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Abstract: To address the ecological challenges arising from pure forest plantations and the wood
supply–demand imbalance, implementing sustainable forest management is paramount. Accordingly,
we studied crop trees at three densities (100, 150, and 200 N/ha) in a subtropical Pinus massoniana
plantation. Our study revealed that the dominant phyla and genera within the fungal community
remained largely consistent, with Basidiomycota and Ascomycota occupying prominent positions.
Notably, the β diversity of the fungal community exhibited significant changes. Ectomycorrhizal
and saprophytic fungi emerged as crucial functional guilds, and crop-tree thinning contributed to
increased complexity within the fungal network, with a prevalence of positive rather than negative
correlations among genera. The significant roles played by Camphor plants and ferns were evident in
the fungal networks. Additionally, under crop-tree thinning, plant diversity experienced a significant
boost, fostering interactions with the fungal community. Herb diversity played a vital role in the
fungal community, affecting it either directly or indirectly, by altering the content of total phosphorus
or organic matter in the soil. This study underscores the relationship between undergrowth plants
and soil fungal communities, offering a scientific basis for evaluating the sustainability of restoring
inefficient forest-plantation ecosystems.

Keywords: crop-tree thinning; fungal community; co-occurrence network; understory plant

1. Introduction

The rapid development of forest plantations has partly satisfied the timber needs of
humans and the market. However, due to the lack of scientific theoretical guidance and
practical sustainable management technology over an extended period, it has deviated
from the inherent laws governing forest survival and development [1]. Consequently, a
contradiction arises as the area of forest plantations continues to expand, while their quality
significantly declines [2]. Thinning, as a common forest-management measure, proves
effective in maintaining the ecological service function of protected forests [3] and enhanc-
ing the soil quality and ecosystem function of inefficient forests [4]. Crop-tree thinning, a
specialized method, achieves this by increasing the proportion of high-quality trees (crop
trees) while removing similar-sized trees (e.g., low-forked and undesirable forms) that
have limited economic value and lack a competitive position [5]. Although many studies
have explored the impact of crop-tree thinning on stand growth structure [6] and plant
diversity [7] in forest plantations, they often overlook the interaction of the aboveground
vegetation community and the underground microbial community. Understanding this
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relationship is crucial in comprehending the transformation of inefficient plantations and
the consequent effects on ecosystem restoration through crop-tree thinning.

The soil microbial community plays a crucial role in supporting ecosystem services
and human well-being [8]. It fosters ecosystem versatility by facilitating processes like litter
decomposition and organic mineralization, which involve the transfer of matter and energy
between aboveground and underground communities [9]. The soil microbial community
is also important for soil mineralization [10], especially undisturbed soil. Fungi, as a
primary component of soil microbiota, are instrumental in providing diverse ecological
functions [11]. They establish mycorrhizal associations, actively contribute to soil formation
and the development of plant communities, and regulate interactions between soil processes
and plants [12]. Moreover, fungi enhance phosphorus acquisition, mitigating the limitations
caused by acidification, and act as the primary agents in nutrient cycling [13]. Hence,
gaining insights into how forest thinning influences the structure of fungal communities
can offer valuable knowledge about the ecological impacts of these management practices
and their effects on the overall health and functionality of forest ecosystems.

Within the ecological network, soil microorganisms engage in direct or indirect inter-
actions, creating complex symbiotic networks and robust coexisting ecological clusters [14].
Highly connected taxa (unrelated hubs) in this network are expected to support a higher
level of ecosystem functions compared to those with fewer connections [15]. Microbial-
network analysis enables us to gain an the understanding of species interactions, identify
key taxa, and assess their responses to environmental factors [16]. For instance, a study
on the seasonal variation in soil fungal communities and symbiotic networks in a cold
temperate zone revealed that the nine module nodes in the co-occurrence network were as-
comycetes, and the key fungal groups exhibited niche differentiation between seasons [17].
Other research has indicated that drought promotes instability in soil bacterial rather than
fungal symbiotic networks [18]. The characteristics of the ecological network of fungal
communities have a profound impact on the response of the community to environmental
changes. The existence and division of negative interactions among populations contribute
to the stability of fungal networks under disturbance [19,20]. Therefore, performing net-
work analyses of soil fungal communities after crop-tree thinning can unveil symbiotic or
potential interactions within these communities and provide information on their responses
to and recovery from environmental disturbances.

Forests with abundant vegetation can enhance both aboveground and underground
litter productivity, leading to an increase in litter diversity. This, in turn, promotes the
proliferation of available food resources for soil microorganisms, thus expanding their
niche [21]. However, some studies have highlighted that, irrespective of the tree species,
litter, roots, and nitrogen treatments, the ratio of soil carbon to nitrogen remains the most
critical factor affecting soil microbial communities [22]. Thinning processes in forests create
gaps that stimulate the growth of lower vegetation and rare fungal communities [23].
Furthermore, research indicates that plant interactions in mixed forests foster increased
diversity in soil bacteria and fungi, leading to enhanced network stability as well as
specialized key bacterial and fungal groups, and also improve the availability of soil
nutrients [24]. However, existing studies primarily focus on population-based ecological
indicators such as plant diversity or biomass. They have not fully explored the specific
roles of individual plant species in shaping the soil microbial community or the interaction
patterns between aboveground and underground communities.

Pinus massoniana plantations occupy an important position in China’s subtropical
forests [25]. To address the decline in ecological function resulting from reduced soil fertility
and diversity caused by artificial monoculture, and to meet the demand for large-diameter
wood, this study employed crop-tree thinning in a P. massoniana plantation. The main
purpose of this study is to explore whether and how crop-tree thinning affects soil fungal
communities in plantations with different crop-tree densities. Our first hypothesis is that
crop-tree thinning will increase the complexity of the network of fungal communities due to
the enhancement in environmental heterogeneity. The second hypothesis is that the fungal
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groups will be subject to regulation by both the aboveground vegetation communities and
soil conditions.

2. Materials and Methods
2.1. Study Site and Sampling Design

This study was carried out on Tianchi Forest Farm (30◦20′29′′ N, 106◦47′30 E), located
in Huaying City, Sichuan Province, China. This region has a subtropical humid monsoon
climate, characterized by mild weather, abundant rainfall, uneven precipitation, and sig-
nificant temperature variations. For many years, the average temperature has remained
around 17.2 ◦C, and the annual precipitation is plentiful, with an average of 1087.84 mm.
The maximum recorded precipitation is 1441.7 mm, while the minimum is 854.9 mm. The
elevation of the study area ranges from 450 to 555 m a.s.l, with an average slope of 27–34◦.
Before crop-tree thinning, the stand density was approximately 1257 N/ha. The total area
of the studied plantation is 0.8004 ha. The soil in the study area is classified as Nitisol,
characterized by low fertility. The P. massoniana plantation comprises a single tree layer; the
shrub layer is primarily composed of Mallotus barbatus (Wall.), Quercus serrata Thunb, and
Cinnamomum camphora; and the herb layer is predominantly covered with ferns [7].

After carrying out a forest farm survey, we selected 12 permanent plots, each with an
area of 667 m2 and in a 33-year-old P. massoniana plantation. These plots shared uniform site
conditions, stand ages, and management history, making them ideal candidates for crop-
tree thinning. Nine of these plots were used for the crop-tree thinning treatment, which was
begun in January 2015. Six, nine, and twelve P. massoniana were selected as the crop trees
in each plot, labeled WA, WB, and WC, respectively (Figure 1), and each treatment was
repeated three times. Concurrently, we set up three control plots (WCK) devoid of crop-tree
thinning to serve as reference points for comparison. We employed specific criteria to
identify suitable crop trees, selecting trees that closely matched the average diameter at
Breast height (DBH) of the stand, had straight trunks, exhibited vigorous growth, and
were devoid of pests and diseases. The selected trees were located within the primary
forest [5]. Any tree that impeded the growth of the crop trees was labeled an interference
tree. Interference trees were identified as those whose crowns touched the surrounding
dominant or sub-dominant trees at a certain distance, competing with the crop trees for
sunlight and upward-growth space. Boundary trees were those on the boundary of the
sample plot. After the interference trees were cut down, trees on the plot that were not
considered crop trees or boundary trees were labeled general trees. To initiate the thinning
process, we felled interfering trees on the three plots of different crop-tree densities. The
resultant stand density after crop-tree thinning averaged around 1000 N/ha, but the crop-
tree densities were different, at 100 N/ha, 150 N/ha, and 200 N/ha, respectively. An
overview of the sample plot is shown in Table 1.

Table 1. General description of each sample plot.

Plot
Number of
Crop Trees
(N/667 m2)

Number of
Crop Trees

(N/ha)

Stand
Density

(trees/ha)
DBH (cm) Average

Height (m)
Altitude

(m) Slope (◦) Slope Aspect

WA 6 100 1000 32.7 ± 6.5 14.5 ± 1.8 507 29 South by west
WB 9 150 1014 33.4 ± 4.5 12.9 ± 1.1 529 32 North by west
WC 12 200 1005 27.6 ± 5.2 13.0 ± 1.3 508 34 North by west

WCK 0 0 1252 26.1 ± 1.4 12.3 ± 0.2 479 27 South by west
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impurities, such as stones and residual plant roots. Following this, the soil-composite sam-
ples were divided into two parts for further analysis. The first part was placed in a sterile 
centrifuge tube for soil fungal-community (ITS) sequencing, and the second was used to 
determine the chemical properties of the soil. The soil bulk density (SBD) was assessed 
using the cutting-ring method [27]. 

Five small 5 m × 5 m squares were systematically arranged within each plot to serve 
as shrub squares. These squares were placed in the four corners and at the center of each 
plot. Additionally, ten 1 m × 1 m squares were set up in each plot as herb squares. A total 
of 60 shrub squares and 120 herb squares were established, allowing for a comprehensive 
study of plant species. For each shrub and herb quadrat, meticulous records were kept, 
including the species name, plant number per cluster, height, coverage, and crown width 
of each plant. To ensure accuracy, authoritative references such as the National Plant Spec-
imen Resource Center (http://www.cvh.ac.cn, (accessed on 10th December 2022)) and 
“Flora Reipublicae Popularis Sinicae” [23] were consulted for plant identification. Then, 
we conducted a statistical analysis on the diversity index and importance value of shrubs 
and herbs. Based on the data collected during the sample plot survey, we calculated the 
importance value (IV) of the plants observed in each plot. Subsequently, we used this in-
formation to determine plant diversity, based on the richness (R), Simpson (D), Shannon–
Wiener (H), and Pielou (J) indices [28], providing valuable insights into the ecological sig-
nificance of the plant species within the study area. 
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Figure 1. Schematic diagram of sample plot. (a) Sample plots without crop-tree thinning, (b) a sample
plot of 6 crop trees, (c) a sample plot of 9 crop trees, and (d) a sample plot of 12 crop trees.

2.2. Soil Sampling and Survey of Vegetation

In November 2022, after removing the litter, we utilized a soil drill with a diameter
of 5 cm to collect random soil samples from the topsoil layer (0–10 cm depth) around five
crop trees within each plot, maintaining a distance of 1.5–2.5 m from the tree trunk [26].
The collected soil samples underwent artificial uniform mixing and the elimination of any
impurities, such as stones and residual plant roots. Following this, the soil-composite
samples were divided into two parts for further analysis. The first part was placed in a
sterile centrifuge tube for soil fungal-community (ITS) sequencing, and the second was
used to determine the chemical properties of the soil. The soil bulk density (SBD) was
assessed using the cutting-ring method [27].

Five small 5 m × 5 m squares were systematically arranged within each plot to serve
as shrub squares. These squares were placed in the four corners and at the center of each
plot. Additionally, ten 1 m × 1 m squares were set up in each plot as herb squares. A total of
60 shrub squares and 120 herb squares were established, allowing for a comprehensive
study of plant species. For each shrub and herb quadrat, meticulous records were kept,
including the species name, plant number per cluster, height, coverage, and crown width
of each plant. To ensure accuracy, authoritative references such as the National Plant
Specimen Resource Center (http://www.cvh.ac.cn, (accessed on 10th December 2022)) and
“Flora Reipublicae Popularis Sinicae” [23] were consulted for plant identification. Then,
we conducted a statistical analysis on the diversity index and importance value of shrubs
and herbs. Based on the data collected during the sample plot survey, we calculated the
importance value (IV) of the plants observed in each plot. Subsequently, we used this
information to determine plant diversity, based on the richness (R), Simpson (D), Shannon–
Wiener (H), and Pielou (J) indices [28], providing valuable insights into the ecological
significance of the plant species within the study area.

IV = (Relative density + Relative frequency + Relative coverage)/3 (1)

http://www.cvh.ac.cn
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2.3. Analysis of Soil Physical and Chemical Properties

Total nitrogen (TN) was measured using the semi-micro Kjeldahl method [29]; total
phosphorus (TP) was determined using H2SO4–HClO4 digestion and HCl–H2SO4 extrac-
tion and analyzed using the molybdenum blue method; and total potassium (TK) was
determined using flame photometry. In order to determine NO3

− and NH4
+, 5 g of fresh

soil was added to 25 mL of a 2 mol L−1 KCl solution. After shaking for 45 min, the ex-
tractant was filtered through a Whatman 42 filter [24]. Soil organic matter (SOM) was
determined through potassium dichromate oxidation colorimetry. Water and soil were
mixed in a ratio of 1:2.5 and left to stand for 1 h, after which we measured the soil pH with
an electronic pH meter.

2.4. DNA Extraction, PCR Amplification, and ITS Sequencing

Total microbial genomic DNA was extracted from the soil samples using an E.Z.N.A.®

soil DNA Kit (Omega Bio-tek, Norcross, GA, USA) according to manufacturer’s instruc-
tions. The quality and concentration of DNA were determined using 1.0% agarose gel elec-
trophoresis and a NanoDrop® ND-2000 spectrophotometer (Thermo Scientific, Waltham,
MA, USA), and the samples were kept at −80 ◦C until further use. ITSs (internal tran-
scribed spacers) were amplified using ITS3F (5′-GCATCGATGAAGAACGCAGC) and
ITS4R, (5′-TCCTCCGCTTATTGATATGC) via an ABI GeneAmp® 9700 PCR thermocycler
(ABI, Waltham, MA, USA). The PCR amplification cycling conditions were as follows:
initial denaturation at 95 ◦C for 3 min, followed by 27 cycles of denaturing at 95 ◦C for 30 s,
annealing at 55 ◦C for 30 s, extension at 72 ◦C for 45 s, and a single extension at 72 ◦C for
10 min, ending at 4 ◦C.

The PCR product was extracted from 2% agarose gel, purified using the AxyPrep
DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA) according to the
manufacturer’s instructions, and quantified using a Quantus™ Fluorometer (Promega,
Madison, WI, USA). The product was then paired-end sequenced on an Illumina MiSeq
platform (Illumina, San Diego, CA, USA) according to the standard protocol of Majorbio Bio-
Pharm Technology Co., Ltd. (Shanghai, China). The raw sequencing reads were deposited
in the NCBI Sequence Read Archive (SRA) database (Accession number: PRJNA997115).
The raw FASTQ files were de-multiplexed using an in-house Perl script, and then quality-
filtered using fastq version 0.19.6 and merged using FLASH version 1.2.7 [30]. Then,
the optimized sequences were clustered into operational taxonomic units (OTUs) with
97% sequence similarity using UPARSE 7.1 [31]. The most abundant sequence for each
OTU was selected as a representative sequence. The taxonomy of each ITS sequence was
analyzed using the Unite database (Release 8.0 http://unite.ut.ee/index.php, (accessed on
2 December 2022)). For the functional classification of fungi, we used the Fungi Functional
Guild database [32].

2.5. Statistical Analyses

A one-way ANOVA was used to assess the differences in soil physicochemical prop-
erties, plant diversity, and the relative abundance of major fungal phyla and genera in
different treatments. The similarity among the fungal communities in different samples was
determined via principal coordinate analysis (PCoA) based on Bray–Curtis dissimilarity
using the Vegan v2.5-3 package, and the significance was tested through an analysis of
similarities (ANOSIM) in R (ver.4.3.1) [33]. We utilized Networkx (version 1.11) [27] to
conduct a co-occurrence analysis of fungal communities, which was based on phylum-level
distinctions in various treatments. The Benjamini–Hochberg method was employed to
perform cut-off filtering of correlated data, with the threshold of the absolute correlation
coefficient set at 0.5 and a significance level of p < 0.05 [34]. We conducted a single-factor
correlation network analysis among the soil fungal communities using Spearman’s rank
correlation for fungi in the top 50 most abundant genera, and Gephi v0.10.1 was used for
visualization. Two-factor correlation network analysis was used to detect the Spearman
correlations between fungal communities in the top 100 most abundant genera and the

http://unite.ut.ee/index.php
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plants that appeared in each plot, and Cytoscape v3.10.0 was used for visualization. Topo-
logical properties encompass metrics such as the positive or negative correlation count, the
number of edges and nodes, degree, closeness centrality, and betweenness centrality [35].

We developed an a priori model using existing knowledge concerning the interactions
among plant-community composition, plant diversity, soil characteristics, and fungal-
community composition [36]. According to the hypothetical causality, a structural equation
model (SEM) in Amos 26.0 software was used to examine the direct and indirect effects
of shrub-layer plant diversity, herb-layer plant composition, and soil factors on fungal-
community composition. Using SPSS (27.0) to normalize the relative abundance of soil
fungal-community composition (phylum level), the four diversity indices of the herb
layer, and the community composition of the shrub layer (the importance value of each
shrub), we conducted a principal component analysis (PCA). The first component PC1
of each explanatory group was used as an input for the SEM analysis. The suitability
of the model was evaluated using various testing methods, such as chi-square, P-value
evaluation, comparative goodness of fit (CFI), goodness of fit (GFI), and approximation
root mean square error (RMSEM). Based on the results of the tests, less predictive measures,
non-significant indicators, and non-significant paths were excluded, retaining the most
informative variables. The final model that best fit the data was obtained by progressively
removing unimportant components from the model.

3. Results
3.1. Response of Understory Plant Diversity and Soil Physicochemical Properties to
Crop-Tree Thinning

Compared with WCK, the SBD in the WA and WB plots decreased significantly
(Table S1), with the TP and NH4

+ of the WB plot decreasing significantly. The SOM in
the WA plot was significantly higher than that of WCK. Crop-tree thinning significantly
increased NO3

− compared with WCK, increasing in WA, WB, and WC by 19.68%, 4.47%,
and 17.54%, respectively. Crop-tree thinning had no significant effect on TK, pH, and TN.

As the crop-tree density increased, R1, D1, and H1 all showed a significant increasing
trend (Table 2). For J1, only WC was significantly different from the control. In terms of
herbaceous layer diversity, each crop-tree-thinning treatment significantly increased R2,
D2, and H2 compared with the control. In terms of J2, the herbaceous layer diversity in
the WA plot was significantly lower than in the control plot, and other crop-tree-thinning
treatments had no significant effect on J2. The species of the herb layer in WC were the
most abundant in all treatments. Under crop-tree thinning, the dominant species in the
shrub layer and herb layer changed noticeably, the composition of vegetation was more
abundant, and we noted many plants that could adapt to different environments (Table S2).

Table 2. Changes in understory plant diversity.

Plot R1 D1 H1 J1 R2 D2 H2 J2

WA 22.67 ± 0.58 c 0.91 ± 0.002 b 1.17 ± 0.01 c 0.86 ± 0.01 b 14.00 ± 1.00 b 0.83 ± 0.02 c 0.91 ± 0.05 c 0.80 ± 0.02 b
WB 30.00 ± 1.73 b 0.95 ± 0.001 a 1.34 ± 0.03 b 0.90 ± 0.04 ab 16.33 ± 0.58 a 0.92 ± 0.002 a 1.14 ± 0.04 a 0.94 ± 0.02 a
WC 32.67 ± 1.53 a 0.96 ± 0.003 a 1.42 ± 0.03 a 0.94 ± 0.01 a 17.33 ± 0.58 a 0.91 ± 0.01 a 1.14 ± 0.02 a 0.92 ± 0.01 a

WCK 18.67 ± 1.53 d 0.91 ± 0.01 b 1.12 ± 0.03 c 0.89 ± 0.03 b 12.33 ± 0.58 c 0.89 ± 0.01 b 1.01 ± 0.03 b 0.93 ± 0.01 a

All data are presented as means ± SD (n = 3). Different lowercase letters in the same column indicate statistically
significant differences under different treatments (p < 0.05). R1, the richness index of the shrub layer; R2, the
richness index of the herb layer; D1, the Simpson index of the shrub layer; D2, the Simpson index of the herb
layer; H1, the Shannon–Wiener index of the shrub layer; H2, the Shannon–Wiener index of the herb layer; J1, the
Pielou index of the shrub layer; and J2, the Pielou index of the herb layer.

3.2. Soil Fungal-Community Composition, Diversity, and Functional Groups

At the genus level, the soil fungal communities comprised Saitozyma and Russula (Fig-
ure 2a). Crop-tree thinning had no significant effect on the dominant genera, but resulted
in significant differences for other rare fungi (such as Colletotrichum, Rhexodenticula, etc.)
(Figure S1a). The fungal communities were dominated by Basidiomycota and Ascomycota
(Figure 2b). Crop-tree thinning significantly increased the proportion of Basidiomycota but
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significantly decreased the proportion of Ascomycota, Mucoromycota, and Entorrhizomy-
cota (Figure S1b). The first two axes together explain 65.40% of the total variance in the
fungal community (Figure 3). The fungal communities differed significantly between the
control and crop-tree-thinning groups (p = 0.002), and crop-tree thinning had no significant
effect on the alpha diversity of the soil fungal community (Table S3). Ectomycorrhizal,
an undefined saprotroph and fungal parasite, represented most of the observed fungal
functional groups (more than 60%). The relative abundance of ectomycorrhizal in WB
and WC was higher than that in the other treatment plots, and the relative abundance of
undefined saprotroph was the highest in the WA-treatment plot (Figure 4).
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3.3. Network of Soil Fungal Community

At the phylum level of the fungal community, the importance and tight connectivity of
the whole network in the crop-tree-thinning plots in the whole network were significantly
higher than the control (Table S4; Figure S2). The WA plot had the highest degree centrality,
closeness centrality, and betweenness centrality, and the WB and WC plots occupied the
same position in the network. The important nodes of the fungal community shown in the
collinear network were consistent with the composition of the dominant bacteria. Even
some rare fungi, such as Basidiobolomycota, Calcarisporiellomycota, and Kickxellomycota,
demonstrated the same importance as the dominant fungi in this network.

We conducted a network analysis of the top 50 fungi in terms of total abundance at
the genus level, of which 48 fungi had p values <0.05, and we observed more positive
correlations (57.81%) than negative correlations (42.19%) (Figure 5). Sagenomella played a
central role in the network (high degree), but it was not the dominant genus in the fungal
community, and its relative abundance was low. However, Saitozyma and Russula, which
ranked in the top two in terms of relative abundance, only had three-degree and one-degree
connectivity, respectively, in the fungal-network structure (Table S5).
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Figure 5. Co-occurrence networks at the genus level of the soil fungal communities. Red lines
indicate positive correlations, and blue lines indicate negative correlations. The blue nodes repre-
sent the fungal genera. The number corresponding to the taxa name: 1: Saitozyma; 2: Russula;
3: Unclassified_o__Chaetothyria; 4: Mortierella; 5: Clavulina; 6: Penicillium; 7: Unclassi-
fied_f__Thelephoraceae; 8: Unclassified_p__Rozellomycota; 9: Unclassified_k__Fungi; 10: Umbelopsis;
11: Tomentella; 12: Unclassified_p__Ascomycota; 13: Trichoderma; 14: Unclassified_c__Eurotiomycetes;
15: Geminibasidium; 16: Bifiguratus; 17: Unclassified_o__Venturiales; 18: Unclassified_o__Helotiales;
19: Unclassified_o__GS11; 20: Helvellosebacina; 21: Talaromyces; 22: Inocybe; 23: Un-
classified_o__Sordariales; 24: Rhizopogon; 25: Oidiodendron; 26: Metarhizium; 27: Unclassi-
fied_f__Herpotrichiellaceae; 28: Unclassified_c__Agaricomycetes; 29: Unclassified_c__Dothideomycetes;
30: Tolypocladium; 31: Sagenomella; 32: Unclassified_f__Agaricaceae; 33: Unclassified_o__Leucosporidiales;
34: Chaetosphaeria; 35: Trichophaea; 36: Amanita; 37: Tylospora; 38: Unclassified_f__Hyaloscyphaceae;
39: Scytalidium; 40: Penicillifer; 41: Cladophialophora; 42: Paraboeremia; 43: Chloridium; 44: Unclassified_o__GS23;
45: Unclassified_f__Ceratobasidiaceae; 46: Membranomyces; 47: Fusicolla; and 48: Pseudopithomyces.

3.4. Relationship between Understory Vegetation, Soil Physicochemical Properties, and
Fungal Communities

Understory vegetation regulated the composition of fungi. As a key fungal genus
(degree = 7) in the network, Trichophaea was negatively correlated with B, BD, and BG, but
positively correlated with AO, A, and M (Figure S3). U and BC (degree = 11) and AN and
BB (degree = 10), which were found to be key plants and dominant species (Table S6) in the
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plant community, are related to multiple fungal genera and regulate multiple functional
communities, such as ectomycorrhizal and endophytic mycorrhiza.

In total, 77% of the variation in soil fungal-community composition can be explained by
plant and soil properties (Figure 6). The total effect of SOM was highest on the composition
of the soil fungal community, and they had a positive correlation. Herb diversity had the
highest direct and indirect effect on the composition of the soil fungal community (Figure 7).
Herb diversity can not only directly affect the composition of the fungal community, but
also indirectly affect it by significantly altering the TP content.
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Figure 6. Structural equation model of fungal composition, understory vegetation, and soil factors.
Solid arrows indicate significant effects (p < 0.05). The arrow width corresponds directly to the
standardized path coefficient. Numbers adjacent to arrows are standardized path coefficients and
indicative of the effect size of the relationship. Solid lines represent positive effects, while dotted lines
represent negative effects. R2 values associated with response variables indicate the proportion of
explained variation by relationships with other variables. Shrub community composition: important
values of all plants in the shrub layer; herb diversity; richness index; Simpson index; Shannon–Wiener
index; and Pielou index of herb layer; TP: the total phosphorus; and SOM: soil organic matter.
*** p < 0.001; ** p < 0.01; * p < 0.05.
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4. Discussion
4.1. Responses of Understory Plant Diversity to Crop-Tree Thinning

Understory vegetation harbors a vast array of plant diversity, making it a critical
component of forest ecosystems with pivotal roles in functions and services like forest
productivity and nutrient cycling [37]. In this study, after crop-tree thinning, the plant di-
versity in the forest understory was significantly improved. The primary factor influencing
understory plant diversity is light availability [38]. In dense canopy areas, limited light re-
sources and restricted space curtail the growth and reproduction of many plant species [39].
However, crop-tree thinning effectively increases photosynthetic active radiation within the
forest, extends the duration of light exposure, and expands the plant-growth space. This,
in turn, promotes seed growth and reproduction, and enhances plant regeneration within
the forest. As a result, the environmental heterogeneity and resource allocation fostered
by crop-tree thinning impact the vegetation-renewal strategy, leading to increased plant
diversity and improved plant composition [40]. The act of felling trees directly interferes
with the understory vegetation and creates soil disturbance, which provides important
micro-sites for plant establishment, thus improving the diversity of the understory vege-
tation [41]. Crop-tree thinning significantly enhances the richness index of the herb layer,
indicating an improvement in herbaceous plant diversity and the overall habitat of the plant
community. The herb layer is more sensitive to environmental changes and can quickly
reflect the impact of transformations [42]. In a P. massoniana plantation, ferns dominate the
herb layer’s plant composition. The inner canopy of P. massoniana likely provides more
favorable abiotic growth conditions for ferns, with higher soil accumulation in the branches
and balanced climatic conditions [41]. Ferns are known for their strong photosynthetic
capabilities, significantly influencing nutrient cycling and plant-community succession in
the soil ecosystem [43].

4.2. Responses of Soil Fungal-Community Structure to Crop-Tree Thinning

The functional and taxonomic diversity of fungi is important for ensuring the growth
and resilience of plantations [44]. The thinning management of different intensities will
affect tree growth, and change soil nutrient availability, and thus affect the composition and
structure of soil fungal communities [45]. In our study, Basidiomycetes and Ascomycetes
emerged as the dominant fungi across all plots, and our results are consistent with most
studies [46,47]. Notably, compared to the control, the WB treatment resulted in a significant
decrease in the relative abundance of Basidiomycetes but a simultaneous increase in the
relative abundance of Ascomycetes. This shift might be attributed to the preference of
Ascomycetes for environments abundant in unstable carbon and featuring a fast net-
carbon-mineralization rate, as they mainly constitute saprophytic fungi [48]. At the genus
level, crop-tree thinning led to a reduction in the relative abundance of Russula but an
increase in the relative abundance of Clavulina. Both belong to ectomycorrhizal (ECM)
fungi; however, their responses to habitat heterogeneity were not consistent, potentially
due to their distinct adaptation strategies [49]. In our study, crop-tree thinning significantly
influenced the β diversity of the fungal community but had no significant effect on its α
diversity. This suggests that the fungal-community composition demonstrated a certain
degree of resilience to environmental changes. However, the notable differentiation in β

diversity indicates that crop-tree thinning significantly impacted the habitat environment
of fungi, resulting in variations in fungal species.

Under crop-tree thinning, the change in the stand environment brought about by the
accelerated growth of trees is bound to have an impact on the fungal community. At the
same time, vegetation with rich species diversity in the forest understory will produce
more complex communication between the root system and the tree-root system [50].
Determining the changes in the fungal community under disturbance will help to clarify the
underground ecological process of plantation transformation. After fire disturbance, it was
found that the soil fungal communities along a time series were mainly saprophytic fungi
and ectomycorrhizal fungi [51]. Additionally, after thinning interference, with an increase
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in organic-matter removal, saprophytic fungi increased and ectomycorrhizal decreased [52].
Generalists within the saprophytic and ECM communities possess widespread transmission
abilities [53], granting them a dominant position within fungal functional communities. In
the context of forest management, ectomycorrhizal fungi hold particular importance [54],
and our study observed that WB and WC treatments increased their relative abundance; this
is essential, because these fungi form reciprocal symbiotic relationships with P. massoniana,
a key organism involved in plant nutrition and the carbon cycle [54]. Our findings also
revealed that saprophytic fungi constituted the majority of fungal functional groups. The
differences in nutrient composition between plant species and their litter make them
specific substrates for various types of saprophytic fungi, thus promoting the colonization
of saprophytic fungal communities and their participation in decomposition processes [55].

The correlation among fungal groups holds significant importance in predicting how
fungal communities respond to environmental changes [17]. Fungal communities consist
of intricate combinations of highly interactive taxa, and the complexity of their symbiotic
networks determines their ability to withstand environmental impacts [56]. Topological
characteristics, such as degree centrality, closeness centrality, and betweenness centrality,
serve as key indicators of microbial-community correlations [57]. Our findings revealed that
all crop-tree-thinning plots exhibited a higher degree of centrality, closeness centrality, and
betweenness centrality compared to the control plot, which validates the first hypothesis
of our study. Notably, the network center coefficient of the WA treatment was the highest,
indicating an increased complexity of the fungal-community symbiotic network following
crop-tree thinning. This could be attributed to the felling of interfering trees, expanding
the niche breadth of the fungal community habitat, enhancing woodland space and light
radiation within the forest, and enriching the nutrient content in the soil environment [7].
Ascomycetes played a predominant role in the network, and the correlation among genera
belonging to ascomycetes was positive, consistent with the findings of Faust and Raes [58].
Furthermore, the positive correlation among fungal communities was stronger than the
negative correlation, indicating greater cooperation among different fungal groups in the
soil ecosystem.

4.3. Relationships between Plants, Soil Factors, and Fungal Community

The enriched resources in the forest following crop-tree thinning favor the selected
population and foster numerous interactions among fungal nodes, indicating potential
symbiotic patterns. The interaction between the fungal and plant modules supports the
concept of a resource-driven symbiotic model [59]. The majority of fungi closely associ-
ated with both the herbaceous and shrub layers in relation to fungal communities were
saprophytic fungi. One of the reasons for this is the quantity of logging debris left on
site after crop-tree thinning, which also affects vegetation, as logging debris alters the soil
moisture and nutrient availability, soil temperature, and physical conditions for seedbeds,
accelerating the interaction between saprophytic fungi and plants [60]. In the correlation
network, Microlepia hancei (degree = 11) held the most important position, with the majority
of entities significantly correlated with saprophytic fungi. Soil planted with coniferous
species tends to have a high cellulose and low lignin content, favoring the activity of the de-
composer community and strengthening the presence of saprophytic fungi [61]. Pteridium
aquilinum (degree = 10) emerged as the second key contributor to plant–fungal-community
interaction in the herb layer. As a sun-loving plant, its importance value decreased after
crop-tree thinning, likely due to the significant increase in species richness in the herb
layer, allowing other plants to occupy more resource positions. The abundant growth
space and hydrothermal resources following crop-tree thinning allowed for more lower
species to coexist through niche separation [62], leading to a more complex plant-life-form
structure [63]. In the shrub layer, C. camphora (degree = 10) and Litsea cubeba (degree = 11)
emerged as the species with the strongest association with fungal communities. Both
C. camphora and L. cubeba were found to be associated with both saprophytic fungi and
ectomycorrhizal fungi. ECM and SAP guilds share the same habitat and interact with each
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other [64], they belong to the same family, Lauraceae, and are neutral-to-sunny plants. They
prefer warm and humid climates, are native tree species in the area, dominating tropical
and subtropical forests [65], and can form a good symbiotic relationship with Masson pine.

Some studies have highlighted that changes in vegetation in the forest understory
can directly impact the soil microbial community by altering plant–microbial interactions,
root exudate, and litter quantities, as well as indirectly influencing the soil microbial
population through changes in soil physicochemical properties [66]. The structural equation
model we constructed aligns with their findings. Plant diversity in the herb layer directly
affects the composition of the soil fungal community and can also indirectly impact it by
influencing the content of total phosphorus or soil organic matter, which supports our
second hypothesis. The total effect of TP on the fungal community was found to be positive.
This can be attributed to saprophytic fungi, which constitute a significant portion of the
fungal community. Saprophytic fungi can store phosphorus in its mineral form within
their mycelia and absorb phosphorus in its organic form [67]. Additionally, the rich plant
species and abundance of vegetation in the forest understory accelerate the absorption of
available phosphorus [68], preventing the forest from reaching a “balance of revenue and
expenditure” of phosphorus. Moreover, mycorrhizal fungi that are abundant in the forest
contribute to an increase in available soil phosphorus [69]. Soil fungi play crucial roles in
biochemical processes, such as organic matter decomposition, humus formation, and soil
nutrient cycling, all of which are closely related to SOM [70].

Our study further confirms that soil organic matter is a powerful factor influencing the
composition of fungal communities. The presence of soil organic matter provides a stable
water environment, promoting fungal root growth and mycelium expansion [71]. Addi-
tionally, the richness of soil organic matter supplies ample nutrition for fungi, facilitating
their reproduction and growth. In conclusion, our study highlights the close relationship
between vegetation communities, soil factors, and fungal community composition, wherein
they mutually reinforce each other to enhance the plantation ecosystem.

5. Conclusions

Crop-tree thinning exerted a positive influence on the regeneration of plants in the
forest understory, leading to increased plant diversity and significantly improving the β

diversity of the soil fungal community. Notably, it had a considerable impact on key fungal
groups. The WA treatment played a particularly significant role in the overall network
system. Changes in diversity within the herb layer, mediated by crop-tree thinning, directly
or indirectly affected the composition of the fungal community through alterations in the
soil fungal network and soil characteristics. In conclusion, crop-tree thinning can improve
the ecosystem service value of forest plantations and improve inefficient plantations by
enriching plant diversity and enhancing soil fungal function.
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