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Abstract

The desert riparian forest oasis, dominated by Populus euphratica and Tamarix chinensis, is an
important barrier to protect the economic production and habitat of the Tarim River Basin.
However, there is still a lack of high-precision spatial distribution data of desert ri-parian
forest species below 10 m. The recently launched PlanetScope CubeSat constella-tion, which
provides daily earth observation imagery with a resolution of 3 m, offers a highly favorable
dataset for mapping the high-resolution distribution of P. euphratica and T. chinensis and
an unprecedented opportunity to explore the optimal phenology window to distinguish
between them. In this study, time-series PlanetScope images were first used to extract
phenological metrics of P. euphratica, dividing the annual life cycle into four phenology
windows: duration of leaf expansion (DLE), duration of leaf maturity (DLM), duration of
leaf fall (DLF), and duration of the dormancy period (DDP). The random forest model was
used to obtain the classification accuracy of 16 phenological window combinations. Results
indicate that after gap filling of vegetation index time series, the identification accuracy for
P. euphratica and T. chinensis exceeded 0.90. Among individual phenology windows, the
DLE window exhibited the highest classification accuracy (average F1-score 0.87). Among
the two phenology window combinations, the DLE-DLF and DLE-DLM windows have
the highest classification accuracy (average F1-score 0.90). Among the three phenology
window combinations, DLE-DLM-DLF displayed the highest classification accuracy (av-
erage F1-score 0.91). Nevertheless, the inclusion of features within the DDP window led
to a decrease in accuracy by 1–2% points, which was unfavorable for discriminating tree
species. Additionally, features observed during the phenology asynchrony period were
found to be more valuable for distinguishing between tree species. Our findings highlight
the potential of PlanetScope constellation imagery in tree species classification, offering
guidance for selecting optimal image acquisition timing and identifying the most valuable
images within time series data for future large-scale tree mapping.
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1. Introduction
Dryland forests are valuable but often neglected resources that provide habitat for bio-

diversity and prevent the expansion of desertification [1,2]. Populus euphratica (P. euphratica)
is a widely distributed deciduous broad-leaved tree able to live in extreme drought ar-
eas [3,4]. Tamarix chinensis (T. chinensis) is a shrub extensively growing on sandy deserts or
alkaline soils located from arid to semi-arid areas [5]. These two-plant species dominate the
desert riparian forests along the Tarim River, with P. euphratica predominant [6]. The Tarim
River Basin in Xinjiang, China, contains 54% of the world’s P. euphratica forests [7]. They
can not only serve as a natural barrier against regional farmland desertification caused
by strong winds and sandstorms, but also actively control the extension of deserts to
riverbanks within the entire basin system [8,9]. However, the excessive water demands of
human life and economic exploitation have led to a catastrophic reduction in its area to
only 53.48% of what it was half a century ago [10]. It is consoling to note that since 2000,
the government has taken the initiative to irrigate these riparian forests by enhancing the
connectivity of the river through ecological water transfer [11]. However, the current lack
of accurate spatial distribution maps of P. euphratica forests is one of the most difficult and
problematic issues for the effective implementation of conservation measures.

Satellite-based remote sensing is currently the most effective technology for wide-
area Earth observation, providing the best way to depict plant characteristics over large
areas with high spatial resolution, high spectral and multi-temporal observations [12–14].
Researchers have employed high-spatial-resolution remote sensing images, such as
WorldView, QuickBird, and GeoEye, for tree species classification [15–19]. When the
spatial resolution surpasses the canopy size of trees, tree species can be identified based
on their shape, texture, and spectral features [20]. Sentinel-2 and Landsat-8/9 images,
limited by their spatial resolution, might not provide adequate detail for identifying
tree species in a single time-phase image. However, research indicates that utilizing
multi-temporal remote sensing imagery yields satisfactory results in tree species identi-
fication [21,22]. These studies have demonstrated the advantages of employing multi-
seasonal or multi-temporal images over single-date imagery for tree species classifica-
tion [23]. Transitioning from single-time-window remote sensing imagery to continuous
diurnal remote sensing observations is crucial, as this approach captures species-specific
developmental dynamics and their responses to daily environmental drivers [24,25].
These characteristics are key elements for achieving effective species identification. Ad-
ditionally, combining multiple data sources, such as optical and SAR remote sensing
images along with topography data has also become an effective way to improve the
accuracy of tree species identification [26,27].

Recent studies have shown that phenological indicators are reliable information
for distinguishing tree species, and their incorporation into classification models can
improve species identification accuracy [23,28]. The multi-temporal Vegetation Indices
(VIs) profile of a specific vegetation would be expected to reflect the vegetation’s general
phenology metrics (e.g., timing of greenup, peak greenness, and senescence) if the data
have sufficient spatial, spectral, and temporal resolution [29,30]. Peng et al. [31] found
that combining geographic distribution features and phenological indicators improved
the identification accuracy of P. euphratica by 13% compared to using only Sentinel-1/2
spectral information and vegetation index features. Using time-series Sentinel-2 images,
Li et al. [32] investigated the spectral differences between P. euphratica and T. chinensis and
concluded that the period from 22 April to 1 May represents the optimal time window
for mapping the distribution of the two species. By using deep learning, the accuracy of
identifying P. euphratica and T. chinensis on QuickBird images and drone images reaches
more than 85% [33–35]. Using WorldView-2 imagery with ultra-high spatial resolution,
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it has even been possible to count the number of P. euphratica in the lower reaches of the
Tarim River [36]. Although existing research provides reliable information for accurately
identifying P. euphratica and T. chinensis, some limitations also existed: Firstly, Landsat
and Sentinel-2 are unable to provide recognition precision at the canopy level due to
the limitation of spatial resolution greater than or equal to 10 m; secondly, Due to the
limitation of revisit time, the time series of previous high spatial resolution satellite
remote sensing images could not reach the level of days, which affected the accuracy
of the analysis results and led to the inaccurate identification of important phenology
nodes; Finally, there is a lack of comparison of identification accuracy of P. euphratica
species during different phenological periods.

Due to the development of new-generation CubeSat constellation missions such as
Planet Labs’ PlanetScope (PS), in recent years, it has dramatically dropped construction
and launch costs for earth observation satellites [37]. The PlanetScope satellite constellation
achieves a daily imaging frequency exceeding that of global regions, enabling the acquisi-
tion of satellite remote sensing imagery data with a resolution of 3–5 m on a daily basis. Up
to now, PS has about 200 active Dove small satellites. This allows satellite remote sensing
to capture time series of daily VIs at the canopy resolution of a single tree, providing
the most appropriate data for extracting phenology metrics of forests and distinguishing
between specific tree species [30,38,39]. In this study, we hypothesize that the accuracy
of P. euphratica and T. chinensis identification varies across different phenology periods,
suggesting the existence of optimal phenology windows and combinations best suited for
discriminating between them. To validate this assumption, our primary objectives were as
follows: (1) Utilizing PS images to acquire time-series Enhanced Vegetation Index (EVI)
of P. euphratica and T. chinensis, extracting key phenology metrics for each species, and
delineating the annual growth cycle of P. euphratica and T. chinensis into distinct phenology
windows. (2) Integrating multiple VIs features from different phenology windows into the
random forest (RF) classifier to explore the optimal phenology windows for discrimination
between P. euphratica and T. chinensis through classification accuracy. The innovation of this
study lies in the use of remote sensing imagery that not only possesses high spatial resolu-
tion but also offers a near-daily revisit capability. This capability will provide significant
insights for comparing the accuracy of tree species extraction across different phenological
time windows.

2. Materials and Methods
2.1. Study Sites

The study area for this study is located in the Tarim River Basin, spanning from
88◦19′E to 88◦24′E longitude and 40◦04′ N to 40◦09′ N latitude, with an average elevation of
approximately 820 m. The Tarim River is the largest inland river in China, with an average
annual flow of about 4.65 billion m3. Its water source mainly comes from glaciers and alpine
snow melt water [40] (Figure 1). Due to the imbalance between precipitation and potential
evaporation (average annual precipitation < 60 mm, evaporation potential > 2000 mm),
oasis agricultural and natural vegetation in the basin are mainly distributed on both sides
of the riverbank and flood plains where rivers overflow [7]. We took the lower reaches of
the Tarim River as the research site. The lower Tarim River floodplain is densely vegetated
with P. euphratica and T. chinensis as the main construction species, accounting for more than
90% of the total vegetation area. It is a good experimental area for identifying P. euphratica
and T. chinensis [41].
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Figure 1. Location of the study area and distribution of P. euphratica and T. chinensis sample plots
within it: (a) location of the Tarim River Basin and study area; (b) the PlanetScope standard false-color
(NIR-Red-Green) composite image, and the distribution of P. euphratica and T. chinensis sample plots;
(c) pictures of T. chinensis; (d) pictures of P. euphratica.

2.2. Materials
2.2.1. PlanetScope Images

Daily scale remote sensing images from PS Earth observation satellites were used
for the extraction of VIs and phenology metrics for P. euphratica and T. chinensis [37]. PS
Scenes Level 3B surface reflectance product with a pixel size of 3 m was downloaded
from Planet Labs (Available online: https://www.planet.com/, accessed on 23 November
2023). This product offers near-daily global coverage, making it a preferred option for
fine-scale plant time series observations [30]. We obtained four spectral bands from PSB.SD
instruments, namely blue, green, red, and near-infrared (NIR). Images have been orthorec-
tified, radiometrically corrected, and harmonized with Sentinel-2 to ensure radiometric
consistency [42]. Images with cloud cover <40% cover between January and December
2022 were downloaded (Figure 2). All PS imagery was processed to retain only the pixels
labeled as “clear” in the Usable Data Mask to remove contaminated pixels. Multiple images
in one day were combined into a geo-referenced single frame by mosaicking. Ultimately,
we acquired a total of 116 cloud-free mosaic images that covered the study area.

Figure 2. PlanetScope data availability and cloud cover statistics for the study area for 2022. Images
were visually inspected to select cloud-free data. The green labels are the images selected for analysis.

https://www.planet.com/
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2.2.2. Reference Imagery and Processing

GF-7 is China’s first civil sub-meter resolution optical stereoscopic earth observation
satellite, successfully launched on 3 November 2019 [43]. It is equipped with payloads
including two optical cameras and a laser altimeter, enabling the acquisition of high-
resolution and highly accurate stereoscopic optical imagery and laser altimetry data [44].
The optical cameras comprise a forward-looking panchromatic camera and a multispec-
tral backward-looking camera. The backward-looking camera includes a panchromatic
band with a 0.65 m resolution and four multispectral bands, each with a 3.2 m resolution.
We obtained GF-7 observation images of the study area on 28 September 2022, and
3 October 2022. The panchromatic and multispectral bands from the backward-looking
camera were selected and fused to generate a 0.65 m multispectral reference image.
The fused image showed good distinguishability between P. euphratica and T. chinensis
visually (Figure S1).

Expert interpreters with extensive experience in studying P. euphratica and T. chinensis
labeled the pixels of these species on PS images, using both the fused GF-7 true and
false-color images as a reference. For challenging labels, P. euphratica and T. chinensis
labels were confirmed through field surveys and drone imagery. A total of 75 represen-
tative areas, each with a size of 500 × 500 m, were selected for the label of P. euphratica
and T. chinensis (Figure 1). Pixels with NDVI > 0.1 during the growing season but not
belonging to P. euphratica or T. chinensis were labeled as “Vegetation”, while all other
pixels were labeled as “Others”. This procedure resulted in 20,000 labeled pixels for
model training.

2.2.3. Vegetation Indices

VIs are indicators that reflect the greenness or health of vegetation [45]. Seasonal
trajectories of VIs are commonly used in vegetation phenology studies [46]. Additionally,
VIs are crucial features for vegetation classification [38]. Table 1 lists the four VIs used in
this study. The reason for selecting these VIs is that they are frequently used in vegetation
monitoring, and their calculation formulas incorporate the four spectral bands of the PS
imagery [47]. These four VIs were selected as the feature variables for model training.

Table 1. Calculation formula for vegetation indices used in this study.

Vegetation Indices Equation

Normalized Difference Vegetation Index (NDVI) NIR−Red
NIR+Red

Enhanced Vegetation Index (EVI) 2.5 × NIR−Red
NIR+6×Red−7.5×Blue+1

Soil-Adjusted Vegetation Index (SAVI) (1+L)×(NIR−Red)
NIR+Red+L

Green Normalized Difference Vegetation Index (GNDVI) NIR−Green
NIR+Green

Note: Red, Green, Blue, and NIR are the red, green, blue, and near-infrared bands, respectively. L = 0.5.

2.3. Methods

A full overview of the methodological flow chart can be found in Figure 3. This study
utilized orthorectified GF-7 imagery as a reference and labeled samples of P. euphratica
and T. chinensis on PS imagery. The EVI time series derived from pure P. euphratica pixels
from PS imagery was employed to extract phenology metrics, enabling the delineation of
the phenology windows. Interpolated daily time series of VIs were employed as training
features for the RF. By training RF with VIs features from various phenology windows and
their combinations, the performance of the classification results was assessed to determine
the optimal phenology window for discriminating P. euphratica and T. chinensis.
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Figure 3. Workflow for exploring the optimal phenology windows for discriminating P. euphratica and
T. chinensis: (a) obtaining samples of P. euphratica and T. chinensis from GF-7 imagery; (b) extracting
phenology metrics for P. euphratica and delineating phenology windows; (c) time-series vegetation
indices reconstruction and gap-filling; (d) training the Random Forest model with vegetation indices
variables extracted from different phenology windows and their combinations, comparing model
accuracies to determine the optimal phenology window.

2.3.1. Time-Series VIs Reconstruction and Gap-Filling

The continuity of VIs is often interrupted by residual atmospheric contamination,
clouds, and haze, resulting in inconsistent data intervals across different phenology win-
dows. This discontinuity poses a significant obstacle to analyzing the optimal phenology
windows. Liu et al. [48] conducted a global-scale assessment of several gap-filling ap-
proaches for NDVI, and the Fourier-based approach demonstrated robust performance
in filling data gaps while preserving the curve’s stability. This approach uses the sum
of a series of cosine and sine waves to fit the vegetation growth curve. In Liu’s study, a
harmonic value of 4 yielded the best outcomes, this value is also used in this study after
verification. After gap-filling, the VIs were interpolated into daily time series.

2.3.2. Extracting Key Metrics of Phenology from PlanetScope

In this section, six phenology metrics, namely the Start of Spring (SOS), Middle of
Spring (MOS), End of Spring (EOS), Start of Fall (SOF), Middle of Fall (MOF), and End of
Fall (EOF), were derived from P. euphratica and T. chinensis EVI time series. Using GF-7
imagery as a reference, we individually selected 500 pure pixels representing P. euphratica
and T. chinensis from PS images. By calculating the average EVI values, we obtained time-
series EVI datasets specifically characterizing the phenology changes in P. euphratica and
T. chinensis. Subsequently, the double logistic function was applied to reconstruct the EVI
time series (Equation (1)), resulting in a fitted EVI curve. In the final step, the third deriva-
tives of the fitted curves were used to derive the phenology metrics for P. euphratica and
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T. chinensis [49]. As shown in Figure 4, P. euphratica and T. chinensis display distinct pheno-
logical patterns, with noticeable differences in the timing of their key phenology indicators.

y(t) = v1 + v2(
1

1 + exp(−m1(t − n1))
− 1

1 + exp(−m2(t − n2))
) (1)

where y(t) represents the fitted EVI value on day t; v1 and v2 denote the annual background
and amplitude of EVI, respectively, while m1 & n1, m2 & n2 are paired parameters that
describe the vegetation growth trends during the green-up and senescence phases.

Figure 4. Using the PlanetScope time series EVI data from pure P. euphratica and pure T. chinensis
pixels, extract the phenology metrics for P. euphratica and T. chinensis using the double logistic curve
fitting method along with the third derivative of the fitted curves: (a) examples of P. euphratica
phenology metrics extraction; (b) examples of T. chinensis phenology metrics extraction. (SOS: start of
spring, MOS: middle of spring, EOS: end of spring, SOF: start of fall, MOF: middle of fall, EOF: end
of fall).

2.3.3. Classification and Performance Assessment

The random forest (RF) model is a widely used and modern nonparametric machine
learning algorithm for supervised classification, utilizing multiple decision trees [38]. Con-
cerning the accuracy results, RF proved to be the best solution [50,51]. This study employed
the RF implementation of Scikit-learn [52]. According to Belgiu and Drăguţ [53] review,
the majority of researchers set the number of decision trees (Ntree) value between 100
and 500 to minimize errors. This study used the default values, and set Ntree to 500 trees,
consistent with Immitzer’s description [54]. RF also measures the importance of input
features. In Scikit-learn, features’ importance is calculated as the Mean Decrease Impurity
(MDI), which can be used for features ranking or selection [23]. We use MDI to evaluate the
importance of the VIs and phenology windows. RF generates an internal, unbiased estimate
of its generalization error using a method called “out-of-bag” (OOB) samples. In remote
sensing image classification, relying solely on the OOB accuracy of RF classifiers may lead
to inflated accuracy due to strong spatial autocorrelation. To address this issue, this study
employs a spatial partitioning strategy with five-fold cross-validation, dividing all samples
into five spatial blocks. Within each fold, all samples within a given block are reserved as
the validation set, whilst the remaining blocks are employed for training. By separating the
training and validation sets into spatially distinct blocks, the potential for overestimation
due to spatial autocorrelation is mitigated. The confusion matrices generated through
cross-validation ultimately yield producer’s accuracy (PA), user’s accuracy (UA), and F1
score, providing a comprehensive and reliable assessment of model performance.
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2.3.4. Selection of Optimal Phenology Windows

In MODIS vegetation phenology monitoring, Zhang et al. [49] defined four key
phenology windows of vegetation dynamics at annual time scales: greenup, maturity,
senescence, and dormancy. The annual growth cycle of P. euphratica and T. chinensis
was divided into the following four key phenology windows: the duration of leaf
expansion (DLE) represents the days from SOS to EOS; the duration of leaf Maturity
(DLM) represents the days from EOS to SOF; the duration of leaf fall (DLF) represents the
days from SOF to EOF; the duration of dormancy period (DDP) represents the days from
EOF to SOS. To ensure the phenology windows encompass the characteristics of both
plant species, key phenology transition points (SOS/EOS/SOF/EOF) were first extracted
for both P. euphratica and T. chinensis. The boundaries of the phenology windows were
then defined as the average dates of the phenology segments for both species, thereby
ensuring the segmentation of phenology periods is not biased towards either species.
We consider all 16 possible combinations based on the four phenology windows and
then compare the model’s accuracy in recognizing P. euphratica and T. chinensis. This
allows us to determine the most suitable phenology windows and their combinations
for discriminating between P. euphratica and T. chinensis.

3. Results
3.1. Vegetation Indices Profiles and Phenology Metrics

Among the four VIs curves, the P. euphratica shows more pronounced greenness than
T. chinensis (Figure 5). Although NDVI and GNDVI perform higher values compared to EVI
and SAVI, saturation is not observed. Following leaf budding in April, P. euphratica enters
a rapid growth phase, indicated by an increase in VIs values. By June, as the growth and
development of P. euphratica progresses, the VIs reach their peak, maintaining a relatively
stable high value thereafter. By October, with the onset of autumn, leaves enter a declining
phase as the foliage gradually loses its green hue. As the leaves begin to fall, VIs rapidly
decrease, entering dormancy by November. The growth rate of T. chinensis greenness
during the growth period is slower than that of P. euphratica, with a longer duration in
the ascending phase of VIs and a shorter period of maintaining relatively high values.
T. chinensis enters the declining phase earlier than P. euphratica.

Figure 6 displays the phenology metrics of P. euphratica and T. chinensis. The differences
in phenology between P. euphratica and T. chinensis are most evident in three metrics. The
DLM window for P. euphratica (96 days) was 44 days longer than that of T. chinensis (52 days).
In contrast, the DLE window for P. euphratica (56 days) was 20 days shorter than that of
T. chinensis (76 days), and the DLF window for P. euphratica (33 days) was 47 days shorter
than that of T. chinensis (80 days). In terms of phenology metrics, T. chinensis exhibits an
earlier SOS compared to P. euphratica by 14 days, the EOS for P. euphratica is 6 days earlier
than T. chinensis. The SOF for P. euphratica is delayed by 38 days compared to T. chinensis.
Lastly, the EOF for P. euphratica occurs 9 days earlier than T. chinensis. The phenological
differences between P. euphratica and T. chinensis can be attributed to species variation and
their geographical distribution. As a deep-rooted deciduous broadleaf tree, P. euphratica
primarily inhabits areas near riverbanks with relatively stable water sources. In contrast,
T. chinensis, a shallow-rooted deciduous shrub, exhibits greater sensitivity to soil moisture
and temperature, responding more rapidly. This adaptability enables T. chinensis to sprout
leaves earlier in spring and enter dormancy sooner in autumn.
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Figure 5. Temporal profiles of vegetation indices for P. euphratica and T. chinensis. (a) NDVI;
(b) GNDVI; (c) EVI; (d) SAVI. (NDVI: Normalized Difference Vegetation Index, GNDVI: Green
Normalized Difference Vegetation Index, EVI: Enhanced Vegetation Index, SAVI: Soil-Adjusted
Vegetation Index). Shaded areas indicate the standard deviation around the fitted curve.

 

Figure 6. The phenology metrics for P. euphratica (a) and T. chinensis (b), extracted from the EVI time
series of pure P. euphratica and pure T. chinensis pixels using PlanetScope imagery (SOS: start of spring,
MOS: middle of spring, EOS: end of spring, SOF: start of fall, MOF: middle of fall, EOF: end of fall).

3.2. Model Training and Feature Importance

The VIs time series features were incorporated into an RF model for training. The
identification results for P. euphratica and T. chinensis are presented in Table 2. The F1
scores for P. euphratica and T. chinensis identification are both >0.89, with improved
results observed for the gap-filled VIs. For the VIs without gap-filling, the F1 scores for
P. euphratica and T. chinensis are 0.8910 and 0.8912, respectively. With gap-filled VIs, there
is a 1–2% point increase in F1 scores for P. euphratica and T. chinensis. The average F1
score reaches 0.9075.

The random forest feature importance analysis indicates that the importance ranking
of VIs is NDVI > SAVI > GNDVI > EVI. Regarding phenology windows, the importance
ranking is DLE > DLM > DLF > DDP (Figure 7a). NDVI’s total MDI was 0.2944, and EVI
has the lowest MDI (0.2152). The feature importance ranking across different phenology
windows shows that features in DLE are the most significant, with an MDI of 0.3384, while
DDP is the least significant, with an MDI of 0.1414. Analysis of the top 100 ranked features
(Figure 7b) showed results similar to the importance ranking of the features. Among all VIs,
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NDVI encompasses the largest quantity, comprising 28 features in total. Across different
phenology windows, DLE has the most features, with a total of 40.

Table 2. Performance of the Random Forest model in discriminating P. euphratica and T. chinensis
using vegetation index time series variables with and without gap-filling.

Metric
P. euphratica T. chinensis Average F1 Score

PA UA F1 Score PA UA F1 Score

VIs (not
filling-gap) 0.9165 0.8662 0.8910 0.9002 0.8824 0.8912 0.8911

VIs (gap-filling) 0.9210 0.8925 0.9071 0.9222 0.8941 0.9079 0.9075
Note: PA: producer’s accuracy; UA: user’s accuracy; VIs: Vegetation Indices include NDVI GNDVI SAVI EVI.

Figure 7. Ranking of importance of vegetation indices and phenology windows: (a) the importance
score for each vegetation index and each phenology window based on the mean decrease in impu-
rity; (b) among the top 100 features ranked by importance score, the count of features attributed
to each vegetation index and each phenology window (VIs are vegetation indices, and PWs are
phenology windows).

3.3. Performance of RF Model in Different Phenology Windows

Figure 8 shows the identification accuracy of P. euphratica and T. chinensis using single
and multiple phenology window classification setups. The average F1 score of single-
phenology window classification setups, DLE is the highest (0.87). For two-phenology
windows setups, DLE-DLM and DLE-DLF had the highest average F1 scores of 0.90. The
highest average F1 score (0.91) among the Three-phenology window classification setups
was reached when DLE, DLM, and DLS were combined.

The DDP phenology window is unsuitable for discriminating P. euphratica and
T. chinensis. The classification accuracy using DDP phenology window is below 75%, and
combining DDP with other phenology windows leads to a decrease in the discrimination
accuracy of P. euphratica and T. chinensis. Among two-phenology windows combinations,
when combined with DDP, accuracy decreases by 1–2 percentage points. However, combin-
ing other phenology windows leads to an increase in discrimination accuracy compared
to individual setups. Specifically, the combination of DLE-DLM achieves the highest ac-
curacy, with 90.35% for P. euphratica and 90.43% for T. chinensis, and the accuracy of the
DLE-DLF combination was 90.29% for P. euphratica and 90.38% for T. chinensis. Among the
three-phenology window combinations, the highest identification accuracy is observed in
DLE-DLM-DLF, reaching 90.96% for P. euphratica and 91.01% for T. chinensis.
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Figure 8. Recognition accuracy of P. euphratica and T. chinensis under different phenology windows
and their combinations: (a) recognition results for single phenology windows; (b) recognition
results for two phenology windows combination; (c) recognition results for three phenology
windows combination; (d) The optimal recognition accuracy among different number phenology
window combinations; (e) comparison of the average recognition accuracy of P. euphratica and
T. chinensis across all phenology windows. (DLE: the duration of leaf expansion, DLM: the duration
of leaf Maturity, DLF: the duration of leaf fall, DDP: the duration of dormancy period, PWs:
phenology windows).

3.4. Classification Performance Between Phenology Asynchrony and Synchrony Windows

The Phenology Asynchrony Window (PAW) between P. euphratica and T. chinensis
is the largest between DLM and DLF. PAW occurs across four time intervals (DOY:
104–118, 174–180, 232–270, 303–312) (Figure S2). Utilizing PAW’s features to discrimi-
nate P. euphratica and T. chinensis, the results indicate that the classification accuracy using
the PAW (88.70%) is slightly 1% point higher than that of the Phenological Synchrony
Window (PSW) (Figure 9). The PAW spans 67 days, while the PSW spans 298 days. Using
PAW resulted in better classification outcomes compared to PSW, while utilizing only about
one-third of the features.
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Figure 9. Recognition accuracy of P. euphratica and T. chinensis during periods of phenological
synchrony and asynchrony between the two species.

3.5. Classification Results

The results of using the RF model with the highest accuracy (Combining features
from the DLE, DLM and DLS phenology windows) to identify P. euphratica and T. chinensis
reveal distinct distribution patterns for each species (Figure 10). P. euphratica was mainly
distributed on both sides of the river and was the dominant species in areas close to the
water. T. chinensis was primarily distributed at the periphery of P. euphratica, further from
the water, indicating that T. chinensis is more drought-tolerant than P. euphratica. Regarding
classification performance, dense P. euphratica and sparse T. chinensis were better identified
(Figure 10c,d). Poorly grown P. euphratica farther from the river was sometimes misclassified
as T. chinensis (Figure 10b). Conversely, better grown T. chinensis closer to the river could be
mistakenly classified as P. euphratica (Figure 10e).

Figure 10. Classification results of P. euphratica and T. chinensis using the optimal phenology combina-
tions: (a) mixed zones of P. euphratica and T. chinensis; (b) sparse areas of P. euphratica; (c) sparse areas
of T. chinensis; (d) dense areas of P. euphratica; (e) dense areas of T. chinensis.

4. Discussion
This study demonstrates that the PS satellite constellation can capture a relatively

comprehensive daily scale time series of earth observations, achieving a resolution capable
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of reaching the canopy scale of P. euphratica and T. chinensis. This capability enables the
discrimination of P. euphratica and T. chinensis in sparse riparian forests within arid regions.
In addition, PS remote sensing imagery has a revisit period of less than 1 day, and highly
dense time-series imagery provides an opportunity to explore the optimal phenological
window for classification. Determining the optimal remote sensing image acquisition
period through the methodology in this paper is valuable for purchasing high-resolution
imagery for future large-scale P. euphratica forest identification, and for selecting the optimal
time for drone data acquisition [38].

4.1. Optimal Phenology Windows for Discriminating P. euphratica and T. chinensis

When using remote sensing images to identify tree species, the best time window is
usually in the season when the characteristics of trees change most significantly, or in
the season when the characteristics of different tree species are most obvious [55]. Trees
usually germinate and leaf out in spring, and shed leaves in autumn. Each tree species
exhibits a different trajectory of greening and defoliation during this period, which is
often an effective window for identifying tree species [56]. In summer, the VIs for each
tree species remain relatively stable. However, if substantial differences in greenness
persist among tree species, favorable classification outcomes can still be achieved [57].
Our research indicates that, in discriminating between P. euphratica and T. chinensis,
aside from the DDP window, the overall accuracy of identification for DLE, DLM, and
DLF windows exceeds 85%, with the highest classification accuracy found in the DLE
window. Li et al. [32] discovered that the optimal time window for distinguishing
between P. euphratica and T. chinensis based on Sentinel-2 imagery’s spectral differences
is during April and May, which falls within the DLE window. However, the F1-score of
P. euphratica identified by Sentinel-2 was 0.77, our utilization of more temporally dense
and higher-resolution PS imagery achieved an F1-score of 0.87, resulting in improved
performance. The F1 score for identifying P. euphratica was 0.86 in both the DLM and DLF
windows. Despite their similar precision, the DLM window spans 96 days, whereas the
DLF window covers only 33 days. In terms of identification efficiency, DLF outperforms
DLM. Fang et al. [58] also found images obtained during the autumn aging peak were
the most valuable variables for tree classification. In addition, relevant research also
shows that combining spring and autumn images can enhance the ability to distinguish
tree species [59]. Therefore, this study suggests that the most valuable time windows to
identify P. euphratica are DLE and DLF.

4.2. Phenology Asynchrony Windows as Critical Time Windows for Tree Species Discrimination

Differences in phenology between species are greater than differences in phenology
between individuals of the same species [60]. In the time window of tree species phe-
nological differences, trees exhibit different phenological behaviors, providing potential
best dates for tree species mapping [61]. Li et al. [28] based on the classification results
of different phenological stages, they concluded that the phenological difference period
is the best time window for mangrove mapping. The results of this study also show that
the characteristics of the phenological difference stages of P. euphratica and T. chinensis are
more valuable in classification. Although the phenological difference stage only accounts
for about one-quarter of the days throughout the year, the recognition accuracy is 1%
higher than that of the same phenological stage and only 2% lower than that of the whole
phenological stage. Separability of P. euphratica and T. chinensis on phenological trajectory
is the decisive factor in the successful distinction between these two tree species using time
series remote sensing images.
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4.3. Future Perspectives and Uncertainty Analysis

The classification results of this study also found that P. euphratica and T. chinensis
have different living habits. P. euphratica is mainly close to both sides of the river and
close to water sources. T. chinensis is distributed around P. euphratica, far away from
water sources. Previous studies have also shown that P. euphratica is the dominant
species in places with abundant water sources [62]. Based on this discovery, subsequent
research can incorporate geographical environment characteristics into the classification
of P. euphratica and T. chinensis. Previous studies have shown that in specific areas, incor-
porating geographical environment variables can improve the accuracy of tree species
classification [26,63]. Geographical and environmental factors are even more important
than texture characteristics in some tree species classifications [64]. Furthermore, to
ensure consistent time series density of variables within each phenological window,
this study only used VIs features for classification. This decision was made because
the technology to reconstruct and fill missing values in VIs is mature. However, after
knowing the optimal classification time window, if only pursue higher classification
accuracy, integrating spectral features into the classification model will help improve
classification accuracy. In addition, because PlanetScope is a commercial satellite, there
is limited access to image data for education and research programs. Only data from
2022 was used in this study, which leads to some uncertainty in the results. However,
it provides a reference for innovative applications of high-resolution remote sensing
imagery for daily observations, which will provide more comprehensive analyses in the
future when such satellites become freely available. The workflow of this study involves
multiple processing steps; however, perturbation analysis (by introducing ±5% random
noise into the input time series) indicates that the derived phenological features exhibit
robustness to minor uncertainties in input data and curve fitting. The associated impact
on classification accuracy is minimal (with an F1 score reduction of <1%), demonstrating
the robustness of our framework. Nevertheless, we acknowledge that the reliability of
the workflow could be further elucidated through more formal uncertainty propagation
methods, which will be explored in future work.

5. Conclusions
In this investigation, we utilized daily scale 3 m resolution earth observation imagery

obtained from the PS satellite constellation to study the optimal phenology windows for
discriminating P. euphratica and T. chinensis. The primary conclusions can be summarized
as follows: except for the DDP window, the F1-scores for identifying P. euphratica and
T. chinensis exceed 0.85. Among individual phenology windows, the DLE window shows
the highest overall accuracy in identifying P. euphratica and T. chinensis. Among combi-
nations of two phenology windows, the interpretation of the DLE-DLM and DLE-DLF
combination yields the highest identification accuracy. Among combinations of three
phenology windows, the DLE-DLM-DLF combination exhibits the highest identification
accuracy. Including features from the DDP phenology window reduces accuracy in identi-
fying P. euphratica and T. chinensis. Additionally, we found that features within the PAW
between P. euphratica and T. chinensis are more valuable than those within the PSW. The
main contribution of this study lies in providing an approach for exploring at which phe-
nology stage remote sensing imagery can more efficiently and accurately distinguish tree
species. Moreover, we also demonstrated the greater value of features in PAW for tree
species classification. This provides insights for future large-scale tree mapping by selecting
optimal image acquisition times and the most useful images.
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