire occurrence as a function of daily soil and fuel moisture, and 
the length of the fire season. GlobFIRM results have been assessed against historical area burned. The 
Glob-FIRM, fire module in the LPJ-DGVM for example, has been used to analyze the role of long-term 
historical (1901–1998) climate change and vegetation in global fire regimes in North, Central and South 
America, boreal Eurasia, the Mediterranean and Africa [86]. Compared to historical area burned, 
GlobFIRM successfully simulates fire regimes in some of these study areas [86]. A regionalized version 
of the model (Reg-FIRM) has been used in Germany [95] under changing climate conditions until  
2100 using the A1FI emission scenario [96] to predict long-term future vegetation and fire regime 
variations [95]. 
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The Large-fire Simulator (FSim) system is another potential tool for assessing the impact of climate 
variability and change on wildfire. It has been used in the US for simulating short-term historical risk of 
large-fire occurrence by incorporating factors such as fuel, topography and climate (e.g., temperature, 
precipitation, air humidity and wind) [97]. Because FSim can simulate fire occurrence and growth for 
thousands of years [97], it can simulate full fire regimes, considering variables such as fire occurrence, 
location, size and distribution of multiple fires [98]. 

MC1 is a dynamic vegetation model that can assess climate change impacts on ecosystem structure 
and function. It combines physiologically based biogeographic, biogeochemical processes and a fire 
disturbance model [92,99]. It has an MCFIRE fire module that mechanistically simulates the occurrence 
and impacts of fire events using thresholds of drought and the rate of fire spread. Fuel moisture, fuel loading 
and fuel type are calculated from input climate data and vegetation simulation models within MC1. With a 
spatial resolution of 150 m, MC1 is suitable for landscape to global scales applications [99,100]. It has been 
applied to assess the effects of fire, grazing and climate in South Dakota, USA [99], the effects of climate on 
wildfire and carbon dynamics in the Pacific Northwest, USA [101], and the impacts of global vegetation 
shifts on fire under different climate projections [102]. 

5. Modeling Dynamics of Fuel Flammability: Fire Danger Rating Systems 

Fire Danger Rating Systems (FDRSs) are used to assess fuel and weather conditions and provide 
estimates of fuel flammability and potential fire behavior. They can provide daily reports and maps on 
fire danger for short-term forecasts under current climatic conditions, but they are also used to assess 
climate change impacts on long-term future wildfire hazards. FDRSs have been used in many parts of 
the world for more than 40 years. Some of the most popular FDRSs are the Canadian Forest Fire Danger 
Rating System (FFDRS) [103], the Australian Forest Fire Danger Rating/McArthur Forest Fire Danger 
Index (FFDI) [104], the United States National Fire Danger Rating System (NFDRS) [105], the  
Keetch-Byram Drought Index (KBDI) [106], the Nesterov Index [105] and the Zhdanko Index [106]. They 
have been applied in many countries , for example, the Canadian FFDRS has been used to forecast impacts 
of climate change on future fire hazard in many parts of the world, including Canada [107–110], North 
America [111], Portugal [112], the Iberian Peninsula and North Africa [103]. The McArthur FFDI has 
been used to predict future impacts of climate change on fire hazard in Australia in a 30 year time 
horizon [104]. And the US NFDRS has been implemented in the United States to predict climate change 
influence on fire hazard from 1950 to 2099 [113]. 

The KBDI has been used in global analyses to determine future fire activity under climate change. 
Two assessments of global future wildfire potential under climate change using KBDI show that, due to 
climate change, the wildfire potential for the period 2070–2100 may increase in places such as the United 
States, South America, Central Asia, Southern Europe, Southern Africa and Australia [5,114]. A 
modified version of KBDI has also been tested to predict climate change impacts on fire hazards in the 
eastern part of Kalimantan and eastern part of Sumatra, Indonesia [115]. The results show that fire hazards 
in these sites may significantly increase in 2070–2100 (drought index = 825–960) compared to 1960–1990 
(drought index = 460–544). 

Some FDRSs have been coupled with climatology databases to assess fire danger. For example, in 
Northern Eurasia the KBDI, Nesterov, and Zhdanko indices were coupled with the Global Daily 
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Climatology Network and Global Synoptic Climatology Network to assess fire danger over the past  
50 years across FDRSs [114]. The results indicate that there have been no significant changes in potential 
forest fire danger in this region during the past 50 years [114]. Climate data can be integrated into FDRSs 
and remote sensing fire products can be used to assess how well predicted fire danger corresponds to 
actual fire activity. For example, the Nesterov Index combined with MODIS MCD45 burned area 
product and the Vegetation Continuous Fields product have also been implemented in Africa to model 
burned areas. The simulation for the period 1980–2060 predicts a considerably decreasing trend of 
burned area [116]. 

FDRSs have been used to project fire danger into the future, but they often work on coarse resolution 
scales and their output metrics are usually dependent on climate conditions. NDFRS, for example, works 
on a resolution of 4 km [117], FFDRS on 10 km [118] and the KBDI on 50 km [115]). Because FDRSs 
rely so heavily on climate input, and other factors can define fire activity, projections using FDRSs 
provide limited information. 

6. Modeling Fire Ignition and Occurrence: Empirical Models 

Empirical models are useful for analyzing and predicting the impacts of climate variability (and  
non-climatic factors) on fire probability, fire occurrence and fire frequency. These models have been 
used to predict both short-term (less than 30 years) historical, and short-term and long-term (30 or more 
years) future forest fire probability. Different approaches have been used for ignition/fire occurrence 
modeling. Most of them have been implemented at a single spatial scale, either fine-scale being based 
on the proximity to hazardous elements [119–122] or broad-scale, based on the aggregation of both fire 
ignition events and influencing factors at an administrative or ecological level [22,123–125]. However, fire 
ignitions/occurrences can be modeled using different spatial scales, according to the available factors  
and data. 

Empirical models require supporting data on climate, demography, accessibility, land-cover types, 
geography, remote sensing, fire danger, and fire history. The climate data used in the models can be 
derived from observed weather data (e.g., temperature, relative humidity, precipitation, wind) or from 
climate models. Demographic data for the models include population density and information about 
human activities. Accessibility information includes distance to roads, paths, railways, rivers or 
settlements. Examples of land-cover data are agriculture land, grassland, height and structure of 
vegetation. Geographic data include site location, slope and elevation information. 

Often, many of these supporting data for investigating fire danger come from remote sensing  
products such as: Active fire data from MODIS, burn scar map from MODIS, Landsat or NOAA-AVHRR 
and vegetation height and structure, and canopy cover map from LIDAR, Fire Danger Rating Indices  
from Keetch-Byram Drought, Canadian Fire Weather, Palmer Drought Severity and Fosberg Fire  
Weather Indices. 

There are many kinds of statistical methods used to analyze historical fire records and predict the 
probability of fire occurrence. Logistic regression has been one of the most common methods used to 
analyze or predict the impacts of climate variability (and non-climatic factors) on fire occurrence. It has 
been used to predict short-term history of wildfire dynamics in Greece (1970–1995) and wildfire 
probabilities in the United States (1985–1995 [12] and 1998–2003 [126]). It also has been used to 
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analyze the role of climate change and non-climatic factors on the long term historical (1950–1992) 
wildfire probability on Vancouver Island, Canada [120], predict the short term future of large fire events 
(1 month) and fire probability (1 year) in Mesoamerica [127], and predict the impacts of climate change 
(and non-climatic factors) on the long-term future (2070–2099) fire risks and hazard in the USA [128]. 

Neural networks have been implemented in Spain to analyze the impacts of climate variability (and 
non-climatic factors) on the short-term historical (1988–2001) forest fire risk [129] and in Canada to 
predict the short-term historical (1986–1990) fire risk and hazard [122]. Multiple regressions,  
decision trees, Random Forest, neural network and support vector machines were used in Portugal to 
analyze burned areas using historical, short-term (2000–2003) climate variability [130]. 

The tools have also been used for analyzing impacts of climate change and variability, and non-climatic 
factors on short term and long term historical and current fire occurrence and fire frequency. For 
examples Bayesian networks have been used e.g., in Swaziland to analyze the impacts of climate change 
and variability on short term historical fire occurrence and predict 2000–2008 fire  
occurrence [131]. Classification and regression trees have been used in Spain to project 1991–2002 fire 
occurrence [132]. Correlation analysis was used, e.g., in the USA, to analyze the 1985–2002 fire 
occurrences [133]. K-nearest neighbors classifier, naive Bayes, J48 decision trees, jRIP classification 
rules, logistic regression, support vector machines, Bayesian networks, Adaboost, bagging, Random 
Forest have been used, e.g., in Slovenia, for predicting short-term historical (2000–2004) fire 
occurrences [134]. Finally, multiple regression and tree-based models have been used to analyze the 
impacts of climate change and other factors on the long-term historical (1961–1990) fire frequency in 
the USA [135]. 

The abovementioned examples show that empirical models are useful to predict/analyze wildfire 
situations with varied temporal resolution and accuracy. Most of the tools were used to analyze  
historical fires. Nevertheless, the models can also be used to predict short-term future wildfires as well as  
long-term future fires. When modeling fire occurrence based on historic fires, we must consider that 
ignition occurrence has an inherent degree of uncertainty associated with it. In order to obtain meaningful 
results through modeling, a minimum level of spatial and temporal aggregation of fire ignitions is 
required, and such level of aggregation varies across regions together with human behavior; the relative 
importance of ignition causes also varies across regions. In addition, the minimum size of the recorded 
fires used for defining the dependent variable of the models varies among studies. This has an important 
impact on the results, as the factors that define the occurrence of fires will move from those that explain 
the cause of ignition (in the case of small fires in the study), to those that relate to the spread of fires (as 
the minimum size of fires increases). For these reasons, we must use a critical approach rather than just 
a numerical one and compare results from different regions and data sets. 

7. Modeling Fuel Flammability, Fire Occurrence, Spread and Effects: Fire Models 

Fire models are useful to predict fuel flammability, fire occurrence, fire behavior and fire effects 
under certain climate/weather conditions. These models were developed to support fire management 
activities including prescriptive fire, fuel hazard assessment, forest and fuel management planning and 
management of suppression. Examples of these systems include: RisQue (Risco de Queimada/fire  



Forests 2015, 6 1488 
 

 

risk model), Coupled Atmosphere-Wildland Fire-Environment (CAWFE), FireFamilyPlus, BehavePlus, 
FARSITE, FSPro and FlamMap. 

RisQue is a simple geographic information system that uses a soil-water balance model to 
approximate soil moisture, which is influenced by evapotranspiration and rainfall, to relate water 
availability to vegetation stress, growth, forest structure and other fire-related variables such as 
flammability. RisQue has been used to assess the effect of climate on forest flammability in the Amazon 
from 1996 to 2001 [136]. 

Coupled Atmosphere-Wildland Fire-Environment (CAWFE) simulates fire spread and fuel 
consumption to assess smoke haze emission to the atmosphere and the feedback to winds characteristics 
and to fire behavior [137]. It combines meteorological flow, fire behavior, and fire-induced winds and it 
has two modules of numerical weather prediction model and fire behavior module and has been used in 
the US [138]. 

FireFamilyPlus can summarize and analyze weather observations, associate weather with local fire 
occurrence data, and compute fire danger indices based on the US NFDRS. By incorporating the fire 
occurrence record into the analysis, the software can show the historical relationships between 
climate/weather conditions and fire occurrence trends [139,140]. Although the system is not classified 
as an FDRS, it provides important information for active fire management from other FDRSs. 
FireFamilyPlus cannot only be used in active fire management, but can also provide information for  
fire-vegetation models such as FSim. 

BehavePlus-Fire Modeling System provides information about fire behavior (rate of spread, flame length, 
fire line intensity or spotting distance), fire environment (fuel moisture), and fire effect (scorch height and 
tree mortality). BehavePlus provides simple, comprehensive graphs, tables and diagrams [141,142]. It offers 
a platform to understand the behavior of fire with specific fuels and weather conditions, or how fire will 
behave under different conditions. The tool is useful for fire investigation, wildfire behavior prediction 
and fuel hazard assessment activities. 

FARSITE-Fire Area Simulator predicts the area growth of individual fire events and their behavior, 
explained in variables such as flame length and rate of spread [143]. The model requires accurate  
geo-referenced data on topography, vegetation and fuel attributes together with weather data to predict 
2-dimensional fire growth and area burned during a short period of time (e.g., 1 day). The model predicts 
fire behavior in a specific location (cell) depending on the specific conditions within that cell and 
neighboring cells at the time of burn. The system is mainly used to recreate the growth of  
past fires; plan short-term fuel management across a landscape, or plan longer-term forest management, 
taking the evolution of the vegetation, the predicted weather and the ignitions into account; or estimate 
the consequences of prescribed fires. The FARSITE system is widely used for active fire management 
or research tasks within the US and Europe. 

The FSPro-Fire Spread Probability, used in the US Wildland Fire Decision Support System [144], a 
system that is designed to determine the probability that a fire will spread to any given point, assuming 
an initial ignition or fire perimeter [141]. Using similar landscape information (such as FARSITE, FSPro) 
performs hundreds or thousands of separate fire growth simulations during specific simulation durations. 

The FlamMap is a fire mapping and analysis system which estimates potential fire behavior across  
a landscape, by introducing landscape information similar to that in FARSITE (e.g., raster maps of slope, 
elevation, aspect, fuel type, tree height, canopy base height, canopy bulk density, canopy cover) but with 
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constant values on fuel moisture and weather. The system produces fire behavior calculations such as 
spread rate, flame length, fire line intensity and fire crowning for each point on the studied  
area [139,145]. FlamMap can also calculate travel times for a fire, which is useful in determining effective 
fuel treatment locations. 

With the exception of RisQue and CAWFE, these models share similar routines and sub-models; all were 
developed by the Missoula Fire Sciences Laboratory and the Rocky Mountain Research Station, USA. 
However, they differ from each other in terms of the number of fire events simulated and the way they 
handle results both temporally and spatially. They work at shorter temporal scales than DGVMs and 
IFVMs (i.e., LPJ-DGV, LANDIS II, LANDCLIM, FSim) for predicting fuel availability and often in 
smaller spatial scales. Additionally, their spatial resolution and accuracy are better than DGVMs and 
IFVMs for predicting fuel availability. The use of the abovementioned fire behavior models is often not 
feasible for long-term predictions but they can be used to simulate short-term future conditions (static or 
a few days) or provide results to adjust or validate long-term simulations of climate change effects on 
fire activity. 

8. Conclusions 

A number of tools are available to assess the impacts of climate variability and change on  
forest fire. The chosen tool should fit the objectives of the research, policy and management decisions. 
These tools have specific purposes, characteristics and limitations. Remote sensing, DGVMs and FDRSs 
are useful to analyze fire hazard, while empirical models are used to predict fire risk  
and frequency. The suitability of the tools for particular ecosystems (e.g., tropical or temperate forests) 
is also important; fire models may not be suitable for tropical humid forest as they are mainly developed 
for temperate or Mediterranean forest. Remote sensing and/or fire models can only provide short- to 
medium-term assessments of historical fire occurrence, while DGVM assessments can be used over 
longer time periods. Remote sensing and fire models can provide detailed fire assessments suitable for 
subnational scales, while DGVMs have relatively lower spatial resolution suitable for continent or  
global assessments. 

Identification of the probability of fire events that vary across space and time are major challenges 
for modeling and assessing potential climate variability and change impacts on forest fire. Furthermore, 
the most realistic model results that capture climate-fire interactions are highly complex and are thus 
computationally expensive. Process-oriented models, such as DGVMs, usually have better 
representations than empirical models. Other challenges include the limitations of these tools in terms 
of considering ecosystem complexity and scale. 

The abovementioned tools are useful for anticipating future climate variability and change impacts 
on forest fire and for mitigating climate change. They can be enhanced by continuously testing and 
adjusting for applications under different climate conditions and types of forest ecosystems. 
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