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Abstract: We conducted a meta-analysis on 64 econometric models from 47 studies 
predicting forestland conversion to agriculture (F2A), forestland to development  
(F2D), forestland to non-forested (F2NF) and undeveloped (including forestland) to 
developed (U2D) land. Over 250 independent econometric variables were identified from 
21 F2A models, 21 F2D models, 12 F2NF models, and 10 U2D models. These variables  
were organized into a hierarchy of 119 independent variable groups, 15 categories,  
and 4 econometric drivers suitable for conducting simple vote count statistics. Vote counts 
were summarized at the independent variable group level and formed into ratios estimating 
the predictive success of each variable group. Two ratios estimates were developed based 
on (1) proportion of times the independent variables had statistical significance and (2) 
proportion of times independent variables met the original study authors’ expectations. In 
F2D models, we confirmed the success of popular independent variables such as population, 
income, and urban proximity estimates but found timber rents and site productivity variables 
less successful. In F2A models, we confirmed success of popular explanatory variables 
such as forest and agricultural rents and costs, governmental programs, and site quality, but 
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we found population, income, and urban proximity estimates less successful. In U2D 
models, successful independent variables found were urban rents and costs, zoning issues 
concerning forestland loss, site quality, urban proximity, population, and income. In F2NF 
models, we found poor success using timber rents but high success using agricultural rents, 
site quality, population, and income. Success ratios and discussion of new or less popular, 
but promising, variables was also included. This meta-analysis provided insight into the 
general success of econometric independent variables for future forest-use or -cover 
change research. 

Keywords: forestland use change; meta-analysis; econometric modeling 
 

1. Introduction 

Forestland change is ubiquitous across America. Nationally, the 2010 RPA Assessment [1] 
estimated 41 million acres of additional urban land from 1982 to 2007, a 58% increase from 1982. The 
development of forestland contributed to 17 million of those acres (for comparison, this is almost the 
extent of all North Carolina’s timberland). Scenarios in the 2010 RPA Assessment predicted the 
expansion of urban and developed areas by 2060 will lead to an estimated 16–34 million acres (4%–8%) 
of forestland loss in the contiguous US (this included a predicted 9–21 million acres of forestland 
development in the US south alone). This has dramatic regional implications on economic and 
ecosystem services provided by forestland, wildlife habitat, water quality, and carbon sequestration. 
Conversion of forest use to other uses other than development, even if temporary, inevitably increases 
soil erosion and water quality degradation. While the past 60 years has seen forestry/agriculture 
conversions shifting in favor of forestland, over 9 million acres of forestland still have been converted 
to agriculture in the 1982–2007 period [1]. 

The need for has never been greater for balancing societal demands with protection of natural forest 
systems’ health, biodiversity, habitat, and ecosystem services. Understanding the dynamics of changing 
land use and land cover (LULC) is recognized as a critical component in land management planning 
and policy development. Rural LULC change research has important and direct linkages to natural resource 
health issues such as forestland conversion [2–6]; crop land abandonment and afforestation [7–9]; 
agricultural crop support programs [10–13]; and land fragmentation effects on timber base [14]; water 
quality; and wildlife habitat degradation. Urban LULC change studies explore sprawl and quality of 
life by modeling growth patterns that reflect zoning, land use regulation policy, urban amenities, and 
land value [15–29]. Recent studies measure and forecast direct and indirect effects on LULC change 
through climate change models [10,30–36]. All these efforts are vital for estimated rate of change, 
forecasting, policy development, and biophysical feedback from the local to global scale. Irwin [37] 
offers a concise historical perspective of the diverse research efforts in rural development and  
regional issues. 

One important branch of LULC research is identification of econometric variables that can predict 
forestland change. Stemming from classic Ricardian land rent theory and von Thünen location theory, 
this research identifies the factors driving ownership decisions to (1) keep lands in “working” forests 
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(we define “working” as sustainable performance of normal agricultural management or low to high 
intensity timber management on forestlands); (2) convert lands to other uses (i.e., forest to agriculture) 
or (3) permanently remove lands from rural land uses (i.e., forest to development). Since the late 20th 
century, a profusion of econometric models has developed. These models rely on multivariate 
regression techniques to predict the extent of land use or land cover change (the dependent variable) 
based on explanatory variables such as land rent, distance to markets, or population growth. 
Improvements in tabular and spatial data sources, refined GIS analysis, and innovations in econometric 
model specifications have resulted in diverse modeling efforts spanning temporal and spatial scales. 
These studies have employed hundreds of independent variables in efforts to explain land use change. 
Most studies include important literature reviews that provide background to their research goals and 
guide future efforts. However, to date there has been no attempt to systematically analyze the wealth of 
information in the context of describing the types of econometric variables chosen in modeling efforts 
and their relative success. 

1.1. Vote Counting Meta-Analysis 

The objective of this study was to the review the diverse body of literature on econometric models 
regarding forest LULC change and devise a method of assessing independent variable success at 
predicting forestland loss. Our method was based on a vote count meta-analysis of the observed 
independent variables in each model’s results. Vote counting is a simple meta-analysis method 
appropriate for studies that include a diversity of techniques, data, and assumptions such as those in 
econometric models of LULC change. This method counts the number of significantly positive, 
significantly negative, and non-significant correlations that explanatory variables (e.g., land rent or 
population growth) have with the dependent variable (i.e., forest LULC change). Summing the votes 
allows an investigator to assess the following:  

• popularity of independent variables used in studies; 
• success rate of statistical significance for observed independent variables used to predict 

forestland loss; 
• success rate of observed independent variables’ sign relationships in meeting the expected 

relationships of the study authors; 
• general relationships and trends drawn from these studies. 

Examples of vote counting meta-analysis used in forestry-related econometric studies include 
Beach et al. [38], who assessed econometric models used in studies of non-industrial private forest 
management, and Pattanayak et al. [39], who assessed agroforestry adoption studies. Both studies 
point out that econometric models are not strict experiments and that the results often do not report 
important assumptions, appropriate error distributions, or even standardized data development. This 
lack of information precludes the use of more sophisticated meta-analysis forms other than simple vote 
count procedures. 
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1.2. Determining Vote Count “Success” for Independent Variables Used in Econometric LULC 
Change Studies 

There are numerous ways meta-analysis vote counting may be used to determine the “success” of 
independent variables’ abilities to predict a dependent variable, in this case, forestland loss. The term 
“success” is subjective and requires contextual framing in terms of the goals and methods used. Our 
study utilized two definitions to interpret independent variable success. Both methods employed 
simple vote counts by groups of similar independent variables. Definition No.1 of success followed 
methods similar to Beach et al. [38] and Pattanayak et al. [39] that were based on vote counts of 
statistical significance. Our method recognized statistically significant independent variables 
regardless of unique model conditions that may alter the sign relationship. This recognition was 
important when working with such a wide diversity of study scales, regional differences, data formats, 
data resolutions, and research goals. Indeed, the goal of LULC change research often is to identify and 
estimate previously unknown relationships with no prior stated expectations. Therefore, significance, 
regardless of sign relationship contributes important information. 

We also acknowledged that often LULC change models are developed as the first step in a LULC 
change forecast model, when researchers are not “exploring data” but have carefully chosen variables 
with preconceived expectations of their coefficient sign and significance. Numerous studies include 
these expectations in their methods or results that provide insight into the behavior of the predictive 
variables given specific model conditions. We recognize there is subjectivity when using the expert 
opinion of modelers. However, we feel that contrasting the expected and observed behavior of model 
variables lends additional information when assessing a variable’s success for future use. Therefore, 
for Definition No.2 of success, we provided the proportion of votes when observed sign relationships 
met expectations to the total number of times relationships were stated for a variable. 

2. Methods 

2.1. Rules for Model Acceptance 

Over 200 articles were reviewed on LULC change models spanning 35 years of forestry, 
agricultural, urban, and land planning literature that covered diverse approaches in forestland use 
change economics. In econometric LULC studies, a wide range of definitions of “forestland”  
exist [40]. These are based on the study authors’ objectives (i.e., strictly rural models vs urban/rural 
interface models). Even so, we found considerable overlap of the predictive variables due to 
similarities in many of the processes leading to LULC change. We preferred an inclusive approach to 
model acceptance in attempts to capture as much overlap as possible. This approach led to the 
acceptance of a wide variety of definitions of “forestland” within the framework of this study. We 
accepted four forest LULC change models types based on the “from” and “to” conditions of the 
model’s left hand side (LHS): forest to development (F2D), forest to agriculture (F2A), forest to  
non-forest (F2NF) and undeveloped to developed (U2D). These are briefly described in Table 1. We 
originally had two models types (F2D and F2A). Thanks to an anonymous reviewer’s advice, we  
re-assessed the model types and found the F2D model types really were in three distinct types, F2D, 
U2D, and F2NF. 
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Table 1. Brief description of four model types and left hand side (LHS) conditions 
accepted in meta-analysis of econometric models predicting forest land use and land cover 
(LULC) change. 

Model Type LHS “From” Condition LHS “to” Condition Comments 

F2D Forestland Developed/Urban 
Typically specifies forest and urban  
from 3 or more possible LHS conditions. 

F2A Forestland Agriculture 
Typically specifies forest and agriculture  
from 3 or more possible LHS conditions. 

U2D Undeveloped Developed/Urban 
Groups forestland, agriculture, and pasture 
into undeveloped “from” condition.  

F2NF Forestland Non-forested 
Groups agriculture, pasture, and urban into  
non-forested “to” condition. 

Of the four model types, F2D and F2A models are the most specific in the “from” and “to” classes. 
Typically, these were multinomial dependent variable studies predicting three or more possible LULC 
outcomes (i.e., forest, agriculture and urban). F2NF and U2D models were less specific because of 
research goals or the model framework and specification. Often, F2NF models were multinomial 
models but model coefficient results were usually reported only in terms of predicting change in 
forestland compared to all other uses. U2D models grouped forestland with all other “undeveloped” 
classes and predicted change to “developed”. U2D models were accepted when the authors specifically 
defined forestland as a major component of the “undeveloped” class. Organizing all models into these 
four types provided the opportunity to see popular and successful predictive variables by model type 
and across research objectives. 

In general, most of the studies focused on working forestlands (timberlands) and their  
predicted gains and losses to potential regional timber supply and other ecosystem services. Those 
studies would employ variables such as timber rents and land productivity to predict forestland change. 
Other studies, particularly those in the U2D models, had broader definitions of forestland and may not 
have differentiated between timberland and non-working forestlands in and around urban areas. 
Variables of commercial timber potential give way to other important considerations such as zoning 
and urban influences. 

Separating the four models also facilitated a more effective meta-analysis process where an 
important rule was to strive for one-vote per study to eliminate weighting effects. Numerous studies 
contained both F2D and F2A models in them. Analyzing the four model types separately allowed more 
than one model to be accepted from a study without violating the one-vote count per study rule. 

Other rules of model acceptance were developed to address the one-vote count per study 
requirement. If the study contained models of different geographic regions, each region’s model was 
accepted. If the study contained multiple model specifications, the model indicated by the authors as 
the best fit was accepted. If the study contained models predicting different forest types in a single 
geographic region, the forest type deemed most commercially viable for that region was chosen. 
Lastly, if the study contained models predicting different ownership classes, non-industrial private 
forest ownerships was chosen as it represented the largest class in most regions.  
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2.2. Independent Variable Classification and Analytical Framework 

Applying the above rules narrowed the focus to a population of 47 studies with over 250 unique 
independent variables. First, each accepted model was assigned to one of the four (F2D, F2A, F2NF, 
U2D) model types and examined for details on model specification, study region and scale, and data 
resolution. Model dependent and independent variables were examined for data sources and units of 
scale. As model dependent variables predicted either forestland loss or gain, all observed parameter 
coefficient signs were standardized so the vote count could be performed correctly. In some studies, 
authors reversed the ordination of the NRCS Land Capability Class (LCC), a site quality characteristic, 
while others did not. To standardize this, we reversed the ordination of all studies so that site quality 
increased with the LCC value. All independent variables, if significant at p ≤ 0.1, were recorded as 
positive or negative, otherwise they were recorded as not significant. 

To simplify the large number of independent variables, all variables were grouped in a hierarchical 
classification scheme (See Figure 1). Major drivers in land use change decisions: markets, government 
policies, site characteristics, and socioeconomics provided the organizational framework. Within the 
major drivers, categories of variables were developed, such as timber rents within market drivers 
(Figure 1). A variety of independent variables representing forms of timber rents required further 
grouping within the timber rents category. The “independent variable groups” level is where vote 
counting occurred. Figure 1 shows a small portion of all F2A models, listing studies that used soil 
expectation value (SEV) of sawtimber as an independent variable. All SEV variables across F2A 
models were similar enough to be vote counted in “Independent Variable Group 1: Soil Expectation 
Value, all sawtimber”. 

Figure 1. Example of groupings of the F2A models used for vote count meta-analysis of 
econometric independent variables predicting forestland loss. 

 
* observed is the observed relationship the model independent variable and forestland loss as 
recorded in the study. Positive and negative relationships were included only if obtained statistical 
significance of p = 0.10 or less, otherwise “ns” = not significant; ** expected is the expected sign 
relationship for the independent variable if stated in the study, otherwise “not stated”. 
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The success of each independent variable was then assessed and tallied based on the two success 
definitions described above. Conceptually, within Independent Variable Group 1, the “Ahn et al. 
2001” study was given the assignment “observed (−)”. This was the vote based on the observed 
regression coefficient for SEV. The “success” Definition No.1 stated earlier (observed statistical 
significance regardless of sign) was basis for this vote and it received vote of “1”. The assignment, 
expected (−), denotes the study authors stated that they expected this variable to have a negative 
relationship in their F2A model. Thus, the variable received a vote of “1” on the basis of the “success” 
Definition No.2 (observed significant relationship met expectations). While not a rigorous 
examination, vote count based on the independent variable group-level was useful in drawing 
observations and conclusions about the relative success of categories and independent variable groups. 

To include “positive”, “negative”, and “not significant” vote counts, along with study authors’ 
citations for each independent variable group, proved too unwieldy to include in this paper. Instead,  
we summarized “success” using the two definitions provided earlier. Definition No.1, significance 
regardless of the independent variables’ sign relationships to forestland loss, was expressed using the 
following ratio: 

𝑆/𝑇 =
∑𝑆𝑖
𝑛𝑖

 (1) 

where: ∑Si = vote count sum for observed significant variable coefficients in independent 
variable group (i); ni = number of independent variables in group (i). 
Definition #2, meeting the authors’ expected sign relationships between independent 
variables and forestland loss, was expressed using the following ratio: 

𝐸/𝑇 =
∑𝑂𝐸𝐴𝑔𝑟𝑒𝑒𝑖

𝑛𝑒𝑖
 (2) 

where: ∑O EAgreei = vote count sum of observed significant variable coefficients for 
independent variable group (i) that agreed with the study authors’ expectations in group (i)  
nei = number independent variables in group (i) with stated expectations.  

S/T and E/T ratios of vote counts were performed at the independent variable group level and 
summarized at the category level. High S/T ratios suggest success of the members in an independent 
variable group’s ability to achieve statistical significance in predicting forestland loss for a particular 
model type. High E/T ratios suggest that members in an independent variable group adhered 
expectations for a particular model type. 

3. Results 

3.1. Accepted Models Description 

For brevity, the results presented here are only summaries of the datasets created from this analysis. 
We have provided a thorough dataset accompanying this study that may be downloaded by anyone 
requiring a more detailed examination of the data. After careful review, a population of 64 models 
from 47 studies was accepted. Table 2 lists each study by model type (F2D, F2A, F2NF, U2D) lead 
author(s), dependent variable (LHS), model specification, and geographic region. The earliest model 
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accepted was White and Flemming [41] and most recent was Meng [42]. The observed models used 
change data spanning over 70 years with individual studies ranging from 2-year to 45-year periods. 
Ten studies contained both F2D and F2A model types and one study contained both F2NF and  
F2A models. 

Table 2. Characteristics of 47 econometric studies used in this meta-analysis by forest 
LULC change models, authors, dependent variable, and model specification. The LULC 
change model types studied were forest to agriculture (F2A, 21 models), forest to 
development (F2D, 21 models), undeveloped to developed (U2D, 10 models), and forest to 
non-forest (F2NF, 12 models). (LC) identifies the 6 land cover change models, all others 
were land use change models. 

Model Type Authors Dependent Variable Estimator (LHS) 
Model 

Specification 1 Region 

FA2 Claassen 1993 [43] probability: farm conversion to forest conditional logit South 

FA2 Jensen 2007 [44] log acres CRP OLS South 

FA2 Parks and Kramer 1995 [10] proportion: county land in WRP grouped logit National 

FA2 Parks and Schorr 1997 [45] area enrolled in CRP grouped logit Northeast 

FA2 Poe 1998 [46] proportion: state hydric cropland in WRP OLS National 

FA2 Schatzki 2003 [47] probability: NRI crop plot to forest binomial probit South 

F2A Stavins and Jaffe 1990 [48] forest from crop land abandonment nonlinear LS South 

F2A White and Flemming 1980 [41] forest acres vs crop acres OLS (3-stage) South 

F2D Ahn et al. 2002b [49] ln(urban share/forest share) MML South 

F2D, LC Hodges et al. 1998 [50] binary: LC pixel change forest to urban binomial logit South 

F2D, LC Kline et al. 2009 [51] logit(developed from LC forest pixel) Logit West 

F2D Nagubadi and Zhang 2005 [52] ln(timberland share/urban and other share) MML South 

F2D Nagubadi and Zhang 2007 [53] ln (SW forest share/urban and other share) MML South 

F2D Nagubadi and Zhang 2009 [54] ln(NIPF share/urban and other share) MML South 

F2D Nagubadi and Zhang 2010 [55] ln(timberland forest share/urban share) MML South 

F2D, LC Wear and Bolstad 1999 2 [56] probability: LC forested pixel developed binomial logit South 

F2D Zhang and Nagubadi 2005 [57] ln(timberland share/urban and other share) MML South 

F2D, F2A Ahn et al. 2000 [58] 
ln(urban share/forest share)  

ln(agriculture share/forest share) 
MML South 

F2D, F2A Ahn et al. 2001 [2] 
ln(urban share/forest share)  

ln(agriculture share/forest share) 
MML South 

F2D, F2A Ahn et al. 2002a [59] 
ln(urban share/forest share)  

ln(agriculture share/forest share) 
MML South 

F2D, F2A Lubowski 2002 [12] 
probability: NRI forest plot to urban  

probability: NRI forest plot to agriculture 
nested logit National 

F2D, F2A Mauldin et al. 1999a [60] 
ln (urban share/forest share)  

ln (farm share /forest share) 
MML Northeast 

F2D, F2A Mauldin et al. 1999b [61] 
ln (urban share/forest share)  

ln (farm shares/forest shares) 
MML Midwest 
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Table 2. Cont. 

Model Type Authors Dependent Variable Estimator (LHS) 
Model 

Specification 1 Region 

F2D, F2A Munn and Cleaves 1999 [3] 
probability: FIA forest plot to urban  

probability: FIA forest plot to agri. 
ML South 

F2D, F2A 
Plantinga and Mauldin 2001 3 

[32] 

ln(urban share/forest share)  

ln(farm share/forest share) 
MML 

Midwest, 

South, 

Northeast 

F2D, F2A Polyakov and Zhang 2007 [62] 
probability: NRI forest plot to urban  

probability NRI forest plot to farm 
nested logit South 

F2D, F2A, 

LC 
Polyakov and Zhang 2008 [63] 

probability: LC forest pixel converts  

to development probability LC forest  

pixel converts to farm 

conditional logit South 

F2NF Alig et al. 1988 4 [64] percent farm-forestland share-Coastal Plain SURE South 

F2NF Alig 1986 5 [65] percent farm-forestland share SURE South 

F2NF Hardie and Parks 1997 [66] ln[P(forest)/P(developed)] MML South 

F2NF Hardie et al. 2000 [67] ln[(P(forest)/P(developed)] MML South 

F2NF Lewis and Plantinga 2007 [68] probability: NRI plot transition from forest conditional logit South 

F2NF Meng 2011 [42] probability: NRI plot transition from forest RP logit South 

F2NF Parks and Murray 1994 6 [69] proportion of county in forestland grouped logit West 

F2NF Plantinga and Wu 2003 [33] ln(forested share/non-forest share) SURE Midwest 

F2NF Wear et al. 1999 [70] 
probability: transition  

from commercial forestry 
binomial logit South 

F2NF, A2F Plantinga and Ahn 2002 [71] 
probability: forest to non-forest transition  

probability: farm to forest transition 
NSURE South 

U2D Alig et al. 2004 [72] ln [P(developed)/1−P(undeveloped)] logit National 

U2D, LC Alig et al. 2005 [14] forest fragmentation index OLS West 

U2D Bockstael 1996 [73] binary: undeveloped vs developed binomial probit Northeast 

U2D Carrion and Irwin 2004 [16] probability: undeveloped to residential binomial probit Midwest 

U2D Cho et al. 2005 7 [24] log (developed/original undeveloped area) SURE West 

U2D Hsieh et al. 2000 [17] acres undeveloped converted to urban 2-Stage OLS Midwest 

U2D Irwin et al. 2002 [74] ln(undeveloped share/developed share) binomial probit Midwest 

U2D Irwin and Bockstael 2002 [75] binary: undeveloped parcel gets developed binomial probit Northeast 

U2D Kline and Alig 1999 [76] probability: FIA forest plot is converted binomial probit West 

U2D, LC Landis and Zhang 1997 [77] 
probability: LC undeveloped pixel  

to developed 
ML West 

1 ML denotes multinomial logit, MML denotes modified multinomial logit, RP logit denotes random parameter logit, OLS denotes 

ordinary least squares, SURE denotes seemingly unrelated regression equation, NSURE denotes non-linear seemingly unrelated 

regression equations; 2 Wear and Bolstad (1999) [56] had three study areas from the Southern Appalachian. We chose only one, 

Henderson County, NC; 3 Plantinga and Mauldin (2001) [32] had three study states that we treated separately: Wisconsin, Maine, and 

South Carolina; 4 Alig et al. (1988) [64] had two study areas that we treated separately: Southern Coastal Plain, and Southern Interior 

Highlands; 5 Alig (1986) [65] study modeled multiple areas in the US South but we only used the one covering the full extent; 6 Parks 

and Murray (1994) [69] had two study states that we treated separately: Oregon and Washington; 7 Cho et al. (2005) [24] modeled the 

east and west sides of the Cascades region separately along with a pooled model. We chose only the pooled model. 
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Six studies (labeled with “LC” in Table 2) used land cover change models as the dependent 
variable. Land cover models are derived from remotely sensed “snapshots” of land cover and, 
depending on the classification techniques used, may not detect normal forest harvesting from land 
conversion activities. This could lead to erroneous estimates of true land use change (Coulston et al. [78], 
Hodges et al. [50], Polyakov and Zhang [63]). However, when land cover models are thoroughly 
ground-truthed and misclassifications corrected, they have the advantage of complete coverage of the 
study region. With the exception of Alig et al. [14], all the land cover models included in this  
meta-analysis claimed some form of validation and/or reclassification technique accounting for young 
forests. The remaining 41 studies used land use change originating from inventory plot-, parcel-, 
county-, or state-level data as the dependent variable. Six studies modeled multiple regions. The 
footnotes for Table 2 describe our decisions regarding these studies in attempting not to violate the  
one-vote per study rule. 

The spatial resolution of dependent variables were graphed by model type and geographic region 
(Figure 2). Pixel data refers to satellite imagery. Plot data typically came from the USFS Forest and 
Inventory and Analysis (FIA) or the USDA Natural Resources Inventory (NRI) datasets. Parcel data 
usually came from land records offices and were found on studies covering relatively small geographic 
areas. The most commonly used spatial resolution was county-level (64% of all studies). For 
simplification of Figure 2, two other resolutions were grouped along with the county-level data, 
Census Tracts (2 studies) and FIA units (4 studies). Typically county-level models predicted the 
change in proportions (termed “shares”, Table 2) of various land uses at the county level. FIA and NRI 
plot data was frequently aggregated at the county level; however, seven studies modeled change of the 
NRI or FIA plots. These can be determined in Table 2 in the “Dependent Variable Estimator (LHS)” 
column. By doing so, these studies took advantage of important site productivity information such as 
Land Capability Class (NRI) or Site Index (FIA) included in plot inventory data. Lubowski [12] found 
NRI plots the best data source for his nationwide study on land use change predictions. 

Figure 2. Spatial resolutions by geographic region and model types included in a  
meta-analysis of 64 econometric models predicting forestland conversion. 

 
Notes: pixel denotes satellite imagery data, plot denotes FIA or NRI inventory plot, parcel denotes property parcel. 
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The F2D and F2A model types were most frequent, each having 21 models (33%). The number of 
remaining model types ranged from five to eight. Figure 2 shows the models were highly skewed to 
the US South with 37 models (58%). Most research interest in this region centered on 
agriculture/forest conversion predictions and loss of productive forestland (and their benefits such as 
wildlife habitat) to development. U2D processes are typically accounted for in F2D studies, perhaps 
demonstrated by the lack of specific U2D studies in the US South. Forestland conversion to agriculture 
is not as prevalent an issue in other regions (i.e., northeast) relative to the US South and received less 
emphasis. West Coast research that we used focused more on permanent development of rural land 
rather than specific forest to agriculture processes. The other geographic regions showed consistent use 
of all four model types. 

Figure 3 groups model specifications by model type and geographic region. The three most 
common specification groups were logit (9 specification forms); ordinary least squares (OLS,  
3 specification forms), and seemingly unrelated regression equations (SURE, 2 specification forms). 
Logit models represented 80% of all models with binomial or multinomial dependent variables and 
were used across all model types and geographic regions. 

Figure 3. Model specifications by geographic region and model types included in a  
meta-analysis of 64 econometric models predicting forestland conversion. 

 

3.2. Frequency of Model Use by Econometric Drivers and Categories 

All variables were organized into 4 major drivers: markets, government policies, site characteristics, 
and socioeconomic characteristics. These drivers were further classified into 15 categories. Table 3 
provides a brief description/justification of the rich variety of modeling categories in these studies. 
Figure 4 provides a graphic of the frequency (popularity) of econometric drivers and categories used 
by model type. Land productivity was the most popular category and used in high proportions of all 
model types. Similarly population ranked very high among all model types. Rents (timber and 
agricultural) were most popular with F2A, F2D, and F2NF models. Proximity to development had 
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relatively high popularity in F2D and U2D models and to a lesser extent F2A models. Forestry 
incentive programs were important in F2A models and zoning of interest in F2NF models. 

Table 3. Description of 15 categories used to organize variables from 64 econometric 
models for use in vote count summaries. 

Driver Category Description 

Market 

Timber Rents Income from forest production or economic value of timber (price, etc.) 

Timber 
Costs/Uncertainty 

Costs involved in timber production (i.e., site preparation costs) or 
indicators of uncertainty in timber product (i.e., uncertainty in 
timber revenue) 

Agriculture Rents Income from agricultural production 

Agriculture 
Uncertainty 

Costs involved in agricultural production (i.e., cropping costs), 
indicators of uncertainty in agricultural product (i.e. uncertainty in 
agriculture revenue), or practices that reduce uncertainty in 
agriculture (i.e., irrigation systems) 

Urban Rents Income from development or residential land value 

Urban 
Costs/Uncertainty 

Costs involved in development (i.e., conversion costs, property 
taxes), indicators of uncertainty in development markets (i.e., 
variance of housing values), or practices that reduce uncertainty for 
development (i.e., sewers nearby) 

Government 
Policy 

Forestry Incentive 
Programs 

Involving government programs promoting forestry, effects of 
government programs that promote agriculture. 

Zoning Effects on 
Forestland Loss 

Involves effects of forest/agriculture use zones, urban growth zones, 
critical habitat zones, mandatory review of farmland development, 
rural zoning at the county Vs township levels (and spillover effects) 

Site 
Characteristics 

Land 
Quality/Productivity 

Site productivity ratings for agriculture or forestry, land quality 
fragmentation. Also, land quality for development, slope, and 
elevation. 

Forestland 
Proximity 
Influences 

Status of location with respects to timber production/ownerships 
(i.e., forest type, ownership type, or contiguous forestland 
surrounding location). 

Agricultural 
Proximity 
Influences 

Status of location with respects to agriculture 
production/ownerships (i.e. farmer owned, acres of farmland in 
county). 

Development 
Proximity 
Influences 

Status of location with respects to development potential (distance 
to roads, cities, developed sites, vacant land, etc.). Also includes 
USDA Economic Research or other combinations of distance and 
population measurements yielding “gravity” indices, or “urban 
continuity” 

Socioeconomic 

Population and 
Growth 

US Census Bureau estimates of population, typically county 
density. 

Income US Census Bureau estimates of income, typically median HH. 
Other 

Socioeconomic 
Includes landowner age, education, death rates, and effects of 
changes in estate tax laws. 
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Figure 4. Frequency of models by major econometric driver and categories included in a 
meta-analysis of 64 econometric models predicting forestland conversion. 

 

3.3. Vote Count Analysis Results 

Table 4 is the summarized vote count ratios for the 64 models. It was organized by the four model 
types (columns) and econometric drivers, categories, and independent variable groups (rows). The 
category name rows also include the number of models used for that category by model type. For 
example, 16 F2D models used variables in the timber rents category (m = 16). Within each category 
are the independent variable groups and their estimation units. The 113 independent variable groups 
attested to the diversity and imagination study authors. Each model type has two columns containing 
the vote count ratios, “S/T” (significant to total) and “E/T” (expected to total) described by success 
Definitions No.1 (Equation (1)) and No.2 (Equation (2)). 

The “category summary” row, allows quick assessment of the overall success of a category. 
Frequently, these summaries were larger than the number of models. This resulted from models that 
contained multiple variables within a category. For example, Nagubadi and Zhang [53] included 
sawtimber prices of both oak and pine in the F2D model that we chose. Both variables fell under the 
same category but were in different independent variable groups. The far right column (All S/T) is the 
summary of S/T ratios for all model types. An important point when interpreting the All S/T column is 
double counts occurred for certain variables. This results when a study had two model types (as the 
case with 10 F2D and F2A models) that used the same variable. 

We provided a lower limit to “success” at 67% and visually marked ratios falling below that in 
yellow for S/T ratios and orange for E/T ratios. While admittedly an arbitrary limit, this highlighted the 
independent variable groups that may warrant caution. 
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Table 4. Vote count meta-analysis summary of independent variables used in 47 econometric studies that estimated forest land loss  
through 4 model types: forest to development models (F2D), forest to agriculture models (F2A), undeveloped to developed models (U2D), 
and forested to non-forested models (F2NF). 

 

F2D F2A U2D F2NF All 
S/T E/T S/T E/T S/T E/T S/T E/T S/T 

Market Drivers 
Timber Rents m = 16 m = 14 m = 1 m = 11 m = 36 
Soil Expectation Value, Sawtimber, All ($/acre) 3/8 2/3 8/10 8/8   3/4 2/4 14/22 
Soil Expectation Value, Pulpwood All ($/acre) 1/1 1/1 1/1 1/1     2/2 
Timber Products Income ($/county) 2/2 2/2 3/3 3/3   1/3  6/8 
Stumpage Value Sawtimber, All ($/MBF) 5/5 4/4     1/1 1/1 6/6 
Forestry : Crop Income Rent (ratio)       1/3 1/2 1/3 
Pulpwood Stumpage Price, Softwood ($/unit) $/cu ft)       1/1  1/1 
Sawtimber Stumpage Price Softwoods ($/MBF)] 1/1 1/1 1/1 1/1 0/1  1/2 1/1 3/5 
Stumpage Value Sawtimber, Oak ($/MBF) 0/1 0/1       0/1 
Category Summary 12/18  13/15  1/1  8/14  33/48 
Timber Costs/Uncertainty m = 0 m = 1 m = 0 m = 2 m = 3 
Timber Site Prep/Planting Costs ($/acre)       1/2 1/1 1/2 
Trend in timber returns (returns trend line)   0/1      0/1 
Uncertainty of Timber Revenue (derived)   1/1 1/1     1/1 
Category Summary   1/2    1/2  2/4 
Agriculture Rents m = 16 m = 17 m = 3 m = 4 m = 34 
County Level Farm Rent (SEV or Profit) ($/acre) 1/2 0/1 7/7 7/7   2/2 1/1 10/11 
County Farm Prod. Rev., $ Total or Net/area) 2/13 4/4 7/9 7/9 2/3  1/2 1/2 12/27 
Farm Income to State Per Capita Income (ratio)   1/1 1/1     1/1 
Proportion of sales from high-value crops (ratio)    1/1 1/1     1/1 
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Table 4. Cont. 

 

F2D F2A U2D F2NF All 
S/T E/T S/T E/T S/T E/T S/T E/T S/T 

Category Summary 3/16  16/18  2/3  3/4  24/40 
Agricultural Costs/Uncertainty m = 0 m = 5 m = 1 m = 1 m = 7 
County (or Parcel) Crop Costs ($/acre)   2/3 2/3   0/1  2/4 
Uncertainty of Agriculture Revenue (derived)   1/1 1/1     1/1 
Conservation Practices Used on Plot (binary)   1/1 1/1     1/1 
Conversion Costs Forest to Agriculture ($)   2/2 2/2     2/2 
Property Taxes ($)   1/1 1/1     1/1 
Trend in Agriculture Revenue (% change)   0/1      0/1 
Irrigation (binary)   1/1 1/1     1/1 
Uncertainty of Agriculture Revenue (derived)   1/1 1/1 1/1 1/1   2/2 
Category Summary   8/10  1/1  0/1  9/12 
Urban Rents m = 6 m = 0 m = 2 m = 2 m = 9 
Residential Land Value ($/acre)     1/1 1/1   1/1 
Profit from Recently Developed Land ($/county) 6/6 6/6   1/1 1/1 2/2  9/9 
Category Summary 6/6    2/2  2/2  10/10 
 Urban Costs/Uncertainty m = 1 m = 0 m = 3 m = 1 m = 5 
Value of Farmland ($)     2/2 2/2 0/1  2/3 
Conversion Cost Forest to Urban ($) 1/1 1/1   1/1 1/1   2/2 
Property Taxes ($) 1/1 1/1       1/1 
Sewer nearby (binary)     1/1 1/1   1/1 
Variance of new housing value (derived)     1/1 1/1   1/1 
Category Summary 2/2    5/5  0/1  7/8 
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Table 4. Cont. 

 

F2D F2A U2D F2NF All 
S/T E/T S/T E/T S/T E/T S/T E/T S/T 

Government Policy 
Forestry Incentive Programs m = 1 m = 8 m = 0 m = 2 m = 9 
County Tree Planting and Cons. Expenses ($)   2/3 2/2   2/2  4/5 
County Tree Planting Programs (acres) 0/1  1/1 1/1     1/2 
Rental Rate for Ag. Reduction Prog. ($/acre)   2/2 2/2     2/2 
County WRP Restoration Costs ($/acre)   1/1 1/1     1/1 
County Land in Acreage Adjustment Programs, Other Than WRP (%)   0/1 0/1     1/1 
County Idle Crop Land (%)    2/2 2/2     2/2 
Parcel (Plot) Has CRP Eligibility (binary)   2/2 2/2     2/2 
Impact of Flood Control Program on Farming Feasibility (index)   2/2 2/2     1/1 
Flood Control Programs Impact on Land Quality Heterogeneity (mean)   1/1 1/1     1/1 
Pre-WRP Easement Property Tax (binary)   1/1 1/1     1/1 
Hydric Cropland Eligible for WRP (state acres)   1/1 1/1     1/1 
Category Summary 0/1  15/17    2/2  17/20 
Zoning Effects on Forestland Loss m = 2 m = 0 m = 5 m = 0 m = 7 
County Has/Plot in Forest Use Zone Law (binary)     2/2 1/1   2/2 
County Has or Plot in Agriculture Use Zone Law (binary)     2/2    2/2 
Parcel in Critical Habitat Zone (binary)     1/1    1/1 
Plot in Urban Growth Zone (binary)     1/1 1/1   0/1 
Interaction Land Use Law Enacted X Urban Growth Zone (binary)     1/1 1/1   1/1 
Mandatory Review on Farmland Dev. (binary)     1/1    1/1 
County Has Comprehensive Plan (binary)     1/1 1/1   1/1 
Parcel in 3+ Acre Minimum Zoning (binary) 2/2 2/2   2/2    4/4 
Proportion of County in County Rural Zoning (%)     0/1    0/1 
Proportion of County Rural Zoning Enacted in Neighboring Counties (%)     0/1 0/1   0/1 
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Table 4. Cont. 

 

F2D F2A U2D F2NF All 
S/T E/T S/T E/T S/T E/T S/T E/T S/T 

Proportion of County in Township Rural Zoning (%)     1/1 1/1   1/1 
Proportion of Township Rural Zoning Enacted in Neighboring Counties (%)     1/1 1/1   1/1 
Category Summary 2/2    13/15    15/17 
Site Characteristics 
Land Quality/Productivity m = 19 m = 17 m = 8 m = 9 m = 48 
Average Site Productivity Rating For County (inversed LCC, MLRA Class, or 
Site Index) 3/13 2/2 11/11 7/7 2/2 1/1 2/4 1/1 18/30 

Variance in Average County LCC (derived estimate)   1/1 1/1   1/1 1/1 2/2 
Highly Productive Soils-LCC I,II; MRLC Class 1,2 (% of area or binary) 8/14 5/6 7/12 6/7 4/5  4/6 2/3 23/37 
Moderately Productive Soils-LCC III,IV (% of county, acreage, plot, or binary) 1/1 1/1 2/2 2/2   2/2 1/1 5/5 
Loss of Highly Productive Acreage During Study Period (%)     

1/1    1/1 
Land Quality Fragmentation Index  
(continuous, low value = low fragmentation, high value = high fragmentation)     1/1 1/1   1/1 

Poor Soil for Development (binary)     2/2 1/1   2/2 
FIA Plot or Raster Slope (%) 4/4 1/1 2/2  2/3 2/2 2/3 1/1 10/12 
Elevation (meter) 1/2 1/1       1/2 
Category Summary 17/34  23/28  12/14  11/16  63/92 
Forestland Proximity Influences m = 3 m = 3 m = 2 m = 1 m = 9 
Location Is Softwood Forest (binary) 1/1  0/1      1/2 
Location Is Hardwood Forest (binary) 0/1  0/1      0/2 
Contiguous Forest Area in Parcel or Around Plot (acres) 2/2  1/1    1/1 1/1 4/4 
Forested Land In County (acres)   1/1 1/1     1/1 
Public Ownership (binary or percent by area) 0/1  0/1  0/1 0/1   0/3 
Location Is Industry Ownership (binary) 0/1  0/1      0/2 
Location Is NIPF Ownership (binary) 1/1  0/1      1/2 
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Table 4. Cont. 

 

F2D F2A U2D F2NF All 
S/T E/T S/T E/T S/T E/T S/T E/T S/T 

Location Is Conservation Ownership (binary) 1/1  1/1      2/2 
Location Is Misc. Ownership (binary)     1/1    1/1 
Category Summary 5/8  3/8  1/2  1/1  10/19 
Agriculture Proximity Influences m = 0 m = 3 m = 2 m = 0 m = 5 
Location Is Farmer Owned (binary)     0/1    0/1 
Agricultural Land in County (% or acres)   2/2  1/1    3/3 
Pasture in County (% or acres)   2/2      2/2 
Category Summary   4/4  1/2    5/6 
Development Proximity Influences  m = 14 m = 7 m = 8 m = 2 m = 31 
Proximity To Roads/Highway or County Highway Density  
(binary, distance or per area) 5/6 3/3 1/2 1/1 3/3 3/3   9/11 

Proximity /Access to Urban Areas (distance) 5/7 3/3 2/4 1/1 5/6 1/2 0/1  12/18 
Proximity to Developed Sites (distance) 1/1  0/1  3/3 2/2   4/5 
Proximity to Industrial Complex (distance)     1/1 1/1   1/1 
County Urban Area at Start of Study (acres)     1/1    1/1 
Plot or County Area Converted to Urban Over Study Period (binary or area)     2/2 1/1   2/2 
Vacant Land Near Parcel (binary)     1/2    1/2 
County has (is part of) Metropolitan Statistical Area (binary) 1/3 1/3   1/2 1/2   2/5 
Rural-Urban Continuity Codes (ordinal 1 = urban, 9 = rural) 3/3 3/3       3/3 
Urban Influence or Population Gravity Index (binary or PGI) 2/2 2/2 1/1  1/1 1/1 1/1  5/5 
Change in Population Gravity Index (change amount) 1/1 1/1       1/1 
Population Interaction Zones for Agriculture (PIZA)-low Interaction (binary)   1/1 1/1     1/1 
Population Interaction Zones for Agriculture (PIZA), High Interaction (binary)   1/1 1/1     1/1 
Category Summary 18/23  6/10  18/21  1/2  43/56 
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Table 4. Cont. 

 

F2D F2A U2D F2NF All 
S/T E/T S/T E/T S/T E/T S/T E/T S/T 

Socioeconomic Characteristics 
Population and Growth m = 17 m = 10 m = 7 m = 11 m = 39 
County Population (people)     1/1     
County Population Density (people/area unit or county) 14/15 9/10 3/10 2/3 4/4 2/2 7/7 2/2 28/36 
Change in County Population or Density (%) 1/1    3/3 1/1 1/1 1/1 5/5 
Census Block Population Growth Rate (%) 0/1  0/1      0/2 
Change in Nearest Urban (or MSA) Population (%)       1/1 1/1 1/1 
County Pop./Forest acres (people/unit area) 2/2 2/2       2/2 
Urban Population (people)       3/3 1/1 3/3 
Rural Population (people)       0/3  0/3 
Category Summary 17/19  3/11  8/8  12/15  39/52 
Income m = 6 m = 1 m = 6 m = 5 m = 18 
County Average Salary, Per Capita Inc, Median HH Income ($) 4/5 3/3   4/4 1/1 5/5  13/14 
Census Tract Median Household Income ($) 0/1  0/1      0/2 
County (or State) Change in Median Household Income (%)     0/1    0/1 
Poverty (%) 1/2        1/2 
Inflation Rate (%)       0/1  0/1 
Change in employment (city level) (%)     1/1    1/1 
Category Summary 5/8  0/1  5/6  5/6  15/21 
Other Socioeconomic m = 4 m = 2 m = 0 m = 1 m = 7 
Landowner Age (years)   1/1 1/1   0/1  1/2 
BS Degree or Higher (%) 3/3  0/1      3/4 
HS Degree (%) 1/1 1/1       1/1 
Category Summary 4/4  1/2    0/1  5/7 
Variable coefficients significance were used for vote counting and summed across similar independent variable groups (i.e., “Soil Expectation Value”) and categories (i.e., 
“Timber Rents”) and organized by major econometric drivers (i.e., “Market Drivers”). Vote counts ratios S/T denotes the vote count of observed significant coefficients to 
the total coefficients within an independent variable group. Vote count ratios E/T denote the vote count of observed significant coefficient that met the study authors’ 
expectations to all variables in a group that had expectations expressed. 
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While Table 4 provides important information on success of independent variable groups, 
information about sign relationship was lost by not including the actual vote counts. These are in the 
accompanying dataset for detailed review. To avoid tedious discussion of sign relationship between 
variables and forestland loss for each model type, we have reserved discussion of sign relationship for 
certain successful variables until the conclusions section. 

4. Discussion 

Factors such as the variety of model specifications, data used, geographic location, unit scale and 
many others made summarizing this meta-analysis very challenging. Below, we have provided some 
trends and observations suggested by Table 3 about relative success of the observed variables. This 
discussion followed the organizational scheme of econometric drivers and categories. 

4.1. Market Drivers 

Market drivers were popular across all model types. Timber rents, agricultural rents, and 
agricultural costs/uncertainty were most popular categories for F2D, F2A, and N2NF models. Urban 
rents and urban costs/uncertainty were popular for F2D and U2D models. Soil expectation value (SEV) 
is the potential forest rent of a land unit (i.e., county) defined as the per-acre present discounted value 
of an infinite stream of timber revenues, typically by product class (sawtimber or pulpwood). 
Revenues are discounted based on timber volume at time of harvest (timber yield) and price of timber 
products. Timber yield relies on both site quality and timber rotation lengths that are controlled using 
the Faustmann rule at a 5% discount rate. Agriculture SEV often equals the present discounted value of 
annual real per-acre net revenues from cropland and pasture. County-level estimates are often 
developed by summing weighted revenues of specific important crops in the county. SEV for all 
sawtimber dominated the forms of timber rents with a low success rate (S/T = 3/8) for F2D models. 
The low success rate in the F2D models did not appear to be tied to geographic region [32]. Many 
authors did not have a priori expectations about SEV for sawtimber in F2D models and many 
concluded that they are negligible compared to urban rents in these models [32,59,69]. However, many 
of the same studies found SEV for sawtimber an excellent predictive variable in F2A models  
(S/T = 8/10) as did F2NF models (S/T = 3/4). In F2A models, the expectation that timber income 
reduces probability of agricultural conversion was met 100% (E/T = 8/8). Income from timber 
products and the stumpage value of sawtimber (used exclusively in the US South F2D models) was 
successful in both F2D and F2A models and met expectations when stated. Timber costs/uncertainty 
was only used in F2A and F2NF models but not often (m = 3) and with limited success. 

Agriculture rents had very poor success (S/T = 5/16) in F2D models but were highly successful in 
the other three model types. County-level crop revenue data made available through the USDA 
Agricultural Census was the agriculture rent variable used most frequently. Some authors provided net 
crop production revenues (crop production revenues minus cropping costs) [2,58,59]. Others, specifically 
analyzing the effects of production costs, kept revenues and costs as separate variables [10,12,43,45]. 
In most cases, government payment programs to farmers were not included as rent. Lubowski [12] 
included government payments in crop revenues, assuming these have a stabilizing (insuring) effect on 
farmers’ expectations of future returns. Agricultural rents typically were not expected to have a significant 
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relationship in F2D models, but were often expected to be equally as important as timber rents in F2A 
models. This expectation was met in most cases.  

The success of agriculture rents in U2D models (S/T = 2/3) may reflect the relative importance of 
prime agricultural land (included in “undeveloped” land) as land becomes developed [24,76]. 
Similarly, agriculture rents success in F2NF models may be attributed by the influence of prime 
agricultural land that are included in the “non-forested” class [33,71]. 

Agriculture costs/uncertainty estimates found success in F2A models (S/T = 9/11). A wide variety 
of variables were represented in this category but with cropping costs and conversion from forest to 
agriculture used more frequently. Most results conformed to the study authors’ expectations.  

Urban rents were highly successful in F2D, U2D, and F2NF models, mostly in the form of profit 
from development (often median housing value) and residential land value. Expected positive relationships 
between urban rent and forestland loss were met when stated. Lubowski’s [12] analysis showed that 
the significant positive relationship of urban rent in forest to urban transition lessened in regions of 
highly productive forestland. 

Urban costs, used mostly in U2D models, included a variety of independent variable groups 
typically expected to reduce the probability of development. Value of farmland, conversion costs, and 
property taxes all were successful and met sign expectations in U2D models. Polyakov and Zhang [62] 
found property taxes a deterrent to forest development in a F2D model but suggested it may lead to 
higher probability of forest conversion to agriculture or other uses. Urban (development) uncertainty 
estimates effected risk assessment involved in development investment decisions. Sewer access was an 
incentive that reduces development risk, thus increasing the probability of development [73]. 
Variability in new housing value increased development risk thereby reducing the probability of 
development [47]. 

4.2. Government Policy 

It is important to note that while government policy directly affects many other variables, we 
wanted to use studies that explicitly measured the effects of government policy of forestland loss or 
gain. Government policy drivers were used in 16 models in two categories and model types. F2A 
models focused on forestry incentive programs and U2D models on zoning effects on forestland loss. 
The category on forestry incentive programs provided a variety of successful independent variable 
groups (S/T category summary = 15/16) that met study authors’ expectations. F2A studies [43,44,47] 
and F2NF studies [64] modeled county-level tree planting expenditures or acres to successfully predict 
landowner participation in farmland retirement rental programs like NRCS Conservation Reserve 
Program (CRP) or NRCS Wetland Reserve Program (WRP). Parks and Kramer [10] and Parks and 
Schorr [45] also successfully predicted participation in WRP or CRP using variables on program rental 
rates, restoration costs, acres of county lands already in other programs, or pre-WRP tax treatments. 
Stavins and Jaffe [48] studied variables describing the impacts of government flood control policies 
and successfully predicted the unintended effects these have on WRP land.  

The zoning category (mostly in U2D models) involved diverse variable groups used with relative 
infrequency. This category, as a whole, also achieved a high success ratio for significance (S/T 
category summary = 13/16) and usually met study authors’ expectations. The effects of zoning 
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regulations and land planning on development of forest and farmland received much attention through 
the works of Cho [24] and Kline and Alig [76]. Irwin et al. [74] modeled the effects county- and 
township-level rural zoning had on where development activities take place. They found strong 
evidence for “spill-over” effects where the proportion of rural township zoning ordinances increased 
development risk of adjacent counties. Independent variable groups for forestry incentive programs 
and zoning have excellent potential for future work in LULC change studies. 

4.3. Site Characteristics 

Site characteristics was the most popular and diverse of the econometric drivers. Determining a 
logical classification scheme for this meta-analysis proved difficult at times. The conceptual 
framework for site characteristics was on the basis of site conditions (quality, ownership) and/or spatial 
context in the landscape. No doubt, many variables in this set could logically be re-classified into other 
categories with obvious overlap, such as:  

(1) crop and forestland productivity estimates (site characteristics) were related to timber and farm 
SEV and the value of farmland (markets) 

(2) slope and elevation (site characteristics) were related to urban conversion costs (markets) 
(3) forest types (site characteristics) were related to timber value (markets) 
(4) ownership status of “conservation lands” (site characteristics) may be analogous to “critical 

habitat zone” (government policy)  
(5) numerous variables estimating urban influences based on proximity (site characteristics) were 

directly tied with population and income levels (socioeconomic).  

While these illustrate some of the classification “grey-areas” that existed, the site productivity and 
locational emphasis assigned to site characteristics allowed organization of its four categories. The first 
category was based on productivity conditions of the site and the other three were based on other site 
conditions and/or relative distances from LULC change influences.  

Land quality/productivity represented the most frequently used category in all models analyzed. 
The most common estimates were based on county average estimates on soil productivity for cropland 
(LCC) or forestland (site class or site index). USDA NRCS provide Land Capability Class (LCC) rating 
for every soil series in the United States. This rating is in 8 ordinal classes (I–VIII). Classes I and II are 
considered the best and most highly productive soils. Classes III, IV are considered capable of 
producing cultivated crops with good management and conservation treatment. Classes V through VII 
are suited to perennial vegetative species (forest, orchard, pasture), and Class VIII soils are not suitable 
for managed vegetative production. “Site class” is by Munn and Cleaves [3] as “the land’s potential 
timber yield measured in cubic feet/acre/year and is ranked from 1 (lowest) to 7 (highest)”. “Site 
index” is an estimate of forest productivity based on tree height at a given age. More productive sites 
yield taller trees all else remaining equal. 

Also popular, were estimates of highly productive agriculture soils (in county acres or percentages). 
In F2D models, these two popular independent variable groups had poor success achieving statistical 
significance (S/T = 3/13 and 8/14, respectively). This suggested that, similar to timber rents, site 
productivity (regardless of agricultural or forest productivity estimates) is not a successful predictor for 
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forestland loss in F2D models. In F2A models, average county productivity was very successful and 
met all expectations. The highly productive soils variable group was less successful in F2A models 
(S/T = 7/12), yet, when stated, study authors’ expectations of highly productive soils’ sign 
relationships were usually met (E/T = 6/7). 

Land productivity estimates, particularly in the form of highly productive soils were also successful 
in U2D and F2NF models. In both cases, this may be tied more to the relatively resiliency of highly 
productive croplands to development pressure when compared with forestland. Cho et al. [24] point 
out that higher value of prime farm land in the Western US out-weighed forestland value and led to 
forest loss when under development pressure. Bockstael [73] and Hsieh et al. [17] both found high 
farmland value was a deterrent to development in U2D models (seen in the urban costs/uncertainty 
category). Conversely, Bockstael [73] and Irwin et al. [74] found the variable group, poor soil for 
development, successful in U2D models. Other site factors effecting agriculture or development, such 
as slope and elevation, were successful all four model types. 

Forestland proximity influences such as forest type and ownership appeared in both F2A and F2D 
model types but with limited success in F2D and even less in F2A. Importantly, the variable, contiguous 
forest area around the study parcel or plot, showed significance in three US South studies [3,42,50] 
with a negative relationship to forestland loss. Similarly, county agricultural land ownership (in the 
agricultural proximity influences category) showed success when used in F2A and U2D models. 

Urban proximity influences used numerous distance-based estimates but also contained derived 
estimations of “urban influence” over the adjacent landscape. Proximity estimates such as distance to 
roads, urban areas, developed sites, and industrial complexes were very successful in both F2D and 
U2D models meeting expectation in most cases. In F2A models, there was less success suggesting that, 
all else remaining the same, distances alone to urban areas may not strongly influence forest to 
agriculture conversion. In both F2D and U2D models, the poor success of variables estimating the 
detection of a county’s presence in Metropolitan Statistical Areas (MSAs) supports this point.  

There are some relatively recent sets of derived estimates from the USDA Economic Resource 
Center’s (ERS) that have shown promise. One set used successfully in F2D models by Nagubadi and 
Zheng [53–55] were the Rural-Urban Continuum Codes (RUC) [79]. These index codes were related to 
the size of urban areas and the degree of urbanization in non-urban areas. Another ERS dataset used was 
the Urban Influence (UI) Codes that incorporated distance, income, and population [80]. Landis and 
Zhang [77] used UI Codes in an U2D model and Lewis and Plantinga [68] used UI codes in a F2NF 
model. Both efforts had success using the variable. Population Gravity Indices (PGI), similar to UI 
Codes, were derived in individual studies by Kline et al. [51] and Polyakov and Zhang [63] and were 
based on distance to urban areas, and urban population. PGI was successful (S/T = 4/4) in the US 
South for F2D and F2A models, indicating the potential importance of this variable. 

In a F2A model, Jensen [44] applied ERS Population Interaction Zones for Agriculture (PIZA) [81] 
for prediction of cropland to conversion to forested CRP in North Carolina. PIZA is  
an agricultural-based population gravity index derived from interactions between agricultural 
production activities nearby urban populations. The success met with this variable holds promise for 
further F2A studies. 
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4.4. Socioeconomic Characteristics 

This class included two popular categories, population and income, and some lesser used 
independent variable groups estimating education and landowner age. Population density was the most 
frequently successful forestland change predictor of all variable groups in this meta-analysis. However, 
success was limited to F2D, U2D, and F2NF models types (S/T = 25/26). This data supports the 
generally accepted observations of Alig [65] and Alig and Healy [82] that population and income are 
two of the most important predictors of urban build-up of forests and undeveloped land. Census block 
populations did not appear to have the same success [3]. F2A models had very low success (S/T = 3/11) 
suggesting population alone is a poor predictor of forest to agriculture conversion.  

Income, particularly county level average salary, per capita, or median household income, had 
strong success in F2D, U2D and F2NF models but was virtually unused in F2A models. Other forms 
of income used did not share the same success as the county-level estimates. Landowner age had 
apparent success in F2A models. Education levels, whether high school or college degree, showed high 
success in F2D models.  

5. Conclusions: Recommendation of Independent Variables by Model Type 

Over the past 30+ years, econometric modeling of LULC change has provided tools for identifying 
the drivers useful in predicting forestland change. Literature reviews provide summaries of successful 
independent variables used in this field of econometric modeling. However, we believe we have 
developed the first meta-analysis that provides an organized approach to defining success of forest 
LULC change independent variables in recent and important econometric study models. 

We found four basic model types predicting forestland (or forests as part of undeveloped land) 
change to agriculture, development, or non-forestland. These models were summarized by model type 
below with recommendations on categories and notable independent variable groups. Table 5 provides 
the studies that we suggested for each category based on the 67% “S/T” success ratios results. The 
citations listed direct the reader to studies that had success with a variable listed in that category and 
model type. The studies listed did not necessarily experience the same success with all variables in 
their models. 

5.1. Forest to Agriculture Models 

There were 21 F2A models with 12 occurring in the US South. As a group, these models made 
excellent use of all forms of timber and agriculture rent variables. Timber rents typically had negative 
relationships with forestland loss while agriculture rents had positive relationships, as might be 
expected. Timber and agriculture cost and uncertainty variables also achieved high success in this 
model type, particularly in conversion and production costs. Shatzki’s [47] work successfully showed 
uncertainty estimates of forest and agriculture revenues drive use change decisions. Urban rents were 
not considered in F2A models used in this study, possibly owing to unclear relationships urban rents 
have in F2A models. Government policy variables predicting forestland increase through farmland 
retirement or other (i.e., flood control) programs have had excellent success, but zoning ordinance 
effects on forest to agriculture conversion have not received the same attention.  
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Table 5. Suggested econometric studies that contained successful predictive independent 
variables in four forestland loss model types. Studies are identified by citation number and 
organized by major econometric drivers and categories of independent variable types. 

Driver Category 
F2D 

Studies 
F2A Studies U2D Studies F2NF Studies 

M
ar

ke
t 

Timber Rents 
[2,12,49, 

52–55,57–60,62] 
[2,12,32,41,43,
47,58,59,62,71] 

 
[33,64, 

66–69,71] 
Timber 

Costs/Uncertainty 
 [47]  [67] 

Agriculture Rents [49,59,61] 
[2,10,12,32,41,

43,44,47,58, 
60–62,71] 

[24,72] [33,69,71] 

Agriculture 
Uncertainty 

 [43,45,47,62] [24]  

Urban Rents [53–55,57,62]  [24,73] [67,68] 
Urban 

Costs/Uncertainty 
[62]  [17,24,73]  

G
ov

er
nm

en
t 

Po
lic

y 

Forestry Incentive 
Programs 

 
[10,41, 

44–46,48] 
 [64] 

Zoning Effects on 
Forestland Loss 

[54,57]  [16,24,75,76]  

Si
te

 C
ha

ra
ct

er
is

tic
s Land 

Quality/Productivity 
[2,3,12,49, 
51–59,63] 

[2,3,12,32, 
43–45,47, 

58–61,63,71] 

[14,16,17,24, 
73,74,77] 

[33,42, 
66–69,71] 

Forestland Proximity 
Influences 

[3,50,63] [3,41,63] [76] [42] 

Agricultural 
Proximity Influences 

 [41,44,47] [14]  

Development 
Proximity Influences 

[3,32,49–51, 
53–57,59,63] 

[32,44,59, 
59,63] 

[14,16,17,24, 
72,74,75,77] 

[68] 

So
ci

oe
co

no
m

ic
 

Population and 
Growth 

[2,3,32, 
49–53,55,57–61] 

[3,47,59] 
[14,16,17,72, 

74,76,77] 
[33,42, 

64–67,69–71] 
Income [52–55,57]  [17,24,72,77] [64–67] 
Other 

Socioeconomic 
[3,53–55] [10]   

Site characteristics, while used frequently in all model types, had uniquely high success in F2A 
models. Average county soil productivity was a key variable in predicting forest to farmland conversion. 
Some caution may be needed using the independent variable group, highly productive soils, since this 
group did not have a high success ratio. Slope was a successful predictor in F2A (and all) model types. 
Forest and agriculture land contiguity both were successful predictors in F2A models. But, only a few 
proximity variables dealing with urban influences had success. Of these, PIZA estimates, used by 
Jensen [44] showed promise in future F2A studies, perhaps as a suitable surrogate for population. 
Socioeconomic variables performed poorly in the F2A models but those with success are listed in 
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Table 5. The success of landowner age by Parks and Kramer [10] suggested its future use, particularly 
when the effects of generational changes are considered. 

5.2. Forest to Development Models 

Of the 21 F2D models, 15 were in US South, and 10 F2D models were from the same studies as 
F2A models. Interestingly, timber SEV (tied to land productivity) had lower success that other forms 
of timber rents such as timber products income or stumpage value of all sawtimber. Agricultural rents 
had very poor success suggesting this category is a poor choice in F2D modeling. Timber and 
agricultural costs/uncertainty were not given attention in the F2D studies used. Urban rents and 
costs/uncertainty both were very successful, particularly with housing values (positive relationship to 
forestland loss), property taxes, and forest to urban conversion costs (both with negative relationships 
to forestland loss). Government policy had been virtually ignored in this model type with the exception 
of zoning parcel size minimum used by Nagubadi and Zhang [54] and Zhang and Nagubadi [57]. In 
the site characteristics category, soil quality had very low statistical success suggesting caution about 
the use of these variables in F2D models.  

Within forestland proximity influence category, variables estimating county forestland or contiguity 
were successful in F2D models. Distance to urban amenities successfully predicted a negative 
relationship with forest development in F2D models. For this model type, estimates like UI, PGI, and 
RUC indices showed strong promise for future work. County population density and income were 
excellent variables in F2D modeling, as would be expected. Poverty, used by Nagubadi and Zhang [55], 
met expectations as a predictor of forestland retention in the US South. 

5.3. Undeveloped to Developed Models 

None of the 10 U2D models occurred in the US South and timber production was emphasized less 
as it was grouped with forest uses (including “green space”) and agriculture. This was evidenced by 
lack of interest in variables estimating timber or agriculture rents/costs, and forestry incentive programs 
and strong interest in urban rents, urban costs/uncertainty, and zoning regulations. Both urban rents 
and costs/uncertainty were important and successful categories that met authors’ expectations. Forest 
zoning variables were popular, diverse, and successful (S/T category summary = 13/16). Interactions of 
zoning ordinances play an important role in the fate of maintaining forestland [76]. Sometimes, regional 
ordinances designed to reduce development may create spill-over effects in adjacent regions [74] effecting 
working forest-use there. Rural ordinances and zoning regarding protection of working forests are 
likely to increase over time and have extremely important implications for future timber management. 

Like F2A models, U2D models had strong success using most site productivity variables. County 
percentage of highly productive soils was successful (S/T = 4/5), unlike F2D and F2A models. This 
relates to the value placed on prime agriculture land in rapidly urbanizing regions. Like all other model 
types predicting development, slope was a deterrent for development. Proximity estimates for 
forestland and agriculture were not used with much success, owing, at least, to the fact that forest and 
farm land are not differentiated. However, urban land proximity and influences were very successful in 
U2D models, particularly distance estimates to urban amenities. Landis and Zhang [77] offered the 
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only U2D model with urban influence estimates and it showed promise for future work. Population 
and income were also important successful predictors. 

5.4. Forest to Non-Forest Models 

These model predicted change from forestland into some other use, typically agriculture or 
development. Nine of the 12 F2NF models occurred in the US South. Timber rent variables used had 
poor success, warranting caution in F2NF models. Timber SEV had a significant but unexpected sign 
relationships [71] with forestland loss giving it a poor expectation ratio (E/T = 2/4). Variables in the 
agricultural and urban rent categories were not frequent but appeared more successful. These had a 
positive relationship with forestland loss, as would be expected. County tree planting expenses proved 
a successful predictor of forestland gain in two US South models (Alig et al. [64]). In many respects, 
F2NF models were similar to F2D models. However, an important distinction was that independent 
variable groups in the soil productivity category appeared more successful than F2D models. One 
reason for this may be due to the relationship between soil productivity and forest/agriculture 
conversion that exists in the F2NF model type. The relatively high success for soil productivity 
suggests that F2NF models may be expected perform well with this variable group. Population and 
income both were successful and seem good choices in F2NF models. 

5.5. Important Considerations 

It is important to understand this meta-analysis included a wide variety of study objectives, 
methodologies and US regions. The observations and recommendations made resulting from this  
meta-analysis should be tempered by the diversity of studies used. The recommendations should be 
viewed as a guide to the most helpful variables given a modeling project. The success of a particular 
chosen variable depends on the modeling methodologies adapted to the user’s application. Therefore, it 
is important to carefully research the exact data sources, methods, and geographic regions for the 
recommended categories. We provide some information regarding these in the accompanying data files 
but they are no substitute for researching each study’s methods prior to taking the time and effort to 
select successful independent variables. 

Land use change will become increasingly more dramatic over the next 50 years. The need to 
determine the factors that cause these changes at the national, regional, and local level will also grow 
in importance as markets, policies, and socioeconomics evolve. Identifying those variables that 
increase chances of successful prediction is a progression that required numerous attempts from many 
studies. This meta-analysis helps further the work of these studies by developing an organized process 
of identifying the success of popular, less popular, and relatively new econometric variables that will 
aid future research efforts. We realize there are numerous methods of classification resulting in 
different success ratios and the data made available can be classified as the user sees fit. 
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