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Abstract: The aim of this study was to test the potential of a constellation of remote 

sensing satellites, the Disaster Monitoring Constellation (DMC), for retrieving a temporal 

record of forest leaf area index (LAI) in the United Kingdom (U.K.). Ground-based LAI 

measurements were made over a 12-month period in broadleaf woodland at Risley Moss 

Nature Reserve, Lancashire, U.K. The ground-based LAI varied between zero in January to 

a maximum of 4.5 in July. Nine DMC images, combining data from UK-DMC and 

NigeriaSat-1, were acquired, and all images were cross-calibrated and atmospherically 

corrected. The spectral reflectance of the test site was extracted, and a range of vegetation 

indices were then computed and correlated with the ground measurements of LAI. The soil 

adjusted vegetation index (SAVI) had the strongest correlation, and this was used to derive 

independent estimates of LAI using the “leave-one-out” method. The root mean square 

error of the LAI estimates was 0.47, which was close to that calculated for the  

ground-measured LAI. This study shows, for the first time, that data from a constellation of 

high temporal, medium spatial resolution optical satellite sensors may be used to map seasonal 

variation in woodland canopy leaf area index (LAI) in cloud-prone areas, like the U.K. 

Keywords: phenology; leaf area index; broadleaf woodland; high temporal resolution 

imagery; northwest England; DMC; Landsat ETM 
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1. Introduction 

Vegetation phenology is the temporal pattern of seasonal vegetation development, particularly 

leaves, and its subsequent senescence, as determined by variations in climate, day length and 

characteristics of the vegetation, such as species, and the environment, such as substrate [1–3]. 

Monitoring vegetation phenology over time is essential in understanding ecosystem, biological, 

biophysical, biogeochemical and energy processes and fluxes. Vegetation responds in cyclical ways to 

these processes, and therefore, variations in vegetation phenology can be linked to environmental 

change across a wide range of spatial and temporal scales [3–6]. Vegetation phenology is 

acknowledged as an essential source of information for understanding the impacts of climate change, 

due to the relationship between seasonal phenological changes and climatic factors, such as 

temperature, rainfall and snowfall [7–9]. However, in order to make use of vegetation phenology in 

examining the possible impacts of changes in the Earth’s climate, phenological measurements are 

required at a range of spatial scales, namely local, regional and global. Even though there are existing 

phenological records derived from traditional methods of in situ observations and process-based 

models, these phenological statistics have limited spatial coverage, due to very sparse networks, lack 

adequate baselines and uniformity in terminology and methodology, and present limited opportunities 

for the inter-comparison of observations across regions [2,10–16]. Therefore, there is a need for 

alternative methods to monitor vegetation phenology that will facilitate synoptic observations [17]. 

One approach that achieves this is the coupling of ground-based measurements of leaf area index (LAI) 

with spectral reflectance information, often expressed as vegetation indices (VI), derived from multi- 

and high-temporal satellite remote sensing imagery [6,18]. 

The leaf component of a vegetation canopy is a biophysical property that can be measured using the 

structural attribute, leaf area index (LAI) [19]. Variation in canopy LAI (leaf area per unit ground area) 

over time is related to the rate of expansion of leaf material, and as such, it is a good indicator of 

canopy phenology [5,19–22]. There are a number of direct and indirect methods to measure LAI. 

Direct measurement methods include full or partial harvesting of stands, the application of allometric 

equations and the use of leaf litter-fall collection. Indirect measurement methods include the use of 

instruments that estimate light transmittance through the canopy as a measure of LAI [23,24]. 

However, the limitations of all of these methods are that they only sample discrete locations or, at the 

very best, small areas, and they are usually limited in terms of temporal repeatability [25]. Remote 

sensing offers a potential approach to address these limitations, by providing spatial coverage and the 

repeatability of observation [26]. Relationships between LAI measurements on the ground and remote 

sensing estimates of vegetation phenology have been widely established [3,26–28]. 

While satellite remotely sensed data collected at various temporal scales can provide the 

fundamental basis for monitoring changes in phenology [29–32], there are some potential limitations. 

Principal amongst these is the impact of cloud cover, which can obscure the Earth’s surface in imagery 

collected by passive optically-based sensors [18] and is a particular problem in temperate latitudes.  

A study of the availability of cloud-free Landsat imagery across Europe, over a 15-year period  

(1972–1986), found that, on average, only 50% of the Great Britain land mass would be visible in any 

image [33]. A more recent study [34] assessed the probability of cloud-free observation across Great 

Britain, as determined from the MODIS cloud mask product, and found that in one calendar year 
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(2005), there was an average probability of cloud-free viewing only 21.3% of the time, with a 

minimum probability of just 12.9% and a maximum of 33.3% of the time. This means that for a sensor 

like Landsat, which has a medium spatial resolution and a revisit period of 16 days, there would be 

approximately five cloud-free images a year, or fewer for some areas, of the U.K. The analysis [34] 

showed large spatial variations in cloud cover, with fewer cloud-free observing opportunities in the 

north and west of Great Britain in 2005 and more in the south. The potential limitations caused by 

cloud cover are problematic for applications requiring high observation frequencies, such as 

phenological measurements [35–39]. Therefore, ideally, satellite sensors with a high revisit frequency 

are required, but there is then likely to be a trade-off between this high temporal resolution and the 

spatial resolution of the sensor [40–42]. 

Satellite sensors with high temporal resolution tend to have coarse spatial resolution. These would 

include sensors, such as the Advanced Very High Resolution Radiometer (AVHRR), the Moderate 

Resolution Imaging Spectroradiometer (MODIS) and the Medium Resolution Imaging Spectrometer 

(MERIS), which have been used in numerous phenological studies [2,3,16–19,43–46]. These sensors 

have a daily revisit capability, but the spatial resolutions vary from 250 m to 1.1 km, which may be too 

coarse to capture the spatial variability in the vegetation cover. Medium spatial resolution sensors, 

which typically have a spatial resolution of the order of 20 to 30 m, have also been used for 

phenological studies [35,47,48]. These sensors have a suitable spatial resolution, but typically, their 

revisit period is measured in numbers of days, which leads to phenological events being missed. One 

approach that has been adopted for sensors with coarser temporal resolutions is to “fuse” data sets 

together from a number of different sensors [18], which has the effect of increasing the temporal 

resolution of the observations made. However, there are potential issues with the complexity of the 

inter-calibrations between any sensors used and also the time it is likely to take to generate a product, 

if the intention is to use the system for the operational monitoring of phenology. To date, there have 

been no phenological studies that have employed high temporal resolution data (daily repeat) from a 

medium spatial resolution sensor. The Disaster Monitoring Constellation (DMC) Satellite series, 

developed by Surrey Satellite Technology Ltd (SSTL), U.K., offers the opportunity to collect the types 

of time series data sets that are crucial in phenological studies at relatively high spatial resolution. 

The DMC concept is to provide a daily global imaging capability at medium spatial resolution, 

using a constellation of near-identical sensors in order to facilitate a rapid response to disaster 

monitoring and mitigation [49–51]. The first generation DMC satellites had a spatial resolution of 

approximately 22 or 32 m (depending on the specific satellite) and the potential to collect image data 

on a daily revisit basis. A unique feature of the DMC constellation is that satellites, while effectively 

being the same in design, are owned and operated independently by different countries. The first 

generation satellites, two of which were owned by the U.K. and Nigeria, employed a nadir-viewing 

push-broom, three-band, multispectral scanner, with a six-lens linear CCD-array-based imager, 

imaging a line of 20,000 pixels over a swath width of 600 km at a spatial resolution of 32 m [52]. The 

DMC satellites are in a sun-synchronous circular orbit with an inclination of 98°, operating from an 

altitude of 686 km and with an overpass of 10.30 am local-time in their ascending mode; the orbital 

period is about 97.7 min [53]. The first generation DMC satellites acquire data in three spectral 

channels; near-infrared (Band 1), red (Band 2) and green (Band 3). These channels are similar to 

Landsat 7 ETM+ spectral Bands 2 (green), 3 (red) and 4 (NIR) [53]. The first generation DMC 
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satellites were launched between 2002 and 2003 and have been followed by modified and upgraded 

systems. The potential that DMC offers for phenological studies is in the daily repeat cycle of image 

acquisition, coupled with a relatively high spatial resolution. 

The research presented in this paper aims to investigate whether data from the Disaster Monitoring 

Constellation of satellites can be used to derive timely quantitative measures of vegetation dynamics at 

a local scale. The objectives are: (i) to determine whether vegetation indices derived from DMC data 

can be related to variations in LAI measured at ground level; and (ii) to determine whether these data 

provide accurate multi-temporal estimates of leaf area index (LAI) for a woodland site in the U.K. 

2. Methods, Study Area and Data Analysis 

The methods selected to address the objectives were to measure the seasonal variation in LAI in a 

broadleaved deciduous plot at a woodland site in north-west England and to use a series of DMC 

images to track the variations in LAI of the plot. Broadleaved deciduous woodland in the U.K. follows 

a clear phenological pattern with bud-burst in early spring, leaf development through to mid-summer, 

followed by senescence and eventual leaf fall in late autumn. This sequence thus exhibits a wide range 

of LAI states with which to test the applicability of the DMC data. 

2.1. Study Site and Ground Data Collection 

The research was conducted at Risley Moss Nature Reserve, situated in the valley of the River 

Mersey near Birchwood, Warrington (latitude 53.420 N, longitude 2.506 W; Ordnance Survey Grid 

reference: SJ674922) in north-west England. The topography is flat with an elevation of around 25 m 

above sea level. The elevated flood plain is characterized by acidic soil, and there is an adjacent area of 

peat bog. Risley Moss has local and international nature reserve designations; the vegetation is mainly 

deciduous woodland, covering approximately 80 hectares, growing in mixed stands of different ages 

and heights, with silver birch (Betula pendula) the dominant tree species. The stem density is 

approximately 900 trees per hectare, and tree heights range between 10 m to 20 m. The study site 

selected comprised a homogeneous plot of 60 by 60 m, dominated by silver birch, located away from 

tracks and paths. The plot size was designed to allow for the 32-m spatial resolution of the DMC. LAI 

measurements were made at ground level by sampling along the diagonals of the 60 by 60 m plot. 

Measurements were made at intervals of approximately 2 m using a Delta-T SunScan LAI probe, 

selected for this study, because it allows for rapid, non-destructive estimation of LAI, even  

under different sky conditions [54]. Measurements were made every two to three weeks from  

March, 2005–February, 2006, with approximately 100 measurements made along the two orthogonal 

transects at each visit, and the average plant area index (PAI, the total plant area per unit ground area) 

was determined on each date. Minimum leaf-off PAI was measured in January, 2006, and was subtracted 

from the other measured PAI values to remove the woody component and to provide an estimate of  

true LAI. 
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2.2. Satellite Image Data Analysis 

DMC images of the study area were supplied as quick-looks by DMC International Imaging, and 

nine images were identified with a cloud-free view of the study site (Table 1). Four of the images were 

from the UK-DMC and five from NigeriaSat-1. The nine images represented a subset of the possible 

imaging opportunities. As with most commercial remote sensing sensors, the DMC Constellation 

collects data on a tasking basis, and so, not all targets are covered on every overpass of the satellites.  

In addition, the first generation of DMC satellite had limited on-board storage, and this coupled to a 

then limited network of ground receiving stations reduced the volume of data collected on each 

overpass. These factors meant that while it was theoretically possible to have daily images of the study 

area, the actual imagery available was more limited. 

Table 1. List of the Disaster Monitoring Constellation (DMC) data sets. 

Satellite Sensor Date Day of Year (DOY 2005) 

NigeriaSat-1 March 3, 2005 62 
NigeriaSat-1 April 19, 2005 109 
UK-DMC 150 May 30, 2005 150 
NigeriaSat-1 June 8, 2005 159 
UK-DMC June 27, 2005 178 
UK-DMC  July 11, 2005 192 
NigeriaSat-1 August 17, 2005 226 
NigeriaSat-1 September 2, 2005 245 
UK-DMC February 19, 2006 50 in 2006 

The image for June 27, 2005, appeared on visual inspection to have both little cloud cover and the 

least haze. This image was thus selected as the base for the atmospheric correction procedure applied 

to all of the images. The June 27 image was geometrically corrected to the UTM WGS84 coordinate 

system by selecting 30 ground control points (GCPs) from U.K. Ordnance Survey maps. The image 

was resampled to a 32-m pixel size using nearest neighbour resampling Thereafter, this image was 

used to geometrically correct the other eight DMC images, using image to image  

geometric correction (Figure 1). 

The June 27, 2005, image was atmospherically corrected using the COST (cosine of the solar zenith 

angle correction) model [55]. The COST model was applied to the image to convert it to estimated 

reflectance. The remaining eight DMC images were then cross-calibrated using this base image. Thirty 

homogeneous, flat, temporally- and spatially-stable objects, which were spectrally invariant, were used 

as targets in the calibration.  The targets included dark objects, like black asphalt (major roads and 

airport runways) and water bodies, and brightly reflective objects, such as beaches. Antecedent surface 

conditions at each target were not explicitly accounted for, and so, some minor errors may have  

been introduced in to the corrections. The targets were used to derive regression equations of the  

cross-sensor reflectance calibration relationships [56,57] based on the equation: 

y = ax + b (1)
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where y is estimated reflectance, x is the digital number for the image and a and b are regression 

coefficients. Table 2 shows the regression equations for the individual images. 

Figure 1. Geometrically-corrected DMC images used in this study; the images are displayed as 

false colour composites (red = DMC Band 1; green = DMC Band 2; blue = DMC Band 3);  

UK = UK-DMC, Nigeria = NigeriaSat-1; the yellow rectangle on DOY 178 shows the 

study area. 

 

From each image, a single pixel was then identified corresponding to the centre of the Risley Moss 

sample plot and the green, red and near-infrared reflectance values extracted. The data analysis 

examined the linear regression relationships between the LAI of the test stand and a range of 

vegetation indices (VI) computed from the remotely sensed data. Results are reported here for three 

widely used VI, the normalised difference vegetation index (NDVI), the difference vegetation index 

(DVI) and the soil adjusted vegetation index (SAVI). After determining the strongest relationship, the 

UK 2006 DOY 50Nigeria DOY 245Nigeria DOY 226

Nigeria DOY 159 UK DOY 178 UK DOY 192

UK DOY 150Nigeria DOY 109UK DOY 62
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data were subjected to a leave-one-out cross-validation regression procedure [58] to determine 

independent estimates of LAI for each date. This method involved leaving out the data for one date 

and computing the regression relationship using all other dates; the process was repeated for all dates 

to give nine independent LAI estimates. 

Table 2. Equations for image inter-calibration (n = 27). 

Satellite Sensor/DOY Band Equation R2 

NigeriaSat-1 3 March 2005 (DOY 62) 
NIR y = 0.6758x − 6.667 0.85
Red y = 0.6042x − 8.0619 0.87
Green y = 0.3933x − 10.955 0.76

NigeriaSat-1 19 April 2005 (DOY 109) 
NIR y = 0.6872x − 10.874 0.86
Red y = 0.4377x − 1.9077 0.82
Green y = 0.3329x − 7.5286 0.85

UK-DMC 30 May 2005 (DOY 150) 
NIR y = 0.4542x + 0.5063 0.81
Red y = 0.46x − 3.9527 0.94
Green y = 0.3008x − 2.6979 0.91

NigeriaSat-1 8 June2005 (DOY 159) 
NIR y = 0.6375x − 9.7863 0.94
Red y = 0.5919x − 6.1429 0.89
Green y = 0.4101x − 9.8495 0.89

UK-DMC 27 June 2005 (DOY 192) 
NIR y = 0.7268x − 11.913 0.93
Red y = 0.5542x − 6.0036 0.97
Green y = 0.3171x − 2.8123 0.97

NigeriaSat-1 17 August 2005 (DOY 226) 
NIR y = 0.609x − 13.112 0.85
Red y = 0.5236x − 11.437 0.85
Green y = 0.4021x − 16.878 0.80

NigeriaSat-1 2 September 2005 (DOY 245) 
NIR y = 0.6349x − 6.4932 0.85
Red y = 0.4973x − 1.3109 0.96
Green y = 0.3073x − 5.0942 0.87

UK-DMC 19 February 2006 (DOY 50) 
NIR y = 0.7612x − 3.0871 0.90
Red y = 1.4179x − 12.093 0.76
Green y = 1.8748x − 16.912 0.62

3. Results 

Figure 2a shows the temporal variation in PAI and LAI, measured on the ground at the Risley Moss 

plot. The pattern is typical for deciduous woodland in the U.K. At the beginning of the sampling 

period, February 25, 2005, the LAI was very low, and after leaf emergence and expansion, LAI 

increased to a maximum of 4.7 in late July, 2005, before declining rapidly in the autumn, with 

senescence and leaf fall, to zero in January, 2006. Variations associated with the estimates of LAI from 

the study plot were largest during the periods of highest LAI. 
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Figure 2. Temporal profiles of variation at the Risley Moss plot in (a) plant area index 

(PAI) and LAI (error bars are +/2 SD of PAI; (b) green, red and NIR reflectance; (c) three 

vegetation indices; (d) LAI and interpolated LAI at DMC collection dates (green circles) 

and estimated from DMC (red circles). 
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Figure 2. Cont. 
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Temporal variations were also observed in the reflectance recorded in the three DMC bands (Figure 2b). 

Reflectance in the visible bands, green and red, was never higher than 5.2% and reached a minimum 

during the summer between day of year (DOY) 159 and 226 in 2005, with the lowest values around 

DOY 192. The general variation in red and green reflectance was similar; however, red reflectance was 

lower than green around the middle of the summer, and green reflectance was lower than red when the 

vegetation was senescing. NIR reflectance ranged between 16% in winter and 42% in summer.  

The variation in NIR was characterized by an increase in reflectance towards the middle of the year, 

with a maximum of 42% reached around DOY 178 in 2005. A second peak in NIR reflectance 
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occurred around DOY 226 in 2005, with a reflectance of 39%, before it dropped back to about 18%.  

The general pattern was of increasing NIR during the growing season, with visible reflectance low 

over most of the growing cycle. 

Figure 2c shows the temporal profile of the three vegetation indices derived from the DMC data for 

the study plot. The magnitude of the different indices varied, with NDVI having the highest values 

across the study period and DVI having the lowest. However, most important was that, even though 

they appeared noisy to some extent, the general form of the variation in the curves for the vegetation 

indices followed the trend in the LAI variation over the growing cycle. The minimum values for all 

three of the vegetation indices were found in February (DOY 50 in 2006), which coincided with an 

LAI value of around 0.2. The highest values for the three vegetation indices were in July, 2005 (DOY 192), 

which was very close to the highest value recorded for LAI, 4.67, measured at the study plot on DOY 

210 in 2005. The range of variation in the three indices was very similar, with NDVI ranging from 

0.51 to 0.96, SAVI ranging from 0.24 to 0.62 and DVI from 0.11 to 0.39. Correlation coefficients 

between LAI and the vegetation indices showed a significant positive relationship, with very little 

difference between the indices (Table 3). The implication that could be drawn from this is that the 

vegetation indices could be used to estimate LAI for the Risley Moss study plot. 

Table 3. Linear correlation coefficients between measured LAI and vegetation  

indices (VI); all correlation coefficients were statistically significant (p < 0.01). 

Vegetation Index r (n = 9) 

Normalised difference vegetation index (NDVI) 0.92 

Soil adjusted vegetation index (SAVI)  
Difference Vegetation Index (DVI) 

0.94 
0.93 

As SAVI had the strongest relationship with LAI, it was used in the leave-one-out cross-validation 

regression procedure to determine independent estimates of LAI for each date. The relationship 

between the LAI values estimated using the DMC-derived SAVI and the measured LAI values are 

shown in Figure 3. There was clearly a strong linear relationship between the predicted and the actual 

LAI values. For the study plot, Figure 3 indicates that there was some overestimation, where actual 

LAI is around one, and some underestimation for values around three. The over- and under-estimates 

generated a root mean square error of 0.47. 

Figure 2d shows the seasonal variation in the measured LAI and the LAI values estimated 

from the regression analysis based on SAVI. The general seasonal pattern of the estimated values 

matched the measured values. The estimated value for DOY 109 in 2005 showed the largest 

error (+1.2 LAI), but all other estimates were less than 0.9 LAI. When LAI values were at their 

highest, between DOY 150 to DOY 192 in 2005, there was a close association between 

estimated and measured LAI. 
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Figure 3. Relationship between measured LAI and LAI estimated from SAVI for the 

deciduous study plot at Risley Moss. 
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4. Discussion 

Previous research, such as White et al. [59], Jonsson and Eklundh [60], de Beurs and Henebry [61], 

Ganguly et al. [17] and Booker et al. [19], has demonstrated the potential of employing satellite remote 

sensing to monitor phenological events using vegetation indices linked to LAI. As was discussed earlier, 

two issues arise from the use of satellite data for phenological monitoring, namely the appropriateness  

of the spatial sampling (the spatial resolution) and whether imagery is available at the frequency  

required to measure phenological events. In studies, such as that carried out by Ganguly et al. [17] and 

Booker et al. [19], the remotely sensed data came from a sensor (MODIS) with a daily repeat cycle 

(high temporal resolution), but a coarse spatial resolution (pixels of the order of 250 m). Such sensors 

provide the frequency of observation required for phenological monitoring of U.K. forests, but the 

spatial resolution is not always appropriate, as noted by Booker et al. [19], Melaas et al. [62]  

and Tillack et al. [63]. Where the landscape is heterogeneous, such as typically found in natural and 

semi-natural woodland, results from coarse spatial resolution sensors have been shown to be less 

reliable in determining phenological events [64]. Melass et al. [62] demonstrated the potential of using 

finer spatial resolution imagery, from Landsat, to monitor phenology in woodland areas. In their study, 

Melass et al. [62] identified the start and the end of the growing season and were able to exploit a 30-year 

archive of Landsat imagery to demonstrate how these phenological events had varied over time. 

The potential limitation with medium spatial resolution sensors, however, is their temporal 

resolution. As previously noted, in temperate regions, such as the U.K., cloud cover can be a 

significant problem [33,34], and this is exacerbated when using medium resolution sensors, which do 

not pass directly over a site on a daily basis. Melass et al. [62] note that the 16-day overpass interval of 

Landsat is a potential limitation with using it for phenological studies. For example, in the time period 
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covered by this study, there were only three cloud-free Landsat scenes available for the study area, 

making the monitoring of phenological changes impossible. The work presented in this paper indicates 

the potential of using a constellation of medium spatial resolution satellites that have the same or very 

similar imaging characteristics to Landsat. The advantage of the DMC constellation approach is that it 

combines the relatively high spatial characteristics (spatial resolution) required for looking at 

heterogeneous areas of vegetation, such as woodland, with the high frequency of observation (temporal 

resolution), due to the possibility of using the overpasses of multiple satellites, required for monitoring 

phenological events. While this research identified nine usable images, for the operational reasons 

noted earlier, it is estimated, using the work on cloud frequency of Armitage et al. [34], that with a 

daily overpass capability, the DMC satellites could have collected 76 cloud-free images over the study 

period if they had been tasked to do so. 

The results obtained from the research presented here indicate a strong association between  

DMC-derived vegetation indices and LAI, the latter being a biophysical parameter that has already 

been shown to be suitable for monitoring phenology. The nature of the association between the  

DMC-derived vegetation indices and LAI is similar to that identified by Booker et al. [19], who found 

that LAI estimates produced from satellite imagery could be used to identify phenological changes  

in woodlands in southern England over a growing season. In a study looking at alluvial forests,  

Tillack et al. [63] found a strong relationship between vegetation indices derived from remote sensing 

and in situ LAI measured on the ground. Tillack et al. [63] noted that there was a non-linear temporal 

dimension to the relationship between vegetation indices and in situ LAI, and that during different 

phenological phases, different vegetation indices were more strongly correlated to LAI. This  

non-linear temporal relationship observed by Tillack. et al. [63] could explain the over- and  

under-estimations of LAI found in this study. Tillack et al. [63] noted the non-linear variation related 

to changing conditions in the canopy and environment (i.e., the visibility of the ground and understory; 

variations in shadow; changes in illumination conditions; etc.) and the impacts that these have on the 

calculation of the various vegetation indices. Further work is required in order to confirm whether the 

temporal variations in the LAI estimations observed in this research are due to similar factors, but it is 

likely that they are. 

5. Conclusions 

In conclusion, this study has demonstrated the effectiveness of using a medium spatial resolution 

satellite constellation to monitor vegetation dynamics in U.K. woodlands. The results produced from 

the DMC imagery used in this research concur with those found in other similar studies using medium 

spatial resolution imagery. The potential advantage of using a constellation of satellites is in the 

frequency of observation that is possible. Constellations allow daily and even sub-daily observation of 

a study area [65], which, in temperate regions, would increase the potential to get cloud-free imagery. 

Frequent observations are vital for measuring phenological events. Here, nine cloud-free DMC images 

were identified for the study period, compared with only three images from Landsat. As discussed 

earlier, the nine DMC images represented a subset of the potential images, at least one a day, which 

might have been available if the DMC satellites had been tasked to continuously collect imagery of the 

U.K. This research has also shown that the spectral bands available from the DMC instruments have 
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the potential to produce spectral indices that may be used to estimate LAI. Further work is required to 

look at how the temporal variations in LAI estimated from DMC relate to phenological events, and a 

greater frequency of images over the growing season would allow that. 
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