
Academic Editors: Rafael De Ávila

Rodrigues and Rafael Coll Delgado

Received: 22 May 2025

Revised: 17 June 2025

Accepted: 18 June 2025

Published: 21 June 2025

Citation: Shao, X.; Li, C.; Chang, Y.;

Xiong, Z.; Chen, H. Modeling Natural

Forest Fire Regimes Based on Drought

Characteristics at Various Spatial and

Temporal Scales in P. R. China. Forests

2025, 16, 1041. https://doi.org/

10.3390/f16071041

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Modeling Natural Forest Fire Regimes Based on Drought
Characteristics at Various Spatial and Temporal Scales
in P. R. China
Xianzhuang Shao 1,2 , Chunlin Li 1 , Yu Chang 1,* , Zaiping Xiong 1 and Hongwei Chen 3

1 Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of
Sciences, Shenyang 110016, China; 2023026820@stu.sdnu.edu.cn (X.S.); lichunlin@iae.ac.cn (C.L.);
zaipingx@iae.ac.cn (Z.X.)

2 College of Geography and Environment, Shandong Normal University, Jinan 250358, China
3 School of Life Sciences and Engineering, Shenyang University, Shenyang 110044, China; chwssss@163.com
* Correspondence: changyu@iae.ac.cn

Abstract

Climate change causes extreme weather events to occur frequently, such as drought, which
may exacerbate forest fire regimes; as such, forest fire regimes may be closely related to
drought characteristics. The spatial non-stationarity of factors affecting forest fires has
not been fully clarified and needs further exploration. This study intends to address
how drought characteristics affect forest fire regimes in China and whether spatial non-
stationarity can improve the model prediction based on methods such as the run theory and
GWR. Our results show that geographically weighted regression models perform better
(AICc, AUC, R2, RMSE, and MAE) than global regression models in modeling forest fire
regimes. Although GWR improves accuracy, small sample sizes (vegetation zones, climatic
zones) may affect its accuracy. Drought characteristics significantly affect (p < 0.05) the
forest fire regimes, and the correlation is spatially non-static. At the grid scale, a positive
correlation between the forest fire occurrence probability and drought characteristics is
mostly distributed in the southwest and northwest regions. Our study is conducive to an
in-depth understanding of the relationship between forest fire regimes and drought, aiming
to provide a scientific basis for the development of forest fire management measures to
mitigate drought stress according to local conditions.

Keywords: forest fire regimes; geographically weighted model; spatial non-stationarity;
SPEI; drought characteristics

1. Introduction
Forest fire regimes comprise a set of parameters that characterize forest fires, including

the frequency/probability of forest fires, the size of the burned area, seasonality, severity,
spatial pattern, etc. [1,2]. The probability of a forest fire occurring is a particularly important
parameter of forest fire regimes. In recent years, large forest fires have occurred across
the world, which is likely associated with prolonged periods of drought [3]. Droughts—
prolonged periods in which there is a lack of, or lower than, the required precipitation,
runoff, or water supply [4]—are regarded as a crucial contributor [5]. Droughts increase the
dryness and flammability of forest fuels [6], as well as the dead fuel load and continuity on
the forest floor, exacerbating the rate of forest fire spread [7]; prolonged periods of drought
may cause forest fires [8]. The relationship between forest fires and drought is important in
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relation to fire ecology research. A deeper understanding of the relationship between the
drought process and forest fire regimes can provide a scientific basis for the development
of climate change adaptation measures [9], forest fire management decisions [10,11], and
fire loss reduction [12].

Several drought indices have been used for drought monitoring, such as the Palmer
Drought Severity Index (PDSI) [13], the Standard Precipitation Index (SPI) [14], the Standard
Precipitation Evapotranspiration Index (SPEI) [15], and the Standard Palmer Drought
Severity Index (SPDI) [16]. An extension of the Standardized Precipitation Index (SPI)
is the Standardized Precipitation Evapotranspiration Index (SPEI), which attempts to
overcome various limitations by combining the multi-scale nature of the SPI with the
water balance equation used in the PDSI [17]. The SPEI is characterized by multi-scale
and non-stationary properties [18,19]; additionally, it considers the temperature factor and
introduces potential evapotranspiration, which is more suitable for a warming climate
context [20,21]. Furthermore, the SPEI takes into account the effects of temperature on
evapotranspiration and water availability, which have not yet been considered in studies
related to drought and fire variability [11,22,23], enabling a better estimation of drought
characteristics [24]. In contrast to the Palmer Drought Severity Index (PDSI), which has a
fixed time scale, the SPEI has a temporal multi-scalar property, which allows it to relate
drought at a given time scale to the occurrence of a given phenomenon or event (e.g.,
forest fires) [25]. The SPI index is based solely on precipitation data, and compared to the
Standardized Precipitation Index (SPI), the SPEI combines temperature and precipitation
data, and thus can more accurately reflect drought conditions under global warming [26].
SPEI is superior to other drought indices [27], and SPEI is used in this paper to quantify
drought characteristics.

The climate is an important driver of fire regimes [28]. Global warming, as well as
increased levels of drought, has led to weather conditions conducive to starting fires [29],
longer fire seasons [30], drier fuels [31], and larger burned areas [32]. The degree of wild-
fire hazard depends on the weather and fuel conditions [33]. Gusts of wind accelerate
the spread of wildfires [34]. Drought dries out the soil and accelerates vegetation senes-
cence [35], reducing fuel moisture and creating favorable ignition conditions and increased
fire intensity [36]. It is also important to note that weather conditions can affect soil mois-
ture and thus the rate of fuel accumulation [37]. For example, higher levels of precipitation
during the previous vegetation growing season lead to a higher biomass and increased
forest fire risk in the following months [38]. On longer time scales, climate change can
significantly affect wildfire risk by altering weather and fuel conditions. Estimates of fuel
moisture content are a key factor in wildfire risk management [39], and dead fuel moisture
content affects fire likelihood and early fire behavior to a greater extent than live fuel
moisture content [40].

The Canadian Forest Fire Danger Rating System [41], the U.S. National Fire Danger
Rating System [42], and the Australian McArthur Forest Fire Danger Index [43] have been
used to assess the fire hazard of forests in Canada; all systems include specialized fuel
moisture models. In Russia, the ISDM-Rosleshoz system [44–46] uses satellite imagery,
meteorological data, and ground-based observations to monitor and predict forest fires,
combined with real-time data to support fire prevention and firefighting strategies. The
European Forest Fire Information Service (EFFIS) provides a large number of global fire
perimeters, burned area, and burn severity, but in some cases, it has limitations that could
be improved [47]. For example, the EFFIS fire weather index underestimates the variability
of locally measured fire weather and fuel moisture content due to the limitation of having
coarse resolution [48]. Forest combustibles with moisture content below a certain threshold
will catch fire and burn [49]. The most comprehensive physical–mathematical model for
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predicting forest fires based on the drying of forest combustibles is given by Grishin et al.,
2001 [50]. Grishin, A.M. et al. considered all known causes of natural fires. A set of accurate
physical and mathematical models was proposed to improve the Russian forest fire risk
system GOST P 22.1.09-99 [51]. Future climate change is also expected to affect wildfire
danger levels by altering fire weather and fuel conditions [33]. The occurrence of forest fires
is considered probabilistic [52]. Fuel load and fuel moisture content are important variables
in predicting fire occurrence [53]. Different types of vegetation burn at different rates [54].
Grishin, A.M. et al. physically and mathematically modeled the drying process of the
combustible layer of forests, providing a rigorous physical and mathematical basis for
predicting forest fires [50]. Fire danger predictions rely heavily on meteorological variables,
which typically include temperature and precipitation [55].

There are many approaches to predicting forest fires, such as deterministic ap-
proaches [53,54], probabilistic approaches [52], deterministic–probabilistic systems [48],
empirical fire models [55], and neural networks [56], among others. Methods for predict-
ing the number of forest fires include Poisson mixed models [56], space–time Poisson
model [57,58], Linear Model [59], etc. Most researchers have explored the relationship
between forest fire and drought index, such as burned area vs. sc-PDSI in California [60]
and southwest India [8], the number of large fires vs. PDSI [61], and burned area vs. SPI
and SPEI in the Iberian Peninsula [25]. These relationships between forest fire regimes
and drought indices are used for fire prediction via regression models [62]. However,
drought characteristics, including drought duration, severity, intensity, frequency, etc., are
crucial for the spatial and temporal distribution patterns of forest fires; however, they are
currently seldom documented. In addition, the first law of geography states that every-
thing is spatially correlated, and this correlation varies with spatial location, i.e., spatial
non-stationarity. Traditional statistical models and algorithms cannot reflect the spatial
variation in the correlation between forest fire regimes and drought characteristics. The
geographically weighted regression (GWR) model could solve this problem by estimating
the regression coefficients of each spatial unit [63]. We assume that forest fire regimes are
highly related to drought characteristics, and considering spatial non-stationarity could
improve the accuracy of prediction models for forest fire regimes.

To address the above issues, we extracted drought characteristics from SPEI data at
four temporal scales (SPEI-1, SPEI-3, SPEI-6, and SPEI-12), including drought duration,
severity, intensity, and frequency, in order to explore the relationship between forest fire
regimes (forest fire occurrence probability, number of forest fires, and burned area) and
drought characteristics in China according to Spearman’s correlation coefficient, as well as
to model forest fire occurrence probability based on drought characteristics according to the
global logistic regression model and the geographically weighted logistic regression model.
Additionally, the number of forest fires according to the Poisson regression model and the
geographically weighted Poisson regression model, as well as the burned area according
to the global regression model and the geographically weighted regression model, were
investigated. The model fitting and prediction effects were evaluated by R2, RMSE, MAE,
AICc, and AUC to verify the hypothesis that the consideration of spatial non-stationarity
can improve the model fitting and prediction effects. The aim of the study is to explore
the spatial non-stationarity of the relationship between forest fire regimes and drought
characteristics, and to construct prediction models of forest fire regimes based on drought
characteristics. Our ultimate goal is to explore the spatial non-stationarity of drought
characteristics influencing forest fire regimes, which will be used to accurately predict
forest fire regimes and to take measures for forest fire prevention.
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2. Materials and Methods
2.1. Study Area

China is located in eastern Asia, on the western coast of the North Pacific Ocean.
The country’s climate is influenced by monsoons, resulting in significant differences in
precipitation patterns both in time and space [64]. Owing to China’s large population,
diverse climatic conditions, and vegetation types, there are large regional differences in
the spatial and temporal distribution characteristics of forest fires, with northern China
being likely to have a larger burned area than the south, but at a lower frequency [23].
The distribution of drought and forest fire regimes in China is complex. To explore the
relationship between drought characteristics and forest fire regimes at different spatial
and temporal scales, we created grids (0.5◦ × 0.5◦) with a width of 71 grids and a length
of 121 grids. Then, 3822 grids were extracted based on the shape of the map of China
(Figure 1a), climatic zones (Figure 1b), and vegetation zones (Figure 1c), and to establish a
prediction model of forest fire regimes in order to verify the hypothesis that considering
spatial non-stationarity can improve the model fitting and prediction effect. According to
China’s climate zoning data and vegetation zoning data from the Center for Resource and
Environmental Science and Data (CRESD) (https://www.resdc.cn/ (accessed on 11 June
2024)), the study area was divided into eight vegetation zones and 36 vegetation belts [65,66].
The eight vegetation zones were as follows: (I) cold temperate coniferous forest region,
(II) warm temperate deciduous broad-leaved forest region, (III) alpine vegetation area of
Qinghai–Tibet Plateau, (IV) tropical monsoon rainforest region, (V) temperate grassland
area, (VI) temperate desert area, (VII) temperate coniferous and deciduous broad-leaved
mixed forest, and (VIII) subtropical evergreen broad-leaved forest region. According to the
climatic zoning map of China [67] compiled by the National Meteorological Administration
of China (NMA) in 1978 using climatic data for the period between 1951 and 1970, the
study area was divided into 10 first-order climatic zones and 45 s-order climatic zones.
The 10 Class I climatic regions included the following: (I) north temperate zone, (II) mid-
temperate zone, (III) south temperate zone, (IV) north subtropical, (V) middle subtropical
zone, (VI) south subtropical, (VII) north tropic, (VIII) mid-tropical, (IX) plateau climate
zone, and (X) south tropic. Because the South Tropic Zone is mainly located in the Nansha
district of China, with a smaller area and fewer forest fire records, it was not included in
our study.

 

Figure 1. The spatial scales used in our study area. (a) Grids (0.5◦ × 0.5◦), (b) climatic zones, and
(c) vegetation zones.

2.2. Data Source and Pre-Processing
2.2.1. Forest Fire Regimes

The majority of forest fire records were obtained from the WFAC fire dataset generated
by Keyan Fang et al. in their 2021 research study [68]. This dataset was obtained from

https://www.resdc.cn/
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the Polar Orbiting Satellite Wildfire Monitoring System, which enables the continuous
monitoring of vegetation throughout the country. If the hot spot location of potential fires
on the satellite imagery was confirmed by the local fire department within 24 h of on-site
verification, then it was returned to the monitoring center. Hot spots identified in satellite
imagery but not observed in the field were eliminated from the final data product. The
WFAC dataset includes the ignition location (longitude and latitude), starting date and
time, extinguishing date and time, fire size, fire cause (natural or human), etc., for each
verified fire. The WFAC dataset contains 53,561 fire records from 1999 to 2019. We did not
use the records from 1999 and 2000 to keep the consistency of the period with the prediction
variables. In addition, this paper primarily considers natural fires. Based on the definitions
in Vilar et al., 2019 [69], we excluded human fires primarily as common human activities
that could result in wildfire ignition due to accidental, negligent, or intentional actions, and
added official fire records from 2020 to 2021, resulting in a total of 16,222 records for further
analysis. The distribution of forest fire records for different years and areas is shown in
Figure 2. The normality test showed that both the number of fires and the area burned have
a skewed distribution. The final two years of the dataset (2020–2021) were employed as
an independent test set [70] (340 fire records). The remaining data (2001–2019) (15,882 fire
records) were used to construct prediction models for forest fire regimes.

 

Figure 2. Distribution of forest fire records by year (a) and by area (b). The numbers in parentheses in
the legend represent the number of forest fires.

We calculated the average number of ignitions and the average burned area for each
grid cell, each climate zone, and each vegetation zone according to the two datasets,
respectively. At the grid-cell scale, we estimated the forest fire occurrence probability (FP)
for each cell by dividing the years in which forest fires had occurred in each cell by the total
number of years in the fire dataset. At both the climate zone and vegetation zone scales,
we performed the logarithmic transformation ln(FN+1) for the annual number of fires (FN),
as well as the transformation ln(BA+1) for the annual burned area (BA), for each climate
zone and vegetation zone [71]; then, we calculated the multi-year logarithmic mean of the
number of fires (AFN) and the logarithmic mean of the burned area (ABA).

2.2.2. Natural and Anthropogenic Factors

Multiple environmental variables influence fire regimes. In addition to the drought
characteristics, this study divides the variables into natural and anthropogenic vari-
ables [72]. Natural variables mainly include slope, river density, and surface roughness.
The average slope for each grid cell, climatic zone, and vegetation zone was extracted using
ArcGIS Pro based on national 1 km resolution DEM data (https://www.resdc.cn/ (accessed
on 3 March 2025)). The river density was obtained according to Equation (2). The surface

https://www.resdc.cn/
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roughness was extracted for each grid cell, climate zone, and vegetation zone according to
the local elevation difference algorithm [73] with the following formula:

R = Zmax − Zmin (1)

where R is the local elevation difference; Zmax is the maximum elevation value; and Zmin is
the minimum elevation value in the moving window.

Anthropogenic variables are characterized by population density and road density [74].
The impact of anthropogenic factors on fire regimes can be two-fold—on the one hand,
high population densities increase the likelihood of human-induced fires, while on the
other hand, they can also help to reduce fire regimes by reducing fuel availability and
changing vegetation patterns [75]. Based on the national population distribution data
(2001–2021) (https://landscan.ornl.gov/ (accessed on 6 December 2023)) and road and river
distribution data (scale 1:1,000,000) (https://www.webmap.cn/ (accessed on 7 December
2023)), population density (persons/km2) (2001–2019 and 2020–2021) was obtained by
dividing the sum of the population distribution within the grid by the area of the grid.
Road density and river density (2001–2019 and 2020–2021) were obtained by counting
the length of the roads within each grid and by using the road and river density formula
(Equation (2)), as follows:

δ = L/F (2)

where δ is the road or river network density in km/km2; L is the road or river network
length in km; and F is the area of the region in km2.

2.2.3. The Standard Precipitation Evapotranspiration Index (SPEI)

The Standardized Precipitation Evapotranspiration Index (SPEI) was used to charac-
terize droughts. The SPEI has multiple time scales and can identify droughts at different
time scales [76] and performs well in the assessment of the effects of drought on veg-
etation growth [77]. SPEI data (2001–2021) come from the global SPEI database v.2.9
(https://spei.csic.es/database.html (accessed on 15 April 2024)), which is in nc format and
needs to be converted to ti f raster format first. The main steps for calculating the SPEI are
as follows.

The difference between monthly precipitation and potential evapotranspiration Dj is
calculated using the following equation:

Dj = Pj − PETj (3)

Summing Xk
i,j for Dj according to different time scales, the following can be obtained:

Xk
i,j =

12

∑
l=13−k+j

Di−1,l +
j

∑
l=i

Di,j(j < k) (4)

Xk
i,j =

j

∑
l=j−k+1

Di,l(j ≥ k) (5)

where k is the time scale (months), i is the year, and j is the month.

The probability distribution of Xk
i,j is set as follows:

F(X) = [1 + (
α

X − γ
)

β
]
−1

(6)

https://landscan.ornl.gov/
https://www.webmap.cn/
https://spei.csic.es/database.html
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The probability of a particular Xk
i,j is calculated as follows:

P = 1 − F(X) (7)

The SPEI is calculated as follows:

SPEI =
C0 + C1w + C2w2

1 + d1w + d2w2 + d3w3 − w (8)

where w =
√
−2lnp when p ≤ 0.5, and w =

√
−2ln(1 − p) when p > 0.5. C0 = 2.515517,

C1 = 0.802853, C2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and d3 = 0.001308 [15].

2.2.4. Drought Characterization

Many drought indices exist, among which the Standardized Precipitation Evapotran-
spiration Index (SPEI) is widely used, and it can reflect different types of drought, including
meteorological drought (time scale: 1 month), agricultural drought (time scale: 3–6 months),
and hydrological drought (time scale: 12 months) [78]. Hydrological droughts are defined
as rainfall deficits lasting long enough to cause rivers to dry up and groundwater levels
to drop, leading to severe water scarcity [79]; agricultural drought assessment is based on
soil moisture deficits during the growing season of plants. Meteorological drought arises
from changes in meteorological variables, such as precipitation deficits, and is a temporary,
recurring meteorological event [80] and can propagate to agricultural and hydrological
droughts [81]. Meteorological droughts are the cause of other drought hazards and are the
basis for recognizing various drought types [82], which are characterized by precipitation
deficits, high temperatures, and increased evapotranspiration [83].

The relationship between drought and forest fire is very complicated. Forest fires
usually do not occur just at the beginning of the drought. The occurrence of forest fires
may be closely related to the characteristics of drought, such as the number of drought
events, drought duration, severity, and intensity, etc. A drought is a multi-scale event [80],
and the sensitivity of the SPEI to precipitation and temperature varies at different time
scales [18]. To comprehensively understand the drought regimes in China, the SPEI time
scales SPEI-1, SPEI-3, SPEI-6, and SPEI-12 were selected. Monthly scale SPEI values (SPEI-1)
can reflect subtle short-term drought changes. Seasonal-scale SPEI values (SPEI-3) reflect
seasonal drought variability and are widely used in agricultural irrigation. Semi-annual-
scale SPEI values (SPEI-6) can reflect semi-annual drought changes, and SPEI-6 can be used
for agricultural drought monitoring [84]. The annual-scale SPEI value (SPEI-12) can reflect
the interannual drought variation [85]. The value of the aridity index reflects the degree of
wetness and dryness. Higher values represent wet areas, while lower values demonstrate
drier areas [86]. This study defines a drought event as a period of at least three consecutive
months with SPEI values below −0.5 according to our meteorological drought classification
criteria [87] (Table 1).

Table 1. China’s meteorological drought classification standard.

SPEI Degree of Drought

(−0.5,+∞) No drought
(−1.0,−0.5] Light drought
(−1.5,−1.0] Mid-drought
(−2.0,−1.5] Heavy drought
(-∞,−2.0] Extraordinary drought

In this study, the average SPEI values for each 0.5◦ × 0.5◦ grid cell were extracted using
ArcGIS Pro for each month per year from 2001 to 2021. The MATLAB R2018b programming
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language was used to implement the run theory algorithm and to batch calculate the
drought characteristics for each grid cell for each year from 2001 to 2021. According to the
run theory [88], the drought characteristics (drought duration, severity, and intensity) of
each drought event can be calculated according to the following equations [89,90]:

DD = DTT − DIT (9)

DS =
DD

∑
i=1

SPEIi (10)

DI =
DS
DD

(11)

where DTT and DIT are the drought end and start times, respectively; SPEIi is the Standard-
ized Precipitation Evapotranspiration Index (SPEI) value for month i; DD is the drought
duration; DS is the drought severity; and DI is the drought intensity.

We counted the total number of drought events (n) in each grid cell for the two datasets
obtained in 2001–2019 and 2020–2021, respectively, and calculated the multi-year average
number of drought events (MDN), multi-year average drought duration (MDD), multi-
year average drought severity (MDS), and multi-year average drought intensity (MDI)
(Equations (12)–(15)). Finally, MDN, MDD, MDS, and MDI were obtained using spatial
statistics for each climatic zone and vegetative zone, respectively.

MDN =

n
∑

j=1
DNj

n
(12)

MDD =

n
∑

j=1
DDj

n
(13)

MDS =

n
∑

j=1
DSj

n
(14)

MDI =

n
∑

j=1
DIj

n
(15)

where DN is the drought number; DD is the drought duration; DS is the drought severity;
DI is the drought intensity; MDN is the multi-year average number of drought events;
MDD is the multi-year average drought calendar time; MDS is the multi-year average
drought severity; and MDI is the multi-year average drought intensity.

2.2.5. Data Standardization

Data standardization is required to eliminate the quantitative influence of the factors
affecting the forest fire regimes so that the influencing factors are of the same order of
magnitude and thus suitable for comprehensive and comparative evaluation. Slope, terrain
roughness, road density, stream density, settlement density, MDN, and MDD are positive
indicators, while MDS and MDI are negative ones, according to Pang et al., (2022) [91]. In
this study, the normalization ensures that the value of the influencing factors is limited to
the range of [0, 1], and the specific formulas and explanations can be seen in Table 2 [91].



Forests 2025, 16, 1041 9 of 34

Table 2. Normalized formulas and explanations.

No. Formula Explanation Variables Using This Formula

(1) x∗i = xi−xmin
xmax−xmin

xi and x∗i are the values before and after
data normalization,

respectively; xmax and xmin are the
maximum and minimum

values of the full sample data,
respectively.

Slope, terrain roughness, road density,
stream density, settlements density,

MDN, and MDD

(2) x∗i = xmax−xi
xmax−xmin

xi and x∗i are the values before and after
data normalization,

respectively; xmax and xmin are the
maximum and minimum

values of the full sample data,
respectively.

MDS and MDI

2.3. Data Analysis Methods
2.3.1. Diagnosis of Multicollinearity Among Explanatory Variables

Multicollinearity can lead to distortion or difficulty in accurately estimating mod-
els [92]. VIF is an important measure of the severity of multicollinearity. When VIF ranges
from 0 to 10, there is no multicollinearity; however, when VIF ≥ 10, there is a high de-
gree of multicollinearity between the variables, indicating that some of the variables need
to be removed from the model [93]. We performed the VIF covariance diagnosis of the
independent variables using IBM SPSS Statistics 22 software.

2.3.2. Selection of Drought Characteristics Used for Model Building

We used Spearman’s correlation coefficient to analyze the relationship between forest
fire regimes and drought characteristics (MDN, MDD, MDS, and MDI) and to select the
drought characteristics that had the highest correlation with forest fire regimes before
constructing the model.

2.3.3. The Study Flowchart

The technical flowchart of this study is shown in Figure 3. The construction of the
forest fire regime prediction model is divided into three steps. First, in the data collection
and processing stage, drought characteristic factors were extracted based on the natural
and anthropogenic factors of each grid, climate zone, and vegetation zone using the run
theory. The multicollinearity between the selected variables was analyzed, and the drought
characteristics with the highest correlation with the forest fire regimes were analyzed using
Spearman’s correlation coefficient. Then, the prediction model of forest fire regimes was
constructed based on the selected independent variables, in which the prediction model
of the number of forest fires used the geographically weighted Poisson regression, the
prediction model of the probability of forest fires used the geographically weighted logistic
regression, the prediction model of the overfire area used the geographically weighted
regression model, and global regression was used as a control. Finally, AICc, AUC, R2,
RMSE, and MAE indicators were used to evaluate the model and analyze the spatial non-
stationarity of forest fire and drought characteristics to provide the scientific basis for forest
fire prevention and control.
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Figure 3. The technical flowchart of this study.

2.3.4. Construction of Models for Forest Fire Regimes Based on Drought Characteristics

We modeled forest fire occurrence probability (FP) at the grid-cell scale, and the
logarithmic mean number of fires (AFN) and the logarithmic mean size of the burned
area (ABA) were modeled at both the scales of the climate zone and vegetation zone. The
independent variables were drought characteristics, along with natural and anthropogenic
factors. The models were built for 1-, 3-, 6-, and 12-month temporal scales, respectively.
FP was modeled using the global logistic regression (GLR) and geographically weighted
logistic regression (GWLR) models using GWR 4.0.77 software, AFN was modeled using the
global Poisson regression (GPR) and geographically weighted Poisson regression (GWPR)
models, and ABA was modeled using the global regression (GR) and geographically
weighted regression (GWR) models.

The global regression model does not consider the effect of spatial location and as-
sumes that the regression coefficients of independent variables are spatially invariant, i.e.,
spatial statistics [94]. The global regression model is formulated as follows:

yi = α + βxi1 + . . . + τxin + εi (16)

where y is the dependent variable; x is the independent variable; α, β. . .τ are the parameters
to be estimated; ε is the error term; and i is a location in space where observations of y and
x are recorded.

Previous studies have indicated that spatial heterogeneity is common in forest fire
regimes [65,95]. The relationship between forest fire regimes and influencing factors can
also exhibit significant spatial variation, i.e., a factor affecting the dependent variable in one
region may have a completely different effect in other regions [96,97], and this variation
is referred to as spatial non-stationarity. The geographically weighted regression (GWR)
model solves the problem of the spatial non-stationarity of variables by estimating the
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regression coefficients of each spatial unit [63]. The expression of GWR at point i is as
follows [98]:

yi =
n

∑
k=1

βk(ui, vi)xik + β0(ui, vi) + εi (17)

where yi is the explanatory variable; β0(ui, vi) is the intercept; xik is the kth explanatory
variable for sample i; (ui, vi) are the spatial coordinates of i; βk(ui, vi) is the coefficient
of the kth explanatory variable for sample i; and εi (i = 1, 2, 3,. . .., k) is the random
perturbation term.

The logistic regression model maps the results of linear regression to (0, 1) space using
the sigmoid function, and the probability of forest fire occurrence (Y = 1) at location i is P.
The probability of forest fire occurrence at location i is as follows [99]:

P(Y = 1) =
1

1 + e−yi
(18)

After the logit transformation, the following can be obtained:

log it(P) = ln
P

1 − P
= yi (19)

where if yi is a global regression model, the equation is a global logistic regression (GLR)
model; if yi is a geographically weighted regression model, the equation is a geographically
weighted logistic regression (GWLR) model.

The Poisson regression model was developed for count data [100]. In this study, the
global Poisson regression (GPR) and geographically weighted Poisson regression (GWPR)
models were used to construct a prediction model for forest fire counts at the climate zone
and vegetation zone scales. The formulas are as follows [101]:

ln(µ) = yi (20)

where µ is the forest fire frequency; if yi is a global regression model, the formula is a global
Poisson regression (GPR) model; if yi is a geographically weighted regression model, the
formula is a geographically weighted Poisson regression (GWPR) model.

In this study, we use the adaptive bi-square kernel function to compute the weight ma-
trix, and the optimal bandwidth of the model is determined using the Akaike information
criterion (AIC) calibration value—AICc; the specific definition of AICc is as follows [102]:

AIC = −2 ln(L) + 2k (21)

AICc = AIC + (2k(k + 1)/(m − k − 1)) (22)

where m is the number of sample points; ln(L) is the value of the log-likelihood function for
the maximum likelihood estimation of the model; and k is the number of parameters in the
model. Smaller values of AICc indicate a higher model precision and a lower correlation
between explanatory variables.

2.3.5. Model Prediction Accuracy Assessment

We used the final two years of the dataset (2020–2021) as an independent test set [70].
The performance of forest fire occurrence probability models was evaluated using the Re-
ceiver Operating Characteristic (ROC) curve and the area under the ROC curve (AUC) [103].
A perfect model is obtained when AUC = 1, while the model is non-informative when
AUC = 0 [104].
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The performance of the forest fire number model and forest fire area model was
evaluated according to the AICc root mean square error (RMSE), mean absolute error
(MAE), and coefficient of determination R2. AICc measures the complexity of the predictive
model and the goodness of fit of the model data [72]. R2 is used to measure the degree
of match between the true and predicted values, whereby the higher the value, the better
the prediction. The root mean square error (RMSE) is used to measure the distance of the
model from the true value, which indicates the accuracy of the model and is a measure
of the average size of the residuals or errors between the predicted and observed values.
The mean absolute error (MAE) is another measure of the average size of the residuals or
errors between predicted and observed values, which shows how close the model is to the
true values and provides a degree of model accuracy similar to RMSE. Model prediction
accuracy increases as the root mean squared error (RMSE) and the mean absolute error
(MAE) decrease [105]. The formula is as follows [106]:

R2 =

n
∑

i=1
(Oi − O)

(
Pi − P

)
√

n
∑

i=1
(Oi − O)

2 n
∑

i=1
(Pi − P)2

(23)

RMSE =

√√√√√ n
∑

i=1
(Oi − Pi)

2

N
(24)

MAE =
1
N

n

∑
i=1

|Oi − Pi| (25)

where Oi and Pi are the observed and predicted values, respectively; Q and P are the mean
values of Oi and Pi, respectively; and N is the number of samples.

3. Results
3.1. Multicollinearity Among Explanatory Variables

The multicollinearity analysis showed that the four drought characteristics were
multicollinear at both spatial (the grid cell, climate zone, and vegetation zone) and temporal
(1-, 3-, 6-, and 12-month) scales (Table 3).

Table 3. Explanatory variable VIF covariance diagnostic results.

Spatial
Scale

Time
Scale MDN MDD MDS MDI Population

Density
Terrain

Roughness
Road

Density
River

Density Slope

Grid

SPEI-1 473.515 735.083 785.057 516.373 1.995 4.42 2.429 1.838 4.737
SPEI-3 93.778 250.833 270.608 101.432 2.019 4.412 2.433 1.863 4.713
SPEI-6 49.589 153.513 171.285 54.393 2.056 4.453 2.395 1.839 4.763
SPEI-12 19.768 64.058 70.288 17.068 2.089 4.393 2.494 1.748 4.684

Climate
zone

SPEI-1 397.014 146.769 25,748.552 382.19 2.482 4.231 3.07 2.333 3.877
SPEI-3 295.947 11,438.623 42.481 438.141 2.478 4.556 3.123 2.412 4.115
SPEI-6 317.43 12,263.315 15.759 396.97 2.5 4.849 3.015 2.42 4.087
SPEI-12 706.359 2788.144 2534.195 586.118 2.512 4.119 2.9 2.49 4.112

Vegetation
zone

SPEI-1 413.698 21,402.356 89.097 658.156 3.049 3.362 4.328 2.737 3.438
SPEI-3 5466.714 7715.038 6731.395 4685.985 2.769 3.778 3.861 3.205 3.329
SPEI-6 2932.186 5075.614 4503.222 2473.937 2.727 4.208 3.533 2.783 3.605
SPEI-12 1897.625 2881.682 2535.379 1564.443 2.69 3.622 3.335 3.398 3.991

3.2. Correlation Analysis Results

We found that there is a significant positive correlation between forest fire regimes and
drought characteristics, the number of drought events, drought duration, degree, and in-
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tensity at several scales (Figure 4). Our results were consistent with previous research [107].
However, correlations between forest fire regimes and drought characteristics were in-
consistent across temporal and spatial combinations, with positive correlations tending
to increase with increasing time scales, and extended drought periods may lengthen the
wildfire season, keeping fuels dry for longer periods [108]. Prolonged drought also leads to
increased evapotranspiration from forests, further exacerbating water deficits [59]. At the
climate zone scale, forest fire regimes are more sensitive to drought duration and severity,
but the opposite is true at the vegetation zone scale. This may be related to the fact that the
same climate types do not differ much in precipitation and temperature, resulting in small
differences in their drought amounts and drought class intensities [109], while at the same
time, drought influences wildfire fuel accumulation through duration and severity [110].

At the grid-cell spatial scale and the 1- and 3-month temporal scales, forest fire occur-
rence probability and drought characteristics (MDN, MDD, and MDS) had a significant
positive correlation (p < 0.05), and the most highly correlated characteristic was MDD
(r = 0.0658; r = 0.0621). However, at the 6- and 12-month temporal scales, forest fire oc-
currence probability and drought characteristics (MDN, MDD, MDS, and MDI) showed a
significant positive correlation (p < 0.05), and the most highly correlated characteristic was
MDN (r = 0.118; r = 0.346) (Figure 4a, Table 4).

Table 4. Selection of drought characteristics for fire regime modeling.

Spatial Scale Time Scale Forest Fire Regimes Drought Characterization
Selection Correlation Coefficient (r)

Grid

SPEI-1 Forest fires probability (FP) MDD 0.066
SPEI-3 Forest fires probability (FP) MDD 0.062
SPEI-6 Forest fires probability (FP) MDN 0.118

SPEI-12 Forest fires probability (FP) MDN 0.346

Climate zone

SPEI-1 Forest fires number (AFN) MDD 0.274
SPEI-3 Forest fires number (AFN) MDD 0.301
SPEI-6 Forest fires number (AFN) MDD 0.325

SPEI-12 Forest fires number (AFN) MDD 0.337
SPEI-1 Forest fires area (ABA) MDD 0.262
SPEI-3 Forest fires area (ABA) MDD 0.278
SPEI-6 Forest fires area (ABA) MDD 0.303

SPEI-12 Forest fires area (ABA) MDD 0.323

Vegetation zone

SPEI-1 Forest fires number (AFN) MDN 0.247
SPEI-3 Forest fires number (AFN) MDN 0.277
SPEI-6 Forest fires number (AFN) MDI 0.317

SPEI-12 Forest fires number (AFN) MDN 0.370
SPEI-1 Forest fires area (ABA) MDN 0.281
SPEI-3 Forest fires area (ABA) MDN 0.307
SPEI-6 Forest fires area (ABA) MDI 0.358

SPEI-12 Forest fires area (ABA) MDN 0.411

At the climate zone spatial scale and 1-month temporal scales, both AFN and ABA had
positive correlations with MDN, MDD, MDS, and MDI, respectively, and the most highly
correlated characteristic was MDD (r = 0.274; r = 0.262). At the 3-month temporal scale,
AFN had a significantly positive correlation (p < 0.05) with both MDD and MDS, and ABA
was positively correlated with MDN, MDD, MDS, and MDI, respectively; the most highly
correlated characteristic was MDD (r = 0.301; r = 0.278). At the 6-month temporal scale,
AFN had a significantly positive correlation (p < 0.05) with MDN, MDD, and MDS, while
the ABA was correlated with MDD and MDS; the most highly correlated characteristic
was MDD (r = 0.325; r = 0.303). At the 12-month temporal scale, AFN had a significantly
positive correlation with MDN, MDD, MDS, and MDI, respectively (p < 0.05), and ABA
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was correlated with MDD and MDS; the most highly correlated characteristic was MDD
(r = 0.337; r = 0.323) (Figure 4b, Table 4).

Figure 4. Heat map of the correlation between forest fire occurrence probability (FP), multi-year
average forest fire number (AFN), burned area (ABA), and drought characteristics at (a) the grid-cell
scale, (b) the climatic zone scale, and (c) the vegetation zone scale. * indicates that the correlation is
significant at p < 0.05.
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At the grid-cell spatial scale and the 1- and 3-month temporal scales, forest fire occur-
rence probability and MDD correlations were the highest, and at the climate zone scale,
forest fire regimes and MDD correlations were the highest. This may be due to prolonged
periods of drought along with high temperatures favoring higher evapotranspiration rates,
subsequently reducing the moisture content of dead fuels [111]. Ultimately, increasing
fuel flammability and forest fire occurrence probability [112], particularly in subtropical
regions with abundant fuel loads, the effects of drought on wildfires usually occur after a
period of sustained fuel drying [113]. High temperatures increase the severity of drought
by prolonging the agricultural drought period and increasing the likelihood of large forest
fires [5]. Hydrologic drought also affects the area burned by influencing soil and fuel
moisture through the duration and total flow of water [114].

At the vegetation zone spatial scale and 1-month temporal scales, both AFN and ABA
had positive correlations with MDN, MDD, MDS, and MDI, respectively, and the most
highly correlated characteristic was MDD (r = 0.247; r = 0.281). At the 3-month temporal
scale, both AFN and ABA had positive correlations with MDN, MDD, MDS, and MDI,
respectively, and the most highly correlated characteristic was MDD (r = 0.277; r = 0.307).
At the 6-month temporal scale, AFN showed a positive correlation with MDN, MDD,
MDS, and MDI, respectively, and ABA had a significantly positive correlation with both
MDN and MDI (p < 0.05); the most highly correlated characteristic was MDI (r = 0.317; r =
0.358). At the 12-month temporal scale, both AFN and ABA showed a significantly positive
correlation with MDN and MDI (p < 0.05), and the most highly correlated characteristic
was MDD (r = 0.37; r = 0.411) (Figure 4c, Table 4).

Forest fire occurrence probability had the highest correlation with MDN at the 6- and
12-month time scales, and forest fire regime had the highest correlation with the number of
droughts at the vegetation zone scale and the 1-, 3-, and 12-month time scales. However,
forest fire regimes (forest fire number and forest fire area) and MDI correlations were the
highest at the vegetation zone scale and the 6-month time scale. Forest fuel ignition is
largely dependent on moisture content, and frequent and prolonged moisture deficits make
fuels drier and more flammable [115], which can significantly increase the probability of
forest fires. The probability of forest fires is most strongly correlated with MDN and MDI in
hydrologic droughts, with prolonged meteorological droughts propagating into hydrologic
droughts, as well as frequent and high-intensity surface water shortages significantly
increasing the probability of forest fires [114]. Frequent and intense agricultural droughts
also reduce fuel moisture and lead to an increase in fuel burning [107], which, in turn,
causes intense fire behavior.

3.3. Goodness of Fit for Forest Fire Prediction Models

Table 5 lists the indicators for assessing the performance of the models for predicting
the probability of forest fire occurrences. In general, the AUCs of the GWLR models were
higher than those of the GLR models at the 1-, 3-, 6-, and 12-month scales, while the AICcs
reported the opposite trend, indicating that the GWLR models performed better than GLR
models in predicting forest fire occurrence probability. The best temporal scale was the
1-month scale according to the AUC and the 3-month scale based on AICc.

Table 6 shows the indicators for assessing the performance of the models for predicting
the number of fires and the area burned. The results showed that the GWPR models for
predicting the number of forest fires perform better than the GPR models, and the GWR
models for predicting the area burned perform better than the GR models at various spatial
and temporal scales, indicating that considering spatial non-stationarity can improve the
performance of forest fire prediction models. We also found that models at various temporal
scales, both for the number of fires and the area burned at the vegetation zone scale, are
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more accurate than those at the climate zone scale. At the vegetation zone scale, the number
of fires could be predicted using the GWPR models, as indicated by the higher values of R2

(>0.60), while the area burned could be predicted using the GWR models, with values of R2

greater than 0.50 at the four temporal scales. However, at the climate zone scale, both the
number of fires and the area burned could not be well-predicted, as indicated by the lower
values of R2 (<0.40) at the four temporal scales.

Table 5. Comparison of the goodness of fit of forest fire occurrence probability models according to
the test dataset.

Time Scale Models AUC (2020) Significance
Test AUC (2021) Significance

Test
AUC (Average

Value) AICc

1
GLR 0.733 p < 0.001 0.679 p < 0.001 0.706 5557.885

GWLR 0.759 p < 0.001 0.810 p < 0.001 0.785 5075.387

3
GLR 0.683 p < 0.001 0.629 p < 0.001 0.656 5549.720

GWLR 0.684 p < 0.001 0.697 p < 0.001 0.691 5015.870

6
GLR 0.698 p < 0.001 0.656 p < 0.001 0.677 5621.884

GWLR 0.730 p < 0.001 0.738 p < 0.001 0.734 5079.253

12
GLR 0.741 p < 0.001 0.762 p < 0.001 0.752 5552.902

GWLR 0.757 p < 0.001 0.801 p < 0.001 0.779 5100.363

Table 6. Comparisons of the goodness of fit of forest fire number and burned area models according
to the test dataset.

Time Scale Spatial Scale Forest Fire Regimes Models R2 RMSE MAE AICc

1

Vegetation zone
Forest fires number (AFN)

GPR 0.5714 0.9142 0.6146 39.4522
GWPR 0.6684 0.8240 0.5312 38.4935

Forest fires area (ABA)
GR 0.4850 0.8141 1.4734 121.0521

GWR 0.5571 1.7304 1.3158 118.9629

Climate zone

Forest fires number (AFN)
GPR 0.1531 1.0093 0.8315 77.7203

GWPR 0.3832 0.9215 0.7208 54.7073

Forest fires area (ABA)
GR 0.0230 2.0745 1.8009 190.6213

GWR 0.5020 2.1965 1.3348 −172,435.9467

3

Vegetation zone
Forest fires number (AFN)

GPR 0.4777 0.9860 0.6488 39.2792
GWPR 0.6000 0.8884 0.5674 38.1480

Forest fires area (ABA)
GR 0.4673 1.8360 1.4195 119.7505

GWR 0.5285 1.7701 1.3347 116.8250

Climate zone

Forest fires number (AFN)
GPR 0.1665 1.0058 0.8116 75.5902

GWPR 0.3702 0.9272 0.7175 53.8537

Forest fires area (ABA)
GR 0.0303 2.0792 1.7603 189.3072

GWR 0.1898 2.0248 1.6253 177.8480

6

Vegetation zone
Forest fires number (AFN)

GPR 0.5501 0.9312 0.6204 38.3726
GWPR 0.6473 0.8502 0.5488 37.8103

Forest fires area (ABA)
GR 0.4930 1.8016 1.4344 115.5250

GWR 0.5421 1.7385 1.3824 −2859.9011

Climate zone

Forest fires number (AFN)
GPR 0.1832 0.9990 0.7966 75.5349

GWPR 0.3623 0.9314 0.7176 53.7501

Forest fires area (ABA)
GR 0.0509 2.0669 1.7236 189.2227

GWR 0.1901 2.0267 1.6181 177.6037
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Table 6. Cont.

Time Scale Spatial Scale Forest Fire Regimes Models R2 RMSE MAE AICc

12

Vegetation zone
Forest fires number (AFN)

GPR 0.5704 0.9142 0.6245 38.4794
GWPR 0.6480 0.8461 0.5492 37.5106

Forest fires area (ABA)
GR 0.4809 1.8246 1.4014 117.5047

GWR 0.5323 1.7675 1.3350 110.7712

Climate zone

Forest fires number (AFN)
GPR 0.2385 0.9852 0.7719 73.4857

GWPR 0.3889 0.9211 0.6950 53.5372

Forest fires area (ABA)
GR 0.1035 2.0703 1.6436 187.6698

GWR 0.2095 2.0189 1.5895 177.3279

3.4. Spatial Non-Stationarity of the Effects of Drought Characteristics on Forest Fire Regimes

We found a large spatial non-stationarity in the relationship between forest fire regimes
and drought characteristics at different spatial scales. Forest fire occurrence is the result of
a combination of ignition sources and fire spread conditions, including fuel and meteorol-
ogy [75]. Based on the drought characteristics derived from the SPEI, we modeled forest
fire regimes (forest fire occurrence probability, number of fires, and burned area) at various
spatial and temporal scales.

The spatial correlation coefficients between forest fire occurrence probability and
selected drought characteristics at the grid-cell scale are shown in Figure 5. The negative
correlation between the forest fire occurrence probability and SPEI-1 drought duration is
mainly distributed in the northeast and northwest regions, while the positive correlation
is in the southwest regions (Figure 5a). The negative correlation between the forest fire
occurrence probability and both SPEI-3 drought duration (Figure 5b) and SPEI-6 drought
number (Figure 5c) is mainly distributed in the northeast, northwest, and southeast regions,
and a positive correlation is observed in the southwest region. The negative correlation
between the forest fire occurrence probability and SPEI-12 drought number (Figure 5d) is
mainly distributed in the northeast region, and a positive correlation is observed in the
northwest region.

At the grid-cell scale, we found that forest fire occurrence probability has a negative
correlation with drought duration at one month (Figure 5a) and three months (Figure 5b),
and several drought events are observed at the six-month scale (Figure 5c) in the majority
of China, especially in the northwest. This is contrary to previous studies, which show
that drought increases forest fire occurrence probability [107,113]. In northwest China,
the westerly winds often meet with the Asian monsoon, the cold and dry westerly winds
prevail in winter, and the warm and humid moisture carried by the Asian monsoon is barely
able to replenish the northwest in summer, resulting in the predominantly arid climate
of the northwest [116], where vegetation cover is limited, with lower fuel loads and less
continuity [23]. Zhao et al., (2024a) also indicate that inland areas of western China are more
vulnerable to drought [117]. Therefore, forest fire occurrence probability is lower despite
the enhanced drought conditions. We also observed that forest fire occurrence probability
was negatively correlated with the number of drought events at the 12-month time scale in
the northeast and southern regions, which are close to the ocean, with sufficient rainfall
and high vegetation cover to mitigate the occurrence of drought events [118] resulting in
smaller values of the long-term drought characteristics revealed by the SPEI-12 compared
to the other regions; however, the probability of forest fires in this region is higher. Except
for the fuel and climate aspects, the effective management of forest fire ignition sources
also substantially contributes to the negative effects. The majority of forest fires are caused
by humans in China [119,120], and the government has been implementing strict fire
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management policies that limit people from entering forests during fire seasons. This policy
greatly reduces forest fire occurrence even with hot and dry weather conditions [121].

 

Figure 5. Spatial distribution of GWLR coefficients between forest fire occurrence probability and
drought characteristics at the grid-cell scale for the period between 2001 and 2019. (a) Multi-year
average drought duration (MDD) assessed with the SPEI at the 1-month scale (SPEI-1), (b) multi-year
average drought duration (MDD) assessed with the SPEI at the 3-month scale (SPEI-3), (c) multi-year
average number of drought events (MDN) assessed with the SPEI at the 6-month scale (SPEI-6), and
(d) multi-year average number of drought events (MDN) assessed with the SPEI at the 12-month
scale (SPEI-12).

The spatial correlation coefficients between the number of forest fires and drought
characteristics at the climate zone scale are shown in Figure 6, and the correlation between
the number of forest fires and burned area is shown in Figure 7. The number of forest
fires and burned areas was positively correlated with drought duration at the SPEI-1,
SPEI-3, SPEI-6, and SPEI-12 scales, and the correlation decreased from east to west, with
the weakest correlation being observed in the plateau climate zone (IX). The negative
correlation between the burned area and SPEI-1 drought duration at the climate zone scale
was the strongest in the west of the middle subtropical zone (V), the south subtropical zone
(VI), and the north tropic zone (VII), while the positive correlation extremes are distributed
around the negative correlation extremes.
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Figure 6. Spatial distribution of GWPR coefficients between the number of forest fires and drought
characteristics at the climate zone scale for the period between 2001 and 2019. (a) Multi-year average
drought duration (MDD) assessed with the SPEI at the 1-month scale (SPEI-1), (b) multi-year average
drought duration (MDD) assessed with the SPEI at the 3-month scale (SPEI-3), (c) multi-year average
drought duration (MDD) assessed with the SPEI at the 6-month scale (SPEI-6), and (d) multi-year
average drought duration (MDD) assessed with the SPEI at the 12-month scale (SPEI-12).

At the climate zone scale, forest fire numbers and drought characteristics show a
positive correlation, and the correlation decreases from east to west (Figure 6), with forest
fires often occurring in moderately wet areas, where drying levels are high compared to
the local wet state, which alters local fuel flammability [23]. The large spatial variability
in the correlation between the burned area and SPEI-1 drought characteristics (Figure 7a)
may be due, in part, to the short-term surface water anomalies reflected by the SPEI at a
monthly time scale, and partly because the monthly scale SPEI does not consider the effects
of past precipitation and temperature; therefore, the monitoring results are somewhat
random [122]. The burned area and SPEI-3, SPEI-6, and SPEI-12 drought characteristics
showed a positive correlation, and the correlation weakened from east to west (Figure 6b–d)
because shorter-duration drought events are frequent in humid areas [123], which dries
out fuels, and humid environments help plant growth and can produce sufficient fuel [23],
resulting in larger burned areas. This is similar to the findings of Zhao et al. 2024b, which
pointed to relatively favorable drought conditions and a high probability of drought in
much of the humid subtropics [124]. We also found that the forest fire number and drought
characteristics were less correlated in the plateau climate zone (IX). This may be because the
vegetation types in this region are dominated by coniferous forests and alpine meadows,
which have a low leaf area index and evapotranspiration, leading to their relatively low
water requirements [125]. Moisture may not be a major limiting factor for vegetation growth
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in the region [126]. Meanwhile, under low temperatures and high water vapor conditions,
heat may be more important than moisture for vegetation growth at high altitudes [127].
Therefore, the response of vegetation to extreme drought may not be prominent at high
altitudes [128]. Liu et al., (2024) also pointed out that the Tibetan Plateau is highly resistant
to drought [129].

 
Figure 7. Spatial distribution of GWR coefficients between the burned area and drought characteristics
at the climate zone scale for the period between 2001 and 2019. (a) Multi-year average drought
duration (MDD) assessed with the SPEI at the 1-month scale (SPEI-1), (b) multi-year average drought
duration (MDD) assessed with the SPEI at the 3-month scale (SPEI-3), (c) multi-year average drought
duration (MDD) assessed with the SPEI at the 6-month scale (SPEI-6), and (d) multi-year average
drought duration (MDD) assessed with the SPEI at the 12-month scale (SPEI-12).

The spatial correlation coefficients between the number of forest fires and drought
characteristics at the vegetation zone scale are shown in Figure 8, and the correlation
coefficients between the number of forest fires and the burned area are shown in Figure 9.
Both the number of forest fires and burned area were positively correlated with the average
number of drought events at the SPEI-1, SPEI-3, and SPEI-12 time scales, as well as being
positively correlated with the average drought intensity at the SPEI-6 time scale, with
the maximum value of the correlation coefficients being located in the cold temperate
coniferous forest region (I), the warm temperate deciduous broad-leaved forest region
(II), the temperate grassland area (V), the temperate desert area (VI), and the temperate
coniferous and deciduous broad-leaved mixed forest region (VII). The correlation between
the number of forest fires and the number of SPEI-1 droughts, the number of SPEI-3
droughts, the intensity of SPEI-6 droughts, and the number of SPEI-12 droughts was the
weakest in the tropical monsoon rainforest region (IV) and the subtropical evergreen broad-
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leaved forest region (VIII). The minimum value of the correlation between the burned area
and SPEI-6 drought intensity and SPEI-12 drought duration was mainly distributed in the
tropical monsoon rainforest region (IV) and the subtropical evergreen broad-leaved forest
region (VIII).

 

Figure 8. Spatial distribution of GWPR coefficients between the number of forest fires and drought
characteristics at the vegetation zone scale for the period between 2001 and 2019. (a) Multi-year
average number of drought events (MDN) assessed with the SPEI at the 1-month scale (SPEI-1),
(b) multi-year average number of drought events (MDN) assessed with the SPEI at the 3-month scale
(SPEI-3), (c) multi-year average drought intensity (MDI) assessed with the SPEI at the 6-month scale
(SPEI-6), and (d) multi-year average number of drought events (MDN) assessed with the SPEI at the
12-month scale (SPEI-12).

At the vegetation zone scale, the forest fire number and drought characteristics showed
a positive correlation, and the correlation was greater in the north than in the south
(Figure 8), which may be due to the prevalence of hot weather in northern China, with a
wide range of impacts and intensity [130], as well as the fact that the sensitivity of vegetation
to temperature in northern China is higher than that in the south [131]. Han et al., (2021)
also noted that the intensity and duration of drought in the north are greater than that in
the south [132]. The water content of vegetation is affected by soil moisture [133]. However,
soil moisture may be a viable water source for vegetation in humid areas [134]; thus,
meteorological drought may not significantly affect soil moisture and vegetation in humid
areas [135]. In addition, the higher correlation between the number of forest fires and the
drought characteristics in the cold temperate coniferous forest region (I) may result from
the moist humus layer underneath the forest, which is dried out by the persistent high
temperatures during the fire season, causing frequent fires [23]. The positive correlation
between the burned area and drought characteristics is high in (V) temperate grassland
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areas (Figure 9). Although the area belongs to the arid and semi-arid dry climate, due
to the long-term exposure to soil moisture stress, the scrub and herbaceous vegetation
can reduce water loss by changing the growth mechanism, which improves the water
absorption capacity, enhancing its drought tolerance to provide fuel accumulation for
fires [136]. Liu et al., (2024) also confirmed that the Inner Mongolian Plateau has a strong
drought tolerance [129]. The burned area and SPEI-1 and SPEI-3 drought characteristics
are less correlated in the temperate desert area (VI). This may be related to the fact that
ecosystems in northwestern China have a high drought tolerance, resulting in their weaker
sensitivity to short-term drought [137]. The spatial correlation coefficients between the
burned area and drought characteristics generally show an increasing trend with increasing
time scales in northwest China, which may be related to the fact that long-time-scale
drought events mainly occur in arid and semi-arid regions [123]. We also found that the
burned area and drought characteristics are highly correlated in cold temperate coniferous
forest regions (I). This may be because the wood of coniferous forests contains high levels
of resin, making it susceptible to large fires [23].

 

Figure 9. Spatial distribution of GWR coefficients between the burned area and drought characteristics
at the vegetation zone scale for the period between 2001 and 2019. (a) Multi-year average number of
drought events (MDN) assessed with the SPEI at the 1-month scale (SPEI-1), (b) multi-year average
number of drought events (MDN) assessed with the SPEI at the 3-month scale (SPEI-3), (c) multi-
year average drought intensity (MDI) assessed with the SPEI at the 6-month scale (SPEI-6), and
(d) multi-year average number of drought events (MDN) assessed with the SPEI at the 12-month
scale (SPEI-12).

3.5. Main Influencing Factors and Accuracy of Forecasts

We determined the main influences on forest fire regimes by averaging the regression
coefficients of the model variables (Table 7). At the grid scale, the main influences on
forest fire regimes were drought characteristics, population density, and road density,
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except at the SPEI-12 scale, where the main influences were population density and road
density; drought characteristics had no significant effect. Population density and drought
characteristics tend to be inhibitory, and road density tends to be facilitative in most regions
of China. By comparing the median and mean of the model-predicted values with the
actual values (Figure 10), we found that of the SPEI-1, SPEI-3, and SPEI-6 scales with
larger mean regression coefficients for drought characteristics, the SPEI-1 time scale was
the best predictor, suggesting that short-term droughts appear to be better predictors of
forest fire probability. At the SPEI-12 scale, the greater influence on the probability of forest
fire occurrence is the road density and population density, and the prediction accuracy of
the model constructed by these factors is also higher, which suggests that in addition to
the drought characteristics, the anthropogenic factors also have a greater influence on the
probability of forest fire occurrence.

Table 7. Table of mean values of regression coefficients of model variables.

Grid (FP) Climate Zone
(AFN)

Climate Zone
(ABA)

Vegetation
Zone (AFN)

Vegetation
Zone (ABA)

SPEI-1

Population density −5.58 −0.40 10.74 −3.96 −1.49
Road density 7.43 1.51 2.72 5.14 5.00
Surface roughness 0.10 −0.13 7.65 −0.51 −1.18
River density 0.18 0.78 2.12 0.74 0.67
Slope 1.82 0.21 −12.28 0.77 2.04
Drought
characteristics −4.21 1.34 −2.90 1.72 3.32

SPEI-3

Population density −5.69 −0.31 −1.14 −3.87 −1.92
Road density 8.10 1.48 1.88 5.03 4.97
Surface roughness 0.75 −0.49 −1.40 −0.64 −1.40
River density −0.37 0.79 0.84 0.50 0.30
Slope 1.49 0.65 1.41 0.82 2.16
Drought
characteristics −4.44 1.71 2.26 1.44 3.10

SPEI-6

Population density −4.37 −0.30 −1.14 −3.79 −5.11
Road density 7.63 1.50 1.90 5.10 6.04
Surface roughness 0.02 −0.45 −1.34 −0.68 −1.91
River density 0.34 0.79 0.84 0.48 0.92
Slope 2.54 0.63 1.37 0.88 2.50
Drought
characteristics −3.57 1.75 2.31 1.51 3.78

SPEI-12

Population density −4.87 −0.21 −1.07 −3.66 −2.05
Road density 6.92 1.49 1.89 5.03 4.90
Surface roughness −0.24 −0.49 −1.41 −0.73 −1.45
River density 1.11 0.86 0.94 0.27 −0.15
Slope 3.01 0.75 1.51 0.81 2.07
Drought
characteristics 0.87 1.64 2.19 1.58 4.01

In the prediction model of the number of forest fires at the climate zone scale, the main
influencing factors of the prediction model of the forest fire regimes were road density
and drought characteristics, and the predicted and actual values (average value) of the
prediction models at all four scales were not significantly different. A comparison of the
medians revealed that better predictions were made on the SPEI-3, SPEI-6, and SPEI-12
scales. This indicates that the prediction model constructed by road density and drought
characteristics as main influencing factors for the number of forest fires also predicted
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better. In the fire area prediction model at the climatic zone scale, except for the SPEI-1 time
scale, the main factors affecting the forest fire regimes were drought characteristics and
road density, and the main factors affecting the forest fire regimes at the SPEI-1 time scale
were population density, slope, and roughness. A comparison of the medians revealed that
better predictions were made on the SPEI-3, SPEI-6, and SPEI-12 scales. This indicates that
road density and drought characteristics as the main influencing factors predicted better
forest fire area prediction models constructed compared to population density, slope, and
roughness as influencing factors.

Figure 10. Comparison of actual values and model predictions. (a,b) are climate zone scales; (c,d) are
vegetation zone scales; and (e) is the grid scale. The box indicates the interquartile range, the
horizontal line is the median, the dashed line is the mean, and the whisker plot extends to the upper
and lower quartiles, 1.5 quartile range.

In the prediction model of the number of forest fires at the vegetation zone scale, the
main influencing factors of the forest fire regimes were population density and road density,
and the predicted and actual average values of the prediction models at the four scales did
not differ much. This indicates that the prediction model of forest fire number constructed
by human factors as the main influencing factors, besides drought characteristics, is also
better. In the prediction model of overfire area at the vegetation zone scale, the main
factors affecting the forest fire regimes were road density and drought characteristics. By
comparing the median of predicted and actual values, we find that the best predictions are
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for the SPEI-1 and SPEI-12 scales. The overfire area prediction model, constructed with
road density and drought characteristics as the main influencing factors, was able to predict
the overfire area very well.

In conclusion, Table 7 shows that the mean value of the regression coefficients of the
independent variables of drought characteristics is high, which indicates that drought
characteristics play an important role in constructing the prediction model of forest fire
regimes, and confirms the important influence of the number, duration, degree and intensity
of droughts on the forest fire regimes. Meanwhile, the influence of drought characteristics
on forest fire regimes varies with different spatial and temporal scales, which is spatially
non-static. In addition, the mean value of the regression coefficient of human factor is high,
and the human factor has an important role in constructing forest fire regimes, which is the
same as the study of Zhao, L. et al. [119,120]. By comparing the R2, RMSE, and MAE of
the constructed forest fire regimes prediction models considering drought characteristics
and Figure 10, it was found that better scales of forest fire regimes prediction models were
mostly SPEI-1 and SPEI-12 (Table 5, Figure 10e). In addition to the SPEI-1 and SPEI-12
scales, other time scales also performed better, and the model’s prediction accuracy is
higher at the vegetation zone scale than at the climate zone scale (R2 > 0.6).

4. Discussion
4.1. Correlation Between Forest Fire Regimes and Drought Characteristics

Previous studies have confirmed the linear correlation between drought index (PDSI,
SPI, SPEI) and forest fire regimes [25,60,61]. Based on the research of previous scholars,
this paper extracts drought characteristics by using SPEI data and the run theory, and
explores the spatial non-stationarity of drought characteristics and forest fire regimes by
constructing the geographically weighted regression model, which fills the gap of the
influence of drought characteristics on forest fire regimes and its spatial non-stationarity
in China.

In general, our results indicate that drought events, drought duration, degree, and
intensity at several scales have significant effects on forest fire regimes, and the spatial cor-
relation coefficients between forest fire regimes and drought characteristics show an overall
increasing trend with increasing time scales (Figure 4), which may be because a longer time
scale not only integrates an increased water deficit, but also loses more information on
water change [138]; additionally, the higher SPEI scale and longer drought accumulation
time [84] made the SPEI more sensitive to long-term drought [66]. This is consistent with
previous studies stating that the vulnerability and sensitivity of forests increase with in-
creasing time scales and drought intensity [139]. The years that are considered the driest
on lower time scales are not always the driest on longer time scales, and vice versa [140].
Meanwhile, the relationship between forest fire regimes and drought characteristics shows
spatial variation, with different regions having different impacts on forest fire regimes.
This is consistent with the work of Yin et al., (2024) [113], which pointed to the spatial and
temporal heterogeneity of the drought–wildfire relationship due to spatial differences in
vegetation productivity, climatic conditions, and anthropogenic interventions. However,
this relationship is non-stationary and varies across spatial and temporal scales [113].

4.2. Performances of Models for Predicting Forest Fire Regimes
4.2.1. Model Performance

We found that accounting for spatial non-stationarity improves model fitting and
prediction due to the large spatial variations in topography and climate conditions [65,95].
Our results are consistent with previous studies that have demonstrated the potential of
geographically weighted models (GWR, GWPR, and GWLR) in modeling large-scale fire
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occurrence [75,141]. The good performances of geographically weighted models may be
due to these local models (GWR, GWPR, and GWLR) having lower autocorrelation values in
the residuals and a more random spatial distribution across all spatiotemporal combinations
than global models, although the method does not directly address this issue [141], implying
that the spatial pattern of the dependent variable can be accounted for by the spatial pattern
observed in the explanatory variables included in the model [142]. In addition, we found
that the model fitting ability (AICc) becomes better overall with increasing time scales
between 1 and 3 months. The reason for this is discussed by Yin et al., (2024) [113], who
noted that the drought–wildfire relationship tended to strengthen significantly when
drought conditions lasted 1–3 months but disappeared after more than 3 months. This
suggests that there is a critical threshold of fuel moisture content that maximizes the
drought–wildfire relationship [113]. However, time scales of 6–12 months in the SPEI
work well in describing drought, and an increase in the length of the filters used in SPEI
calculations could reduce the noise more efficiently [143]. Other related studies have also
shown that drought indicators derived from the SPEI at longer time scales are significantly
more applicable than those derived at shorter time scales [144]. Our results suggest that the
best temporal scale for predicting forest fire occurrence probability was at 1 and 12 months.

4.2.2. Limitations

At the vegetation zone scale, the number of fires could be well predicted using the
GWPR models (R2 > 0.6), and the area burned could be predicted using the GWR models
(R2 > 0.5). However, at the climate zone scale, the number of fires and the area burned
could not be well predicted (R2 < 0.4) (Table 6). Even though models considering spatial
non-stationarity have some degree of strength over their global counterparts, they also
have some limitations [105]. The resolution of SPEI data, such as the spatial and temporal
scales of precipitation and evapotranspiration measurements, may not be fine enough to
accurately capture localized drought conditions, leading to less-accurate predictions for
specific areas or periods, especially short droughts and high-intensity droughts, which are
difficult to accurately identify at the monthly scale alone [138,145]. At the same time, the
SPEI may not capture all the relevant features and variables that contribute to drought
conditions and may overestimate the contribution of temperature anomalies to drought in
arid and semi-arid regions [130,146]. The factors affecting forest fire regimes are complex
and interact with each other. In this study, natural and anthropogenic factors include
slope, roughness, population density, road density, and river density. In addition, natural
factors include extreme weather events [147,148], slope orientation [149], lightning [150],
etc. Human factors also include land use type [149], distance to water [149], etc. The
SPEI provides indirect information on the moisture and amount of fuels that directly
affect wildfires [151], and limited or unreliable data can affect the validity and reliability
of the model. Other important predictors may not be considered in the model. For
example, burned areas may be affected by firefighters’ fire suppression efforts [152], which
may limit their predictive performance. For the identification of drought characteristics,
negative values of the drought index lasting more than 3 months were used to identify
drought characteristics, which is an empirical approach that does not apply to identifying
sudden droughts that have occurred in recent years over a short period [153]. In addition,
the small sample sizes at the climate zone scale and vegetation zone scale can affect
the predictions. The GWR relies on spatial bandwidth selection, and the AICc criterion
is susceptible to random fluctuations in small samples, leading to increased variance
of regression coefficients [154]. The smaller sample size may lead to overfitting and
proliferation of model degrees of freedom, and Wu et al., (2025a) used an improved model
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CatGWR to suppress noise through the attention-based architecture [155], which improves
the prediction accuracy.

Future studies should focus on (1) improving the spatial and temporal resolution of
SPEI data for better prediction of forest fire regimes of both natural and anthropogenic fires;
(2) considering a fuller range of influencing factors, especially the thunder and lightning
data, to construct prediction models for forest fire regimes; and (3) exploring the dynamics
of forest fire regimes under future climate change scenarios.

5. Conclusions
In this study, the correlation between forest fire regimes and drought characteristics

was analyzed using Spearman’s correlation coefficient. Then, local and global models were
established based on the drought characteristics to predict forest fire regimes; the fitting
and prediction effects of the local and global models were compared using the AUC, AICc,
R2, RMSE, and MAE indicators. The results show the following:

(1) At the grid-cell spatial scale and the 1- and 3-month temporal scales, forest fire
occurrence probability and drought characteristics (MDN, MDD, and MDS) had a signifi-
cant positive correlation (p < 0.05), while at the 6- and 12-month temporal scales, forest fire
occurrence probability and drought characteristics (MDN, MDD, MDS, and MDI) showed
a significant positive correlation (p < 0.05). At the climate zone spatial scale and 3-month
temporal scales, AFN had a significantly positive correlation (p < 0.05) with both MDD and
MDS, and ABA was positively correlated with MDN, MDD, MDS, and MDI, respectively.
At the 6-month temporal scale, AFN had a significantly positive correlation (p < 0.05) with
MDN, MDD, and MDS, while the ABA was positively correlated with MDD and MDS.
At the 12-month temporal scale, AFN had a significantly positive correlation with MDN,
MDD, MDS, and MDI, respectively (p < 0.05), while ABA was correlated with MDD and
MDS. At the vegetation zone spatial scale and the 6-month temporal scale, ABA had a
significantly positive correlation with both MDN and MDI (p < 0.05). At the 12-month
temporal scale, both AFN and ABA showed a significantly positive correlation with MDN
and MDI (p < 0.05).

(2) By comparing the prediction effects of the local and global models, it was found
that the prediction effect of the geographically weighted logistic regression model was
better than that of the global logistic regression model according to AUC. The prediction
effect of the geographically weighted Poisson regression model (R2, RMSE, and MAE) was
better than that of the global Poisson regression model, and the prediction effect of the
geographically weighted regression model (R2, RMSE, and MAE) was better than that of
the global regression model. The local regression model solved the problem of the spatial
non-stationarity of variables by estimating the regression coefficients of each spatial unit,
which improved the effectiveness of model prediction.

(3) The relationship between forest fire regimes and drought characteristics shows
spatial differences, and different regions have different impacts on the forest fire regimes.
Our study is conducive to an in-depth understanding of the relationship between forest
fire regimes and drought characteristics, providing a scientific basis for the development of
forest fire management measures to reduce drought losses according to local conditions.
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