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Abstract

Under global warming, drought frequency and its severity have risen notably, posing
considerable challenges to vegetation growth. Central Asia (CA), recognized as the largest
non-zonal arid zone globally, features dryland ecosystems that are particularly vulnerable
to drought stress. This research examines how plant life in CA reacts to prolonged dry
spells by analyzing multiple datasets, including drought indices and satellite-derived
NDVI measurements, spanning four decades (1982–2022). This study also delves into the
compound impact of drought, revealing how its influence on vegetation unfolds through
both cumulative stress and delayed ecological responses. Based on the research results,
the vegetation coverage in CA exhibited a notable rising tendency from 1982 to 1998.
Specifically, it increased at a rate of 4 × 10−3 per year (p < 0.05). On the other hand, the
direction of this trend shifted to a downward one during the period from 1999 to 2022.
During this latter phase, the vegetation coverage decreased at a rate of −4 × 10−3 per year
(p > 0.05). Vegetation changes in the study area underwent a fundamental reversal around
1998, shifting from widespread greening during 1982–1998 to persistent browning during
1999–2022. Specifically, 98.6% of the region underwent pronounced summer drought stress,
which triggered a substantial rise in vegetation browning. The vegetation response to the
accumulated and lagged effects of drought varied across seasons, with summer exhibiting
the strongest sensitivity, followed by spring and autumn. The lagged effect of drought
predominantly influences the vegetation during the growing season and spring, affecting
59.44% and 79.27% of CA, respectively. In contrast, the accumulated effect of drought is
more prominent in summer and autumn, affecting 54.92% and 56.52% of CA. These insights
offer valuable guidance for ecological restoration initiatives and sustainable management
of dryland ecosystems.

Keywords: Central Asia; drought; vegetation response; accumulated effect; lagged effect

1. Introduction
The impact of global warming on vegetation is undeniable. Under global climate

change, terrestrial ecosystems serve as key regulators of energy balance and carbon
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cycling [1]. Vegetation feeds back to climate change through carbon dioxide exchange and
evapotranspiration [2]. As a result, at different spatio-temporal scales, vegetation changes
are widely regarded as key indicators reflecting global environmental changes, and through
these changes, the variation trends in climate and ecosystem can be revealed [3]. As green-
house gas concentrations continue to rise, global warming has been exacerbated, leading
to more frequent and severe droughts [4]. Climate change is persistently intensifying the
spread of global arid regions. Estimates indicate that by 2100, nearly 50% of the Earth’s land
surface will face the threat of aridification to varying degrees [5]. Increased temperatures,
rapid glacier deterioration, and more frequent and severe weather events define CA’s
climate change. Since the industrial era (to the present), surface temperatures in CA have
risen by approximately 1.5 ◦C. Projections for different latitudes indicate that the warm-
ing trend will continue, with higher-latitude regions experiencing significantly greater
temperature increases than mid-to-low-latitude regions. This uneven warming pattern
may further alter the regional climate system [4]. Vegetation’s vulnerability to drought is
due to prolonged water shortages or high evapotranspiration coupled with the absence of
available soil moisture, which restricts the growth of vegetation and even causes it to die [6].
On the other hand, when insufficient precipitation disrupts the soil moisture balance, the
effects of drought on vegetation gradually become apparent. Therefore, an integrated
assessment of vegetation and drought at different timescales (or fixed drought timescales)
should be considered and will go some way toward contributing to our understanding of
how vegetation responds to drought [7].

The Normalized Difference Vegetation Index (NDVI) is extensively used for gauging
vegetation responses to drought-induced stress. Numerous studies have revealed a close
relationship between drought indices and vegetation greenness. For example, in the Loess
Plateau region, studies have found that NDVI values in areas affected by meteorological
drought are often lower than those in non-drought periods in the same region, and the
extent of NDVI reduction is significantly correlated with the intensity of meteorological
drought [8]. Since 1982, widespread vegetation greening has been detected globally [9].
However, after 1999, a marked shift from greening to browning has been observed, largely
attributed to the prolonged impact of drought combined with high temperature [10,11]. As
drought is inherently a regional phenomenon, the comparison of vegetation responses be-
tween selected regions and the ecosystem is essential for revealing localized characteristics
of drought [12]. Understanding how plants react to droughts is, in essence, essential for
predicting the ability of ecosystems to withstand changes in climate down the line and for
crafting specific strategies to conserve and adapt to these shifts [13].

Drought is essentially caused by insufficient or no precipitation in the atmosphere,
leading to depletion of soil moisture and a drop in river and groundwater levels. In recent
decades, multiple drought indices have been established to monitor and identify drought
conditions, such as the standardized precipitation index (SPI) [14], the Palmer drought
severity index (PDSI) [15], and its refined version, the Self-Calibrating PDSI (SC_PDSI) [16],
and the SPEI [17], the Thornthwaite index [18], and the P/PET quotient directly reflect the
dryness or wetness of the climate. Among these, the SPI considers only precipitation across
multiple timescales but fails to reflect changes in evapotranspiration demand, whereas
the PDSI accounts for both water supply and demand. It serves as a classic indicator
for assessing long-term soil moisture, though its fixed timescale and sensitivity to soil
parameters may occasionally impose limitations. The SC-PDSI integrates rainfall, tempera-
ture, and soil wetness, capturing water availability relative to requirement, offering high
precision and sensitivity to detect long-term drought [19]. The SPEI incorporates potential
evapotranspiration, thereby overcoming the limitations of precipitation-only indices and
enabling drought assessment across multiple timescales [17]. Therefore, this paper selects
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the SPEI and SC_PDSI drought indices. By combining the two, it is possible to more
comprehensively characterize drought characteristics.

This paper uses a combination of Sen trend and MK tests. Jiang et al. used this method
to analyze vegetation changes in the Yellow River basin, effectively avoiding interference
from data anomalies and missing values and clearly revealing the spatio-temporal trends of
vegetation changes [20]. Liu et al. employed this approach, effectively detailing vegetation
dynamics within the Huai River basin [21].

Central Asia (CA) represents a critical hotspot for climate change research, where
warming amplitude notably surpasses both the Northern Hemisphere and global aver-
ages [22]. With diverse topography and pronounced non-uniform vegetation distribution,
this region is ecologically fragile, water-scarce, and extremely sensitive to climate change,
and thus it is highly prone to drought [23,24]. Over the past decades, the region has un-
dergone alternating wet and dry phases, which considerably affect vegetation dynamics
and overall greenness levels [25]. The lagged drought effect (LDE) represents the delayed
influence of past drought on present vegetation growth [26]. The accumulated drought
effect (ADE) refers to the lasting, cumulative impact of past drought duration on current
vegetation growth [27]. Given that 1998 constituted a key turning point in the dynamics of
vegetation in CA, it is essential to analyze comparatively the differential characteristics of
the impact of drought on vegetation in different seasons in the two periods before and after
this point [28].

In recent years, rising temperatures, declining precipitation, and increasing evapora-
tion have led to the accumulated drought effect on vegetation [29]. Although extensive
research has explored vegetation responses in CA to drought variability, most have focused
on concurrent relationships [30], while the effects of antecedent drought during different
seasons on vegetation growth in the current season have largely been overlooked [31].
Tangjialeke et al. (2024) analyzed how various plant species reacted to the ADE and
LDE [12]. However, prior research has concentrated on interannual variations when evalu-
ating the previous ADE and LDE on the NDVI variability [32]. Although some studies have
highlighted that drought impacts on the NDVI show pronounced seasonal differences [33],
the mechanisms underlying the ADE and LDE on the seasonal scale still lack a systematic
analysis. Therefore, there is a pressing need to systematically investigate the seasonal-scale
characteristics of vegetation responses to the ADE and LDE in CA, which is crucial for
understanding the ecological consequences of drought.

To address this deficiency, this investigation combines several drought indices (the
SPEI and SC-PDSI) with satellite NDVI measurements. The aim of this study is to in-
vestigate the spatio-temporal dynamics of vegetation greenness and drought in CA over
the period 1982–2022, thereby elucidating drought influences on vegetation growth. The
specific objectives include the following: (1) quantifying the NDVI’s seasonal shifts and
spatial-temporal dynamics; (2) assessing the spatial correlation of the NDVI with drought
indices; (3) assessing seasonal vegetation responses to drought; and (4) distinguishing the
roles of the ADE and LDE across various seasons.

2. Materials and Methods
2.1. Study Area

The CA arid zone is located at 34.33◦ N–55.45◦ N, 46.49◦ E–107.29◦ E (Figure 1),
encompassing Kazakhstan, Uzbekistan, Turkmenistan, Kyrgyzstan, Tajiki-stan, and the
Xinjiang Uygur Autonomous Region, China [34]. CA terrain varies greatly, with elevations
typically greater in the northeast than the northwest, including various landforms such as
lowlands (e.g., the lowlands of Uzbekistan), plains (e.g., the Kazakhstan and Amu Darya
Plains), and mountainous areas (e.g., the Tianshan, Pamir, and Kunlun Mountains). The
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lowest elevation occurs along the Cas-pian Sea coast at −151 m, while the highest elevation
exceeds 7000 m in the Tianshan Mountains [30]. CA experiences sparse precipitation, a
large diurnal temperature range, and high evapotranspiration [35]. Vegetation types in this
region include desert species (e.g., Haloxylon and Alhagi), grassland species (e.g., Stipa),
mountain vegetation (e.g., Picea), and shrub vegetation (e.g., Anabasis salsa), as shown in
Figure 1c.

Figure 1. Study area overview: (a) site, (b) elevation map, and (c) 2020 land cover.

2.2. Data

This research utilizes the NDVI derived from Peking University’s GIMMS-NDVI
dataset (v1.2), which combines vegetation metrics from both the AVHRR and MODIS
satellite imaging systems. The dataset spans the period from 1982 to 2022, offering a half-
monthly temporal resolution and a 1/12◦ spatial resolution (https://zenodo.org/records/
8253971; accessed on 24 September 2024) time resolution of 15 days [36]. In this research,
the term “growing season” (GS) encompasses the period from April to September. Here is
how we have divided the seasons: spring spans March through May, summer runs from
June to August, autumn takes place from September to November, and winter extends
from December to February. Winter is not taken into account in this paper, as the vegetation
is prone to being covered by snow, and it is not possible to accurately monitor changes in
vegetation dynamics. These data exhibit strong consistency with MODIS and SPOT remote
sensing data [37].

To detect drought conditions, two commonly adopted indices—the SPEI and
SC_PDSI—are utilized due to their proven effectiveness in capturing spatio-temporal
drought patterns [38,39]. SPEI values were sourced from the open-access Global SPEI
Database (https://spei.csic.es/database.html; accessed on 7 December 2024) at a 0.5◦ grid
resolution [22]. In general, the 3-month SPEI captures intra- and interseasonal dry and
wet variations and is more sensitive to current or recent moisture stress [40]. The SC_PDSI
dataset is sourced from the University of East Anglia’s CRU [41]. For consistency with the
NDVI dataset, both indices are resampled to match the 1/12◦ spatial resolution.

Land-use classification is based on the GLC_FCS30D data (https://zenodo.org/
records/4280923; accessed on 16 January 2025) [41], which offers global coverage at a
30 m resolution for 1985–2022. Four representative years, i.e., 1990, 2000, 2010, and 2020,
are selected to extract typical vegetation types.

https://zenodo.org/records/8253971
https://zenodo.org/records/8253971
https://spei.csic.es/database.html
https://zenodo.org/records/4280923
https://zenodo.org/records/4280923
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2.3. Methods
2.3.1. Trend Analysis

To identify the NDVI and drought trends in CA, two trend analysis methods are
employed, namely, the ordinary least squares regression [42] and the locally weighted
scatterplot smoothing (LOWESS) method [43]. The LOWESS method can reveal trends or
nonlinear relationships in time series. Its core principle involves applying a locally weighted
regression to subsets of data points, thereby constructing a smooth curve that captures
gradual trends [44]. This research utilizes the Sen’s slope method [45] and the Mann-Kenfor
method fir assessing vegetation and drought trends over time at the pixel level [46]. Trend
assessment also employed Theil-Sen median analysis, a resilient non-parametric method,
per Equation (1).

S = Median
( xj − xi

j − i

)
(1982 ≤ i < j ≤ 2022) (1)

where Median () returns the middle number in a sorted dataset, and xj and xi denote the
values of the j-th and i-th terms, respectively. S > 0 represents an increasing trend, and S < 0
denotes a decreasing trend.

To evaluate the statistical significance of temporal trends, the Mann-Kendall non-
parametric test is employed. It calculates a standardized test statistic (Z), where positive
values signify an upward trend, while negative values reflect a declining trend.

2.3.2. Pearson Correlation Analysis

To quantify the relationship between the NDVI and drought, Pearson correlation
analysis is conducted between the NDVI and the two drought indices: SPEI and SC_PDSI.
A t-test is used for testing statistical significance, and a correlation coefficient with a p-value
of less than 0.05 is considered statistically significant. The formula is as follows.

r = ∑n
i=1 (xi − x)(yi − y)√

∑n
i=1 (xi − x)2

√
∑n

i=1 (yi − y)2
(2)

where r indicates the correlation coefficient between x and y, x is the vegetation index, y
is the drought index, and n denotes the length of the time series. xi and yi represent the
independent and dependent variables with time, respectively. x and y indicate the mean
values of x and y, respectively.

2.3.3. Accumulated Effect of Drought on the NDVI

To gauge the vegetation response to ADE, Pearson’s r was computed using monthly
NDVI and SPEI datasets from 1982 to 2022 (R). For each month (1 ≤ i ≤ 12), the correspond-
ing SPEI value is employed to determine the correlation coefficient. The optimal accumula-
tion duration, producing peak correlation, defines the ADE’s characteristic timescale [27].
For instance, if the strongest correlation of the NDVI with the SPEI during the GS occurs
on a 6-month timescale, the ADE timescale is recorded as 6 months. The calculations are
shown in Equations (3) and (4).

Ri = corr(NDVI, SPEIi) 1 ≤ i ≤ 12 (3)

Rmax−cum = max(Ri) 1 ≤ i ≤ 12 (4)

where i denotes the typical timescale of the ADE, Ri denotes the correlation coefficient of
the NDVI with the SPEI, and Rmax−cum denotes the maximum value of Ri. Vegetation
responses to drought and recovery processes occur within a finite timescale. Excessively
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prolonged lag periods diminish drought signals, and extensive research indicates that
drought’s most pronounced effects on vegetation growth (both AED and LDE) typically
concentrate within a 12-month window [47,48]. Furthermore, this timeframe effectively
captures the full ecological process from transient responses to multi-annual impacts.
Consequently, this study adopts a maximum 12-month period as its analytical window.

2.3.4. Lagged Effect of Drought on the NDVI

Likewise, the LDE is quantified through the calculation of the Pearson correlation
coefficient, using monthly NDVI and SPEI datasets spanning from 1982 to 2022. Specifically,
for every season and each individual pixel, the NDVI is correlated with the SPEI values
that have been lagged by 1 to 12 months. The corresponding calculation formulas are
presented below.

Rmax−lag = max(Ri) 1 ≤ i ≤ 12 (5)

where i represents the lag timescale of the SPEI, Ri the correlation coefficient between the
NDVI and the SPEI, and Rmax-lag the maximum value of Ri.

As an example, if the lag timescale is identified as 3 months, the SPEI recorded between
January and June across the 1982–2022 period is correlated with the NDVI observed from
April to September in the corresponding years. Given the strongest correlation aligning
with optimal lag, a 3-month delay significantly shapes vegetation changes.

2.3.5. 5-Year Moving Average Method

In our study, the five-year moving average method was mainly used to smooth out
short-term fluctuations and interannual variability in time series of vegetation indices (such
as the NDVI), thereby more clearly revealing their long-term trends.

MAt =
Yt−2 + Yt−1 + Yt + Yt+1 + Yt+2

5
(6)

MAt represents the moving average value in a year. Yt represents the original veg-
etation index value in a year. For the years inside the series (1984–2020), the centralized
moving average method is used. For boundary years, an asymmetric window is used: the
values for 1982 and 1983 are based on the “looking back” averages of 3 and 4 years, respec-
tively, while the values for 2021 and 2022 are based on the “looking forward” averages of
4 and 3 years, respectively.

3. Results
3.1. Spatio-Temporal Variations in Vegetation in Central Asia
3.1.1. Spatial Distribution Change in NDVI

NDVI directly corresponds to vegetation cover in the area; the closer the value is to 1,
the higher the chlorophyll content, the more vigorous the leaf growth, and the greener the
vegetation. Figure 2 presents the NDVI spatial distribution in CA during the GS and across
different seasons. During the growing season, it can be found that 87.23% of CA is covered
by sparse vegetation (NDVI < 0.4), primarily in the central–western areas of Kazakhstan
and southern Turkmenistan. About 12.1% of CA has moderate vegetation density (NDVI
of 0.4–0.6), mainly in northern Kazakhstan, Kyrgyzstan, and the Tianshan Mountains. Only
0.72% of CA falls within the NDVI range of 0.6 and 0.7, while regions with NDVI > 0.7
account for just 0.04%, concentrated in mountainous and oasis regions.
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Figure 2. Annual spatial distribution of CA’s NDVI classification levels from 1982 to 2022, including
(a) the dry season (GS) and (b–d) different seasons. The top-right inset illustrates the seven-level
vegetation vitality classification system [49,50], with red numbers representing the NDVI ranges for
different levels and black numbers indicating the area proportion.

3.1.2. General Interannual Changes in NDVI

Figure 3 illustrates the NDVI temporal evolution in the GS and different seasons
from 1982 to 2022. During the entire study period, the NDVI in the GS and summer
shows a modest upward trend, with increasing rates of 9 × 10−5 yr−1 and 2 × 10−4 yr−1,
respectively. A statistically significant increase is observed in the spring NDVI at a rate of
7 × 10−4 yr−1 (p < 0.05), while a slight decline can be found in autumn, with a rate of
−1 × 10−4 yr−1.

Figure 3. NDVI trends during (a) the GS and (b–d) different seasons in CA from 1982 to 2022. The
red dashed line represents the linear trend fitted using the ordinary least squares, while the blue solid
line indicates the nonlinear trend using the locally weighted scatter point smoothing method with a
smoothing factor of 0.5. The shaded areas represent ±1 standard deviation.
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As shown in Figure 4 seasonal NDVI trends during the GS across different vegetation
types in CA reveal widespread greening during 1982–2022, with the exception of shrubs.
The four vegetation types—grass, shrub, coniferous forest, and broadleaf forest—cover
CA from arid deserts to humid mountains and are representative of the vegetation of the
region. Specifically, the increasing rate of the NDVI was the highest for broadleaf forests
(9 × 10−4 yr−1), followed by coniferous forests (3 × 10−4 yr−1), and the smallest for grass-
lands (1 × 10−4 yr−1). Notably, the NDVI in CA followed a three-phase fluctuation pattern
characterized by “increase–decrease–increase”, with pronounced interannual variations
since the 21st century. Positive and negative changes in vegetation NDVI may be influenced
by deforestation and environmental factors. In 2008, the NDVI reached its lowest point,
while in 2016, it peaked. This phenomenon was related to the extreme drought in 2008 and
the extreme precipitation in 2016 [51,52].

Figure 4. NDVI trends for different vegetation types in CA during the GS from 1982 to 2022:
(a) grassland, (b) shrubs, (c) broadleaf forest, and (d) coniferous forest. The red dashed line represents
the linear trend fitted using the ordinary least squares, while the blue solid line indicates the nonlinear
trend using the locally weighted scatter point smoothing method with a smoothing factor of 0.5. The
shaded areas represent ±1 standard deviation.

A five-year moving average indicates an NDVI trend reversal in 1998, with inflection
point maps provided in Appendix A. Since the abrupt temperature rise in 1998, CA’s climate
has entered a phase of heightened volatility, with evaporation rates in arid zones shifting
from decline to marked increase [53]. Concurrently, a series of policies implemented during
this period spurred large-scale land reclamation and persistent overgrazing, ultimately
precipitating severe vegetation degradation by the early 21st century [54]. In summary, the
combined effects of abrupt changes in the climate system and intensified human activities
established 1998 as a pivotal turning point in the ecological evolution of CA. During
1982–1998, the NDVI in CA significantly increased (y = 0.0005x + 0.1896, R2 = 0.4394,
p < 0.05). In contrast, from 1999 to 2022, there was a significant decline in the NDVI
(y = −0.0004x + 0.1931, R2 = 0.106, p < 0.05), as presented in Figure 5a. Between 1982
and 1998, 77.6% of CA experienced an NDVI increase, while 22.4% exhibited a decreasing
trend. However, during 1999–2022, 71.5% of CA showed a decreasing NDVI trend, and
28.5% displayed an increasing trend; see Figure 5. In terms of different months, except for
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April, the variation trend of the NDVI in each month during 1999–2022 was consistently
weaker than that in 1982–1998, showing a general decline.

Figure 5. Comparisons of the NDVI trends in CA among different periods from 1982 to 2022: (a) time
series of the NDVI during different periods (1982–1998 and 1999–2022), with numbers indicating the
variation rates of the NDVI; (b) probability density functions of the normal distribution of the NDVI
trend for the two periods of 1982–1998 and 1999–2022, with bars indicating the proportions of the
increase and decrease in vegetation; (c) variation trend of the NDVI in each month during 1982–1998
and 1999–2022. The shaded areas in (a) and the error bars in (c) represent ±1 standard deviation.

3.1.3. Spatial Distribution of NDVI Variation Trends

The NDVI variation trends in CA exhibit a remarkable uneven geographical distri-
bution. During the GS, NDVI trends exhibit a clear east–west divide: greening in the
east, browning in the west (Figure 6). Regions with statistically significant NDVI increases
(p < 0.05) are primarily located in northeastern Kazakhstan, the Tianshan Mountains, the
Altai Mountains, as well as the Tarim Basin. In contrast, areas west of 70◦ E, particularly
western Kazakhstan, display significant browning trends (p < 0.05). Seasonally, over 70.6%
of the region experienced NDVI increases in spring, but this trend reversed in summer,
with browning occurring in 53.9% of the area, primarily along the Ili River, Syr Darya, and
Amu Darya lower reaches. In autumn, browning expanded further, covering 64.5% of the
CA region, and greening was only found in the Tarim River Basin and the northern slope
of the Tianshan Mountains.

A comparative analysis of the spatial distributions of the NDVI trends before and
after the turning point reveals that, from 1982 to 1998, the NDVI during the GS showed a
distinct greening trend, with browning limited to regions near the middle–lower reaches of
the Syr Darya and Lake Balkhash. For seasonal variations, greening areas in spring and
autumn account for 76.8% and 75.3%, respectively, while in summer, marked browning
can be found in the mid-to-lower Syr Darya; see Figure A2. During 1999–2022, significant
browning was observed during the GS and across all seasons. Compared with 1982–1998,
both greening and browning zones experienced clear spatial shifts. Areas with significant
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browning can be found in northwestern Kazakhstan and the western Tianshan Mountains,
especially in summer (Figure A3).

Figure 6. Spatial distributions of (a,c,e,g) Sen’s slope results and (b,d,f,h) Mann-Kendall (MK) test
results for NDVI trends in CA during (a,b) the GS, (c,d) spring, (e,f) summer, and (g,h) autumn from
1982 to 2022. The top-right inset shows the relative frequency (%) distributions of the significant
decrease (deep pink, p < 0.05), non-significant decrease (pink), non-significant increase (green), and
significant increase (deep green, p < 0.05). The blank areas in the figure are areas without vegetation.

3.2. Spatio-Temporal Variations in Droughts and Their Relationship with the NDVI in
Central Asia

The SPEI variation from 1982 to 2022 indicates an overall aridification trend during the
GS in CA (Figure 7). The aridification trend is particularly pronounced in summer, with the
most widespread drought area (98.6% of the CA region), followed by autumn. In contrast,
most areas experienced a wetting trend in spring. Spatially, except for humidifying trends
in the mountainous regions and northeastern Kazakhstan, drying trends prevail across
other regions.
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Figure 7. Sen’s slope trends (left panels), MK test results (middle panels), and annual varia-
tion trends (right panels) of the SPEI in CA during (a–c) the GS, (d–f) spring, (g–i) summer, and
(j–l) autumn from 1982 to 2022. The upper-right inset in the MK results shows the relative frequency
(%) distribution of the significant decrease (dark brown, p < 0.05), non-significant decrease (brown),
non-significant increase (green), and significant increase (dark green, p < 0.05). The red dashed line
represents the linear trend fitted using the ordinary least squares, while the blue solid line indicates
the nonlinear trend using the locally weighted scatter point smoothing method with a smoothing
factor of 0.5. The shaded areas represent ±1 standard deviation.

A comparative analysis of vegetation changes (Figure 6) and drought trends
(Figure 7) from 1982 to 2022 shows that in southern CA, the SPEI exhibits a significant
decreasing trend (−3.4 × 10−2 yr−1) in the GS, accompanied by a pronounced NDVI
reduction (−7 × 10−4 yr−1). In spring, the Tianshan Mountains experienced a slight
increase in the SPEI (1 × 10−3 yr−1), corresponding to a significant rise in the NDVI
(4 × 10−3 yr−1). During summer, a sharp drop in the SPEI can be found around the Aral Sea
(−4.7 × 10−2 yr−1), leading to a marked NDVI decrease (−2 × 10−3 yr−1). Although
drought slightly decreases in autumn, the long-term drought stress leads to an intensified
NDVI declining trend.

The spatial correspondences between the NDVI and the SPEI before and after the
turning point reveal that regions with the increasing SPEI (humidification trend) generally
exhibited vegetation greening, whereas areas with the decreasing SPEI (aridification trend)
corresponded to the regions with vegetation browning. The spatial distribution of the
SPEI before and after 1998 (turning point) is shown in Appendix A. This result indicates
that climatic moistening supports vegetation growth, while drought stress suppresses it.
Compared with the period of 1982–1998, the intensified aridification during 1999–2022
markedly increased the trend of vegetation browning across CA. Seasonally, the spatial
correspondence between the NDVI and the SPEI trends was relatively consistent during
1982–1998, whereas during 1999–2022, the impact area of droughts on vegetation expanded.
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Specifically, in spring, the areas with aridification extended to the margins of oases along
the foothills of the Tianshan Mountains and the oasis–desert transitional zones, inhibiting
early-season vegetation growth. In summer, the areas with aridification expanded into
northwestern Kazakhstan, where the NDVI decline was the most pronounced. In autumn,
the ADE of summer drought further amplified the NDVI reduction, leading to the further
expansion of areas with significant NDVI decrease.

As shown in Figure 8, the SC_PDSI also demonstrates a slight drying trend in CA
during the GS from 1982 to 2022, with more pronounced aridification trends in summer and
autumn. Through a comparison of the spatial distributions of SC_PDSI trends before and
after the turning point in 1998, it can be found a rising trend of the SC_PDSI across most
regions during 1982–1998, with the most severe drought in autumn, particularly in central
Kazakhstan. However, during 1999–2022, the declining trend in the SC_PDSI became more
pronounced. The spatial distribution of SC_PDSI before and after 1998 can be found in
Appendix A.

Figure 8. Sen’s slope trends (left panels), MK test results (middle panels), and annual variation
trends (right panels) of the SC_PDSI in CA during (a–c) the GS, (d–f) spring, (g–i) summer, and
(j–l) autumn from 1982 to 2022. The upper-right inset in the MK results shows the relative frequency
(%) distribution of the significant decrease (dark brown, p < 0.05), non-significant decrease (brown),
non-significant increase (green), and significant increase (dark green, p < 0.05). We have removed
invalid values from the chart. The red dashed line represents the linear trend fitted using the
ordinary least squares, while the blue solid line indicates the nonlinear trend using the locally
weighted scatter point smoothing method with a smoothing factor of 0.5. The shaded areas represent
±1 standard deviation.

The NDVI and SPEI exhibited notable positive correlation across all seasons from 1982
to 2022 (Figure 9). During summer, CA displays strong positive correlations exceeding 90%;
conversely, spring and autumn show comparatively weaker positive relationships [55]. The
analysis of correlation trends pre- and post-peak reveals a more robust positive correlation
from 1999 to 2022 compared to the period from 1982 to 1998, and the regions with significant
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positive correlation coefficients expanded from the oasis–desert transitional zones to most
of CA (Figure 10). On a seasonal level, the NDVI–SPEI correlation in spring shifted from
a spatially scattered pattern (1982–1998) to a more clustered one (1999–2022), implying
that spring vegetation growth is influenced by complex interacting factors. In summer,
the intensity of the positive correlation significantly increased during 1999–2022 (p < 0.05),
while the correlation in autumn remained relatively weak in both periods. Comparable
spatial correlation patterns are also observed between the SC_PDSI and the NDVI. Spatial
distribution maps of the SC_PDSI correlation with the NDVI are shown in Appendix A.

Figure 9. Spatial distribution of the correlation coefficient between the NDVI and the SPEI in CA
during (a) the GS, (b) spring, (c) summer, and (d) autumn from 1982 to 2022. The blank areas in the
figure are areas without vegetation.

Figure 10. Spatial distribution of the correlation coefficient between the NDVI and the SPEI in CA
during (a,b) the GS, (c,d) spring, (e,f) summer, and (g,h) autumn from (a,c,e,g) 1982 to 1998 and
(b,d,f,h) 1999 to 2022. The blank areas in the figure are areas without vegetation.
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3.3. Accumulated Effect of Drought on the Grassland NDVI
3.3.1. Spatial Distribution of the Accumulated Effect of Drought

The ADE varies across seasons. During the GS, 54.46% of CA exhibits a positive
NDVI–SPEI correlation, primarily in northwestern Kazakhstan (Figure 11). In spring and
summer, 43.65% and 88.82% of CA are significantly affected by the ADE, respectively, while
in autumn, the impacted area accounts for 54.97%. Overall, the ADE on the NDVI is more
pronounced in summer than in spring and autumn.

Figure 11. Spatial distributions of the maximum accumulated correlation coefficients (left column)
and corresponding accumulated months (right column) between the NDVI and the SPEI in CA
during (a,b) the GS, (c,d) spring, (e,f) summer, and (g,h) autumn from 1982 to 2022. We have removed
invalid values from the chart.

The average timescale for the ADE during the GS is 6.05 months. The 5-month ADE is
the greatest (22.41% of CA affected), particularly in southwestern Kazakhstan, followed by
1-month (17.39%), 6-month (13.82%), and 12-month (13.43%) effects. The droughts with a
shorter-timescale ADE are mainly concentrated in northern CA and western Kazakhstan,
while those with a longer-timescale ADE are observed in southern CA. In spring, the
average duration of the ADE is 8.05 months, and the 5-month to 6-month ADEs exert
the greatest influence (37.09% of CA). In summer, the average duration of the ADE is
5.37 months, and the droughts lasting 1–3 months have a greater impact on CA (39.55% of
CA). In autumn, the corresponding average duration is 6.78 months, and the 1-month ADE
has a relatively large impact (24.82% of CA).
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3.3.2. Temporal Characteristics of the Accumulated Effect of Drought

The SPEI–NDVI relationship shows significant fluctuations across diverse temporal
scales (Figure 12). Across the GS, the relationship strengthens steadily over 1–4-month
periods, weakens progressively between 5–10 months, and then experiences a modest
rebound in the 11–12 months. The highest correlation is observed at the timescale of
4 months (r = 0.33, p < 0.05), whereas the lowest occurs at 10 months (r = 0.09, p < 0.05).
On the seasonal scale, the correlation in spring peaks on the 4-month accumulated timescale,
and it peaks on the 5-month timescale in autumn. The correlation in summer is similar to
that in the GS, characterized by a “double valley” pattern, and the overall correlation in
summer surpasses that in spring and autumn. This result indicates that summer drought
considerably contributes to the vegetation change during the GS.

Figure 12. Correlations between the NDVI and the SPEI on the accumulated timescales of
1–12 months and the corresponding proportion of the affected area during the (a) GS, (b) spring,
(c) summer, and (d) autumn from 1982 to 2022.

3.4. Lagged Effect of Drought on the Grassland NDVI
3.4.1. Spatial Distribution of the Lagged Effect of Drought

Figure 13 presents the spatial distribution of the LDE between the NDVI and the SPEI.
During the GS, 75.62% of the region exhibits positive correlations between the NDVI and
the lag of the SPEI, with significant correlations primarily in southwestern and southern
Kazakhstan. Periodically, CA experiences a substantial LDE impact: spring (51.31%),
summer (85.64%), and autumn (56.91%). The GS and summer display more pronounced
delayed reactions compared to spring and autumn.

The average lagging period of drought influence on vegetation growth during the GS
is estimated to be 4.59 months. A 3-month lag has the greatest impact on CA vegetation
(25.64% of the region affected), mainly in central Kazakhstan, followed by 4-month (23.15%
of the region affected) and 6-month lags (15.42% of the region affected). In spring, the
average lagging period is also 4.59 months, and 63.89% of CA shows a lag of 4–5 months.
Among them, a 4-month lag affects the largest area (34.34%). In summer, the average
lagging period is 3.75 months, and the strongest effect appears at a 1-month lag (35.85% of
the region affected). In autumn, the average lagging period is 5.01 months, and the 1-month
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(19.52% of the region affected) and 7-month (17.33% of the region affected) lags have the
most extensive impact.

Figure 13. Spatial distributions of the maximum lagged correlation coefficients (left panels)
and corresponding lag months (right panels) between the NDVI and SPEI during (a,b) the GS,
(c,d) spring, (e,f) summer, and (g,h) autumn in CA from 1982 to 2022. We have removed invalid
values from the chart.

3.4.2. Temporal Characteristics of the Lagged Effect of Drought

The SPEI–NDVI relationship exhibits significant variation across lag times; plants
show heightened sensitivity to short-term drought lags year-round (Figure 14). Throughout
the GS, the association demonstrates an erratic trend, reaching its highest point at a 3-month
interval (r = 0.3, p < 0.05). Looking at the seasonal trends, springtime sees its biggest spike
with a four-month delay, impacting nearly 32.67% of the region, although the connection is
not super strong (r = 0.21, p < 0.05). When summer rolls around, the strongest link (r = 0.44,
p < 0.05) pops up just a month later, affecting a little over a fifth of the area. In autumn, the
correlation also peaks at the 1-month lag (18.85% of the area affected). Overall, summer
shows the strongest and most extensive lagged responses, with a prominent peak at the
1-month lag. During the GS, vegetation dynamics are predominantly influenced by the



Forests 2025, 16, 1575 17 of 31

LDE, affecting 59.44% of CA. In spring, 79.27% of CA is affected by the LDE, while the
ADE is limited to 20.72% of the region. In contrast, vegetation in summer and autumn is
mainly influenced by the ADE, which affects 54.92% and 56.52% of CA, respectively.

Figure 14. Correlations between the NDVI and the SPEI on the lag timescale of 1–12 months and
the corresponding proportion of areas affected in CA during (a) the GS, (b) spring, (c) summer, and
(d) autumn from 1982 to 2022.

4. Discussion
4.1. Spatio-Temporal Distributions of Vegetation and Drought

The year 1998 marks a critical turning point in vegetation dynamics across CA, align-
ing with findings from both global and regional studies [56]. During this period, CA’s
climate changed, particularly between 1982 and 1998, and CA experienced a positive phase
of the North Atlantic Oscillation, which strengthened westerly moisture transport and
consequently led to a precipitation increase [23]. However, after 1999, the North Atlantic
Oscillation shifted to a negative phase, and coupled with the rapid warming of the Eurasian
continent, it caused a distinct rise in evapotranspiration and aggravated regional droughts.
Therefore, vegetation growth in CA was limited [57]. Since 1998, the overall NDVI of
vegetation in CA has shown a downward trend, with an R2 value of 0.3992 between 1998
and 2008. After this period, the interannual variability of the NDVI significantly increased,
particularly around 2008 and 2016. These two years were marked by extreme drought
and extreme precipitation events, respectively, leading to strong fluctuations in vegetation
response. This fluctuation pattern highlights the sensitivity of CA ecosystems to extreme
climate events and also indicates that, against the backdrop of long-term degradation, water
availability remains a key factor constraining vegetation dynamics. In spring, vegetation
greenness was relatively high in CA, influenced by abundant water from snowmelt [58]. In
contrast, during summer, vegetation browning is severe, primarily due to intense evapora-
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tion and long-term high temperature, which aggravated drought conditions and accelerated
vegetation water loss in soil and plants, thereby suppressing vegetation growth [59].

The results of this research show that both the SPEI and SC_PDSI display decreasing
trends during 1982–2022, jointly revealing the general aridification trend in CA. This
finding aligns with existing evidence indicating that the warming rate in CA surpasses the
global average, further suggesting that the region is undergoing a trend toward increasing
aridity [60]. On the seasonal scale, spring shows a wetting trend, while summer exhibits
a drying trend. Previous studies have also suggested that early-season greening can
aggravate summer drought [61–63]. Spatially, drought in CA exhibits distinct altitude
dependence. Due to orographic lifting, the SPEI tends to remain relatively stable in high-
altitude mountainous areas (e.g., the Tianshan Mountains and the Pamir Plateau), while
in low-elevation plains and desert areas, the SPEI shows an obvious decline, forming a
vertical differentiation pattern of “humid mountains and arid plains”. This pattern is due to
the imbalance between snowmelt supply in the highlands and evapotranspiration demand
in the lowlands [64].

4.2. Responses of NDVI to Droughts

Our analysis also reveals distinct seasonal variations in the drought influence on
vegetation through both ADE and LDE, with summer showing the most pronounced
impact. This result is probably due to the accelerated evapotranspiration caused by high
temperature, which accelerates vegetation water deficit accumulation [65]. Summer is the
peak season of vegetation growth, with active photosynthesis and heightened sensitivity to
water stress [66]. Even short-term droughts (1–3 months) can lead to evident vegetation
browning. In spring, vegetation growth relies on prior soil moisture storage, requiring a
longer drought period (an average of 8.05 months) to exceed ecological thresholds. This
result aligns with the characteristics of snowmelt recharge and the slow consumption of
deep-soil moisture in CA during spring [46]. In autumn, the LDE is more pronounced at a
longer timescale (7 months), probably reflecting the adaption of vegetation, such as relying
on deep root systems to access deep-soil moisture or groundwater, which can help mitigate
drought stress and results in delayed responses [67].

Spatially, the short-term ADE dominates in northern CA, probably due to the rapid
response of shallow-rooted grassland vegetation to instantaneous rainfall events. Con-
versely, in the southern regions, vegetation responses are predominantly governed by the
long-term ADE, reflecting the survival strategies of desert vegetation that rely on deep
groundwater or interannual water storage [68]. The southern Kazakhstani region, a hub
for ADE activities, is particularly sensitive to drought accumulation due to its location
in the transitional zone between arid regions and grasslands, where ecosystems are in a
moisture-critical state [5]. In the northwest, the pronounced LDE is associated with the
high water-holding capacity of chernozem soils, which slows the transmission of drought
signals. Meanwhile, in the southern desert areas, sparse vegetation cover leads to drought
responses being masked by variations in surface albedo [69].

Beyond climate change, human activities constitute the primary driver of vegetation
dynamics in arid regions. Overgrazing directly leads to grassland degradation and dimin-
ished soil water retention capacity, thereby intensifying drought stress on vegetation [70].
While irrigated agriculture temporarily enhances local vegetation greenness, prolonged un-
sustainable water use readily induces soil salinization, ultimately undermining the overall
resilience of the regional ecosystem [71]. Moreover, land-use changes such as deforestation
diminish mountainous regions’ water conservation capacity, potentially amplifying the
ecological impacts of drought events. These anthropogenic disturbances interact synergis-
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tically with climatic aridification trends, rendering vegetation responses more complex.
Future research must clarify the relative contributions of each factor [72].

Based on the aforementioned research findings, the sensitivity and seasonal variations
in vegetation responses to drought across CA necessitate that governments and manage-
ment authorities implement differentiated, nuanced ecological conservation and water
resource management policies. These should be tailored to the distinct drought response
characteristics observed across different seasons, altitudes, and vegetation types. Such an
approach will help mitigate the current trends of vegetation degradation and land deser-
tification. Consequently, future investigations should emphasize vegetation responses to
drought on a seasonal scale, particularly on the ADE and LDE; combine multi-scale satellite
data and field measurements to assess how extreme weather affects vegetation patterns
over time and space; focus on revealing differences in ecosystem resilience before and after
events and identify key factors affecting resilience; develop a coupled climate–vegetation
dynamics prediction model or spatio-temporal modeling to simulate the long-term impact
of frequent extreme events on vegetation resilience under future scenarios. Vegetation
cover has significantly degraded since 1999, indicating that ecosystems in CA arid regions
are highly sensitive to climate change (such as drought), with declining ecological stabil-
ity potentially leading to issues like land degradation. Vegetation responds differently to
droughts in different seasons, so strategies to address drought conditions should be tailored
to seasonal characteristics. Additionally, the strengthened correlation between vegetation
and drought indicates that the impacts of extreme climate events are becoming increasingly
significant under the backdrop of climate change, necessitating enhanced regional climate
adaptation capacity building [73]. Such insights are essential for elucidating the underlying
mechanisms of vegetation responses to drought and providing a scientific foundation for
the sustainable development of terrestrial ecosystems.

This study reveals the impact of drought on vegetation in CA from 1982 to 2022,
though it must be acknowledged that several limitations exist. Firstly, the GIMMS NDVI
data employed may hinder the capture of subtle vegetation dynamics due to its limited
spatial resolution (approximately 8 km) and extended synthesis cycle (15 days) in sparsely
vegetated areas, alongside risks of saturation effects and interference from soil background.
Secondly, the SPEI and SC-PDSI drought indices employed possess inherent limitations and
fail to incorporate soil moisture data, which more directly influences vegetation growth.
Furthermore, this study did not quantify the potentially significant impacts of human
activities such as land-use change and agricultural management practices (e.g., irrigation),
which may have dominated the observed trends in the NDVI. The designation of 1998
as a “tipping point” primarily relies on statistical trend analysis. The causal relationship
with climate drivers like the North Atlantic Oscillation (NAO) and underlying physical
mechanisms requires further validation through model simulations. Conclusions also lack
verification by independent ground-based observations (e.g., biomass and soil moisture),
and findings are predominantly centered on CA, necessitating caution when extrapolating
to other arid regions.

Future research should focus on integrating higher-resolution remote sensing data
(e.g., Landsat and Sentinel) with alternative vegetation indices (e.g., the EVI), while incor-
porating satellite-derived soil moisture products to more directly quantify water stress.
Coupling climate–vegetation models could elucidate the physiological and ecological mech-
anisms underlying this “decoupling” phenomenon, enabling the separation of relative
contributions from climate variability and human activities. Finally, multi-source data
fusion analysis integrating ground-based observations with detailed land-use information
represents a crucial direction for comprehensively understanding the drivers of vegetation
change in CA.
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5. Conclusions
This research delves into the plant life and water scarcity in the dry areas of CA,

examining the enduring patterns and various timeframe relationships between plant
density and drought from 1982 to 2022. It also investigates the seasonal nuances of the
ADE and LDE on plant life. The main findings are summarized as follows.

(1) From 1982 to 1998, CA vegetation cover experienced a significant increase, with
an NDVI rising rate of 4 × 10−3 yr−1. However, from 1999 to 2022, the NDVI declined at
the same rate of 4 × 10−3 yr−1. On the seasonal scale, widespread browning was evident
in the GS and all seasons from 1999 to 2022, with summer showing the most pronounced
vegetation degradation.

(2) Compared with the earlier period (1982–1998), drought conditions intensified
during 1999–2022. The aridification was the most marked in summer, affecting 98.6% of
CA, followed by autumn and spring. As drought became more severe, the browning of
vegetation accelerated. Moreover, during 1999–2022, the positive correlation of vegetation
cover with drought became more pronounced, and vegetation displayed a greater sensitiv-
ity to drought. Notably, there was a stronger vegetation response to drought in the GS and
summer than in spring and autumn.

(3) Vegetation response patterns to the ADE and LDE varied across different seasons.
The ADE and LDE were the most significant in summer, followed by spring and autumn.
During the GS and spring, vegetation was primarily influenced by the LDE, and 59.44%
and 79.27% of CA were affected, respectively. In contrast, vegetation in summer and
autumn was predominantly influenced by the ADE, which affected 54.92% and 56.52% of
CA, respectively.

(4) This study contributes to understanding the seasonal patterns of cumulative and
lagged mechanisms in drought’s impact on vegetation, providing precise scientific grounds
for ecological risk management in CA—a critical arid region. Consequently, we emphasize
that future ecological restoration and management strategies should be more targeted: in
the eastern mountainous areas and oasis transition zones, focus should be placed on spring
water replenishment to leverage lagged effects for growth promotion; while in the arid
western plains, summer drought early-warning systems and adaptive irrigation regimes
grounded in short-term cumulative effects should be established. Concurrently, regional
policies should advance transboundary water resource co-management and incorporate
vegetation resilience indicators into land-use planning to curb ecological degradation
stemming from overexploitation.
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Appendix A
Appendix A.1 Five-Year Moving Average of the Annual NDVI

Figure A1. Five-year moving average of the annual NDVI. Blue and red lines indicate linear fits
before and after the year with a turning point (1998).

Figure A2. Spatial distributions of (a,c,e,g) Sen’s slope results and (b,d,f,h) Mann-Kendall (MK) test
results for NDVI trends in CA during (a,b) the GS, (c,d) spring, (e,f) summer, and (g,h) autumn from
1982 to 1998. The top-right inset shows the relative frequency (%) distributions of the significant
decrease (deep pink, p < 0.05), non-significant decrease (pink), non-significant increase (green), and
significant increase (deep green, p < 0.05). The blank areas in the figure are areas without vegetation.
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Figure A3. Spatial distributions of (a,c,e,g) Sen’s slope results and (b,d,f,h) Mann-Kendall (MK) test
results for NDVI trends in CA during (a,b) the GS, (c,d) spring, (e,f) summer, and (g,h) autumn from
1999 to 2022. The top-right inset shows the relative frequency (%) distributions of the significant
decrease (deep pink, p < 0.05), non-significant decrease (pink), non-significant increase (green), and
significant increase (deep green, p < 0.05). The blank areas in the figure are areas without vegetation.
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Appendix A.2 The Spatial Distribution of SPEI Before and After 1998

Figure A4. Sen’s slope trends (left panels), MK test results (right panels) of the SPEI in CA during
(a,b) the GS, (c,d) spring, (e,f) summer, and (g,h) autumn from 1982 to 1998. The upper-right inset in
the MK results shows the relative frequency (%) distribution of the significant decrease (dark brown,
p < 0.05), non-significant decrease (brown), non-significant increase (green), and significant increase
(dark green, p < 0.05).
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Figure A5. Sen’s slope trends (left panels), MK test results (right panels) of the SPEI in CA during
(a,b) the GS, (c,d) spring, (e,f) summer, and (g,h) autumn from 1999 to 2022. The upper-right inset in
the MK results shows the relative frequency (%) distribution of the significant decrease (dark brown,
p < 0.05), non-significant decrease (brown), non-significant increase (green), and significant increase
(dark green, p < 0.05).
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Appendix A.3 The Spatial Distribution of the SC_PDSI Before and After 1998

Figure A6. Sen’s slope trends (left panels), MK test results (right panels) of the SC_PDSI in CA
during (a,b) the GS, (c,d) spring, (e,f) summer, and (g,h) autumn from 1982 to 1998. The upper-right
inset in the MK results shows the relative frequency (%) distribution of the significant decrease (dark
brown, p < 0.05), non-significant decrease (brown), non-significant increase (green), and significant
increase (dark green, p < 0.05).
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Figure A7. Sen’s slope trends (left panels), MK test results (right panels) of the SC_PDSI in CA
during (a,b) the GS, (c,d) spring, (e,f) summer, and (g,h) autumn from 1998 to 2022. The upper-right
inset in the MK results shows the relative frequency (%) distribution of the significant decrease (dark
brown, p < 0.05), non-significant decrease (brown), non-significant increase (green), and significant
increase (dark green, p < 0.05).
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Appendix A.4 Spatial Distribution of the SC_PDSI Correlation with the NDVI

Figure A8. Spatial distribution of the correlation coefficient between the NDVI and the SC_PDSI in
CA during (a) the GS, (b) spring, (c) summer, and (d) autumn from 1982 to 2022. The blank areas in
the figure are areas without vegetation.

Figure A9. Spatial distribution of the correlation coefficient between the NDVI and the SC_PDSI in
CA during (a,b) the GS, (c,d) spring, (e,f), summer and (g,h) autumn from (a,c,e,g) 1982 to 1998 and
(b,d,f,h) 1999 to 2022. The blank areas in the figure are areas without vegetation.
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Figure A10. Correlation analysis chart between the NDVI and SPEI from 1982 to 2022.

Figure A11. Correlation analysis chart between the NDVI and SC_PDSI from 1982 to 2022.
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