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Abstract: Permafrost is widely degraded in the context of global warming. The spatial distribution
of soil microbes in these cold habitats has received a lot of attention. However, knowledge on the
changes in permafrost microbial communities following permafrost thaw is still limited. We used
permafrost soil from a taiga forest for indoor experiments using pristine soil as a control (CK, −2 ◦C),
simulating warming for 15 days at temperatures of 0 ◦C (T1), 2 ◦C (T2), and 4 ◦C (T3). Amplicons
of the hypervariable V4 region of the bacterial 16S rRNA gene were sequenced to identify bacterial
communities present in the soils of pristine and warming treatments. Warming increased the average
relative abundance of Proteobacteria (5.71%) and decreased that of Actinobacteriota (7.82%). The
Beta diversity changed (p = 0.001) and significantly correlated with the pH, microbial biomass carbon
(MBC), and available potassium (AK) of the soil (p < 0.05). Warming further increased the Alpha
diversity (Simpson index), changing the functional pathways of the bacterial communities, whereby
secondary functional pathways produced significant correlations with bacterial phyla (p < 0.05).
Combined, the results indicated that short-term warming altered the Beta diversity of soil bacteria in
a taiga forest’s permafrost soil by decreasing the abundance of Actinobacteria and increasing that of
Ascomycetes, while pH, MBC, and AK were identified as the soil factors influencing the structure
and diversity of the bacterial communities.

Keywords: short-term simulated warming; permafrost; soil bacteria; composition and diversity

1. Introduction

Global warming has emerged as a major topical issue, resulting in the melting of
glaciers and permafrost, higher sea levels, an increased frequency of extreme weather
events, and an increased loss of biodiversity [1]. The average world temperature has risen
by 1.1 ◦C since 1880 and is predicted to reach a maximum of 5.7 ◦C by 2100 [2]. Permafrost
located in high-latitude and high-altitude areas is extremely sensitive to climate change [1,3].
The global average temperature over the last 40 years has increased by 0.17 ◦C/decade,
while warming rates of 0.63 ◦C/decade in the Arctic [4] and 0.34 ◦C/decade in the
Qinghai–Tibet Plateau [5] have resulted in notable permafrost degradation [4,5]. Pre-
vious research found that melting permafrost in the Arctic releases large amounts of the
greenhouse gases CO2 and CH4 into the atmosphere [6], and these gases produce effects
conducive to climate warming [7,8]. The permafrost region of the Qinghai–Tibet Plateau
will turn into a net atmospheric carbon source when the thickness of its permafrost layer
decreases, releasing earlier fixed soil carbon in the form of potent greenhouse gasses [9].
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Microorganisms are the main driving force for the turnover of soil organic matter, and the
structure and composition of microbial communities is vital for soil carbon and nitrogen
cycling; permafrost thawing can induce changes in these communities that affect green-
house gas emissions and vegetation succession [10]. Therefore, research on how ecological
processes in permafrost are changing as a result of climate change is important.

Soil microorganisms are widely involved in biogeochemical cycling processes. Bac-
teria are the primary biological markers of permafrost deterioration in permafrost soils
because they are highly responsive to external environmental impacts [11,12]. In recent
years, research on the response of soil bacteria in permafrost soils to warming has received
increasing attention. However, the reported findings are not always consistent because of
variations in warming times and experimental methodologies. For example, Xue et al. [13]
found that warming significantly changed the functional structure of microorganisms in a
permafrost active layer in Alaska by using snow fences for 1.5 years, but significant changes
in the bacterial community structure were not observed. Perez-Mon et al. [14] simulated
three years of warming that brought soil microbial communities from a permafrost layer
to the surface, causing significant changes to their Beta diversity while reducing bacterial
richness and diversity. Dong et al. [15] found that experimental indoor warming of the
active layer soil from a permafrost region of the Greater Khingan Mountains for 45 days
increased bacterial Alpha diversity and changed its Beta diversity. Obviously, the way
bacteria respond to increasing temperatures varies across studies, due to variations in soil
types, warming techniques, and geographic locations. Furthermore, research on how per-
mafrost bacteria respond to global climate change is primarily focused on the active surface
layer soil, while relatively little research on bacteria associated with deeper permafrost
has been carried out [13,15,16]. This is because the surface layer of permafrost soil is more
vulnerable to external interference than deeper layers. However, Mackelprang et al. [17]
described that a bacterial community composition responds quickly to the thawing of
permafrost soil, and these changes are more pronounced in the deeper permafrost layer
than in the active surface layer. Due to the rapid replacement and extreme diversity of
bacteria after years of permafrost degradation, our understanding of the impact of changes
in bacterial community structure in permafrost remains limited [12]. Thus, studying how
permafrost bacteria react to warming could increase our understanding of the potential
impact of permafrost degradation on microbial communities and provide a valuable source
of information for predicting soil carbon cycling following thawing.

The Greater Khingan Mountains are located at the southern edge of the Eurasian
permafrost zone and are highly sensitive to climate change [18]. In the past few decades,
significant permafrost deterioration has occurred in the area, mainly evidenced by the
reduction in permafrost-covered areas, associated with a shift of the southern boundary
towards the north, and by the increased thickness of the active layer [19]. This situation
provides an ideal opportunity to explore changes in microbial communities in permafrost
soil due to warming. Most studies conducted in this area have documented the community
changes in soil bacteria in the field during natural warming [20,21] or by indoor microcosm
simulations [15,22] performed with different types of permafrost from various regions [23].
However, most of these studies have focused on the active layer instead of the deeper
permafrost layer [24,25]. Since the change in bacteria in response to warming is more
rapid in the permafrost layer than in the active layer [17], the paucity of data on the
deeper layer limits our understanding of the changes in the microbial community following
permafrost thaw. In this study, the soil of the permafrost layer in a taiga forest was studied to
analyze the changes in the structural composition and diversity of the bacterial community
in response to warming by simulated indoor experiments. For this, high-throughput
sequencing technology was applied to assess the composition and diversity of the soil
bacteria. These were analyzed together with soil physicochemical properties in order to
provide more in-depth insights about how increasing temperature can change the bacterial
community of the permafrost layer in the context of climate warming.



Forests 2024, 15, 693 3 of 15

2. Materials and Methods
2.1. Study Site

The study site is located in the Huzhong National Nature Reserve in the Greater Khin-
gan Mountains, China (51◦49′01′′~51◦49′1′′ N, 122◦59′33′′~123◦00′03′′ E) (Figure S1). This
area experiences less than 80 days per year without frost, the average annual temperature
is −4 ◦C, and the average precipitation is 458.3 mm. Under these cold climate conditions,
permafrost is widely developed. In the research region, Larix gmelinii and Betula platyphylla
are the most common trees, Rhododendro dauricum and Ledum palustre are the most common
shrubs, and Maianthemum bifolium is the most common herb [26].

2.2. Sampling Procedures and Incubation Experiments

Soil samples had been collected for a previous study that concentrated on fungal
communities [27]. Briefly, the soil was collected from three different locations at a depth
of 80 to 100 cm to ensure the sampling of the permafrost layer. The measured average
in situ temperature of the soil samples was −2 ◦C. The samples were stored at −20 ◦C
immediately after sampling and used for indoor warming experiments.

Based on the prediction that temperatures will rise by 1.0–5.7 ◦C towards the end of
this century [2], we conducted simulated studies using three temperature gradients of 0 ◦C
(raised by 2 ◦C), 2 ◦C (raised by 4 ◦C), and 4 ◦C (raised by 6 ◦C), using −2 ◦C (the measured
average temperature of soil samples) as a control. Before the experiment, the soil column
was cut into small sections of approximately 3–4 cm3 in the freezer room, and these were
mixed evenly to form a composite sample. This composite soil (approximately 100 g of dry
weight) was added to sterile wide-mouth bottles (1 L) and pre-incubated at 0 ◦C (T1), 2 ◦C
(T2), and 4 ◦C (T3) for 3 days and then anaerobically incubated at 0 ◦C (T1), 2 ◦C (T2), and
4 ◦C (T3) for 15 days, and all treatments were performed in triplicate [24].

2.3. Analyses of Soil Physicochemical Properties

The physiochemical properties of the soil had already been determined in a previous
study [27]. Briefly, the pH of the soil was measured after mixing it with water (2 g soil in
20 mL) with a pH meter (PB-10, Sartorius, Gottingen, Germany) [28]. Microbial biomass
carbon (MBC) was determined after chloroform fumigation extraction, carried out as
previously described [29]. The concentrations of total nitrogen (TN) and of soil organic
carbon (SOC) were measured using an elemental analyzer (Elementar Vario EL III) [30] and
a TOC analyzer (Vario TOC cube, both from Elementar Analysensysteme GmbH, Hanau,
Germany) [31], respectively. The available phosphorus (AP), available nitrogen (AN),
and available potassium (AK) levels were analyzed by sodium bicarbonate extraction–
molybdenum antimony colorimetry, alkali hydrolysis diffusion, and ammonium acetate
extraction with flame photometry, respectively, as previously described [32].

2.4. DNA Extraction, Amplification, and MiSeq Sequencing

Total DNA was extracted from the soil with the PowerMax® Soil DNA Isolation Kit
(MO BIO Laboratories, Inc., Carlsbad, CA, USA), and the DNA concentration was assessed
using NanoDrop 2000 (Termo Fisher Scientific, Wilmington, DE, USA). The primers 515F (5′-
GTGCCAGCMGCCGCGGGTAA-3′) and 806R (5′-GGACTACVSGGGTATCTAAT-3′) were
used to amplify the V4 region of the bacterial 16 rRNA gene [33] with the following PCR
conditions: 3 min pre-denaturation at 94 ◦C followed by 35 cycles with 45 s denaturation at
94 ◦C, 60 s annealing at 50 ◦C and 60 s extension at 72 ◦C, with a final extension at 72 ◦C for
10 min. The amplicons were recovered from 2% agarose gels, purified with the AxyPrep
DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA), and quantified by
Quantus™ Fluorometry (Promega, Madison, WI, USA). The amplicons were sequenced on
an Illumina MiSeq platform (Illumina Inc., San Diego, CA, USA) using PE300 chemicals at
Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China). The raw sequence data were
uploaded to the SRA database at NCBI (https://submit.ncbi.nlm.nih.gov/subs/sra/SUB1
2215666/overview, accessed on 20 March 2023) with number PRJNA894956.

https://submit.ncbi.nlm.nih.gov/subs/sra/SUB12215666/overview
https://submit.ncbi.nlm.nih.gov/subs/sra/SUB12215666/overview
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2.5. Bioinformatic and Statistical Analyses

Amplicon sequencing variants (ASVs) were obtained after quality control and the splic-
ing of the original sequences, followed by a sequence noise reduction step, as previously
described [27]. The obtained ASVs were attributed to taxa based on the Silva138/16s_bacteria
species annotation database v138 (https://www.arb-silva.de/, accessed on 1 May 2022)
using the naive Bayes classifier in Qiime2. Alpha diversity indices were calculated us-
ing Mothur v1.30.2 (https://www.mothur.org/wiki/Download_mothur, accessed on 1
May 2022). A relative abundance above 10% was considered dominant [34]. Given the
large proportion of relative abundance of ‘norank’ taxa (sequences that were successfully
aligned with a hit in the database that did not have any specific taxonomic information)
and ‘unclassified’ taxa (sequences that failed to align with any hits in the database), these
members were divided into two separate categories. Additionally, sequences with a relative
abundance below 1% were combined as ‘others’.

Any differences in the determined soil parameters, the relative abundance of bacterial
phyla and genera, the functional prediction results, and the Alpha diversity were analyzed
in SPSS 25.0 software (SPSS Inc., Chicago, IL, USA) using a one-way analysis of variance
(ANOVA). Significant findings (p < 0.05) were found based on least significant difference
(LSD) tests and are reported as means ± standard errors. The differences of relative
abundance of bacteria at the phylum and genus level were plotted using Origin 2018
(Origin Software Inc., Northampton, MA, USA).

The difference in Beta diversity was determined, and a principal coordinates analysis
(PCoA) based on a Bray–Curtis distance matrix was performed for all samples, together
with three non-parametric tests of a permutational multivariate analysis of variance (Ado-
nis), an analysis of similarities (ANOSIM), and a multi-response permutation procedure
(MRPP) based on the distributed data of the ASVs. The Pearson correlation coefficient
was used to identify relationships between bacterial phyla and Alpha diversity index or
soil properties, with results displayed in a heatmap. Distance-based redundancy analysis
(db-RDA) based on the Bray–Curtis distance matrix was conducted to determine the rela-
tionships between the bacterial communities and the physicochemical parameters of the
soil. Figures and tables were prepared using the vegan and ggplot packages in R-3.3.1.

Lastly, using R-3.3.1, KEGG functional prediction was completed based on the Tax4Fun
package, and the Spearman correlation coefficient between bacterial phyla and function
was calculated using the “psych” package. Data with |r| ≥ 0.6 and p < 0.05 were retained,
and a network diagram was constructed using Gephi v0.10 (https://gephi.org/users/
download/, accessed on 6 June 2023) [35].

3. Results
3.1. Effect of Warming on Soil Physicochemical Properties

The effects of the applied warming on the physical and chemical properties of soil
have already been described in a previous publication [27]. The data that were used for
statistical analyses in this study are summarized in Table S1.

3.2. Heating Results in Differences in Bacterial Community Composition

The sequencing data obtained from the control (CK) and from T1, T2, and T3 reached
saturation, according to the minimum number of required sample sequences after noise
reduction processing using the DADA2 plugin of Qiime2 software. A total of 271,896 opti-
mized sequences were obtained, and these clustered into 1620 ASVs. The highest number
of ASVs was detected in T3 (750), followed by T2 (708) and CK (708), with 684 present in T1.
From the comparison among the four groups (Figure 1), we identified 260 common ASVs.
The T3 group contained the most unique ASVs (314), and this group’s fraction of unique
ASVs (41.9%) was higher than that for the other groups (32.8%, 32.5%, and 37.1% for CK,
T1, and T2, respectively). Thus, both the total number of ASVs and the number and fraction
of unique ASVs were the highest following T3 treatment.

https://www.arb-silva.de/
https://www.mothur.org/wiki/Download_mothur
https://gephi.org/users/download/
https://gephi.org/users/download/
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Figure 1. Venn diagram of ASVs identified in soil following incubation at different temperatures with
CK: pristine permafrost soil (−2 ◦C); treatments T1 (0 ◦C), T2 (2 ◦C), and T3 (4 ◦C).

A total of 32 phyla, 96 classes, 202 orders, 298 families, 411 genera, and 543 bacte-
rial species were identified from the partial rDNA sequences. The bacterial community
composition at the phylum level is presented in Figure 2a. The dominant phyla were
Actinobacteriota (31.56%) and Proteobacteria (24.62%). Compared with CK, warming
decreased the relative abundance of Actinobacteriota by, on average, 7.82% and increased
the abundance of Proteobacteria by 5.71%. The relative abundance of Chloroflexi in T2
was lower than in CK, and that of Bacteroidota was higher in the T1 and T2 samples than
in CK and T3. Differences in relative abundance between the groups were also observed
for Desulfobacterota, Gemmatimonadota, and, in particular, Firmicutes, as the latter was
quite strongly increased in the T3 group compared to the other groups, while the relative
abundance of Patescibacteria was strongly reduced. For the less abundant bacterial phyla
collectively reported as ‘other’, a general trend was visible, as their relative abundance
gradually decreased with increasing temperature, with the lowest values belonging to the
T3 group (p < 0.05).

The characteristics of the bacterial community composition at the genus level are
presented in Figure 2b. Notably, the relative abundance of norank (34.65%), unclassified
(31.51%), and ‘other’ genera (collective low-abundant genera, 18.68%) accounted for the
highest relative abundance. Together, they accounted for approximately 85% of the se-
quence reads. The norank and unclassified taxa, together, reached over 60% and were ranked
as CK (68.77%) > T1 (66.56%) > T2 (64.71%) > T3 (64.61%), indicating that warming reduced
their fraction and favored an increase in the percentage of identifiable and classifiable
bacterial genera. At the same time, the relative abundance of ‘other’ genera increased
with increasing temperature and reached the highest levels in the T3 group. The relative
abundance of Conexibacter was higher, and the relative abundance of Paludibacter was lower
in CK than in the other three groups. The relative abundances of Candidatus_Solibacter and
GOUTA6 were lower in the T3 group than in the other three groups, while that of Geobacter
was higher in T2, and that of Rhodoferax was higher in both T1 and T2 than in the other
groups (p < 0.05).
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a > b, b > c, c > d (p < 0.05).

3.3. Effects on Bacterial Community Diversity
3.3.1. Alpha Diversity

As Table 1 shows, the coverage index of all groups was higher than 0.99, suggesting
that the sequence data adequately address the bacterial diversity of the samples. Compared
with the CK group, the Sobs and ACE indices did not change as a result of heat treatment
(p > 0.05). No significant changes were observed for these indices between any of the
warming treatments (T1, T2, and T3) and the CK, despite the fact that the Shannon index
was much lower in T1 than in T3. The Simpson index gradually decreased with the increase
in temperature and was significantly lower in T3 than in CK (p < 0.05). Therefore, it can be
concluded that warming resulted in a higher Alpha diversity for the bacterial communities.

Table 1. Analysis of bacterial diversity indices following different temperature treatments.

Treatment Coverage Sobs ACE Shannon Simpson (×10−2)

CK 1.00 ± 0.00 a 392.67 ± 14.88 a 392.78 ± 14.90 a 5.22 ± 0.04 ab 1.19 ± 0.09 a
T1 1.00 ± 0.00 a 380.00 ± 16.86 a 380.12 ± 16.97 a 5.16 ± 0.06 b 1.15 ± 0.13 ab
T2 1.00 ± 0.00 a 382.33 ± 22.28 a 382.39 ± 22.30 a 5.27 ± 0.08 ab 0.89 ± 0.07 ab
T3 0.99 ± 0.01 a 438.33 ± 17.02 a 438.91 ± 17.36 a 5.36 ± 0.05 a 0.86 ± 0.10 b

Data are represented as mean ± standard error (n = 3); different lowercase letters in the same column indicate
significant differences (p < 0.05).

3.3.2. Beta Diversity

As shown in the PCoA plot (Figure 3), the bacterial communities of all samples were
well separated and divided into two clusters along the horizontal axis. The T1 and T2
clusters were distributed in the third quadrant, whereas the CK cluster was distributed
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in the second quadrant, and all three were clustered with negative values for the first
component. The T3 cluster on the right side of the plot was distributed in the first and
fourth quadrants. With a cumulative explanation rate of 47.18%, PC1 and PC2 contributed
31.98% and 15.20% of the degree of explanation, respectively. Further analysis by the non-
parametric test techniques Adonis, ANOSIM, and MRPP demonstrated that the bacterial
Beta diversity was dramatically affected by the warming (Table 2, p = 0.001).
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Table 2. Nonparametric test analysis based on Bray–Curtis distance.

Method Adonis ANOSIM MRPP

All groups R2 p R p A p
0.56 0.001 *** 0.91 0.001 *** 0.27 0.001 ***

Adonis: permutational multivariate analysis of variance; ANOSIM: analysis of similarities; MRPP: multi-response
permutation procedure. Significance is indicated as *** for p ≤ 0.001.

3.4. Correlation Analyses
3.4.1. Relationships between Community Composition and Alpha Diversity and
Soil Properties

A heatmap of identified correlations between the relative abundance of particular bac-
terial phyla and the characteristics of the soil is shown in Figure 4. The relative abundance
of Actinobacteriota were negatively correlated with the levels of microbial components
detected in the soil (MBC), and this phylum was highly strongly positively correlated
with pH (p < 0.001). A reversed correlation was observed for Proteobacteria abundance,
which were strongly positively correlated with MBC and negatively with pH (p < 0.01).
Bacteroidota were also positively correlated with MBC. Desulfobacterota were negatively
correlated with AN and pH, but Verrucomicrobiota correlated positively with AN. Un-
classified bacteria were positively correlated with pH and strongly negatively correlated
with MBC. Correlations for the diversity indices (Coverage, Sobs, ACE, and Shannon) with
mean soil physical and chemical properties were also calculated, but none were significant
(p > 0.05), except for the Simpson index, which was positively correlated with pH (p < 0.05).



Forests 2024, 15, 693 8 of 15Forests 2024, 15, 693 8 of 15 
 

 

 
Figure 4. Correlation heatmap of bacterial phylum and Alpha diversity index and soil physicochem-
ical properties. TN: total nitrogen; SOC: soil organic carbon; MBC: microbial biomass carbon; AN: 
available nitrogen; AK: available potassium; AP: available phosphorous. Significance is indicated as 
* for 0.01 < p ≤ 0.05, ** for 0.001 < p ≤ 0.01, *** for p ≤ 0.001. 

3.4.2. Relationship between Beta Diversity and Soil Physiochemistry 
Relationships between the Beta diversity and soil characteristics were assessed by db-

RDA, as illustrated Figure 5. The two axes accounted for 33% of the variations in the bac-
terial community structure observed, with CAP1 and CAP2 accounting for 20.33% and 
12.67% of the differences, respectively. The MBC, pH, and AK of the soil produced longer 
arrows than the other characteristics, indicating that that they had a stronger effect on the 
bacterial population. Furthermore, Table 3 summarizes that among the analyzed soil en-
vironmental parameters, bacterial Beta diversity was substantially linked with pH, MBC, 
and AK (p < 0.05). 

Table 3. Significance analysis of the correlations between the soil physicochemical properties and 
the Beta diversity of the bacterial communities. 

Soil Factors R2 p 
pH 0.96 0.001 *** 
TN 0.33 0.161 

SOC 0.25 0.272 
MBC 0.96 0.001 *** 
AN 0.47 0.059 
AK 0.56 0.032 *** 
AP 0.16 0.494 

Significance is indicated as *** for p ≤ 0.001; the other findings were not significant (p > 0.05). 

Figure 4. Correlation heatmap of bacterial phylum and Alpha diversity index and soil physicochemi-
cal properties. TN: total nitrogen; SOC: soil organic carbon; MBC: microbial biomass carbon; AN:
available nitrogen; AK: available potassium; AP: available phosphorous. Significance is indicated as
* for 0.01 < p ≤ 0.05, ** for 0.001 < p ≤ 0.01, *** for p ≤ 0.001.

3.4.2. Relationship between Beta Diversity and Soil Physiochemistry

Relationships between the Beta diversity and soil characteristics were assessed by
db-RDA, as illustrated Figure 5. The two axes accounted for 33% of the variations in the
bacterial community structure observed, with CAP1 and CAP2 accounting for 20.33% and
12.67% of the differences, respectively. The MBC, pH, and AK of the soil produced longer
arrows than the other characteristics, indicating that that they had a stronger effect on
the bacterial population. Furthermore, Table 3 summarizes that among the analyzed soil
environmental parameters, bacterial Beta diversity was substantially linked with pH, MBC,
and AK (p < 0.05).
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Table 3. Significance analysis of the correlations between the soil physicochemical properties and the
Beta diversity of the bacterial communities.

Soil Factors R2 p

pH 0.96 0.001 ***
TN 0.33 0.161

SOC 0.25 0.272
MBC 0.96 0.001 ***
AN 0.47 0.059
AK 0.56 0.032 ***
AP 0.16 0.494

Significance is indicated as *** for p ≤ 0.001; the other findings were not significant (p > 0.05).

3.5. Bacterial Function Prediction

Table S2 displays the results of functional prediction based on the partial 16S rRNA
gene sequences. On the first level of KEGG classification, metabolism (62.33%), genetic
information processing (10.40%), environmental information processing (18.39%), cellular
processes (5.56%), and human diseases (2.27%) were the primary functions identified that
reached a relative abundance greater than 1%. At KEGG level 2, the relative abundance of
eighteen functional pathways exceeded 1%. Among them, the relative abundance of amino
acid metabolism (12.25%), membrane transport (9.77%), and carbohydrate metabolism
(13.16%) was higher. Compared with the CK, simulated warming resulted in a significant
change in the relative abundance of carbohydrate metabolism; lipid metabolism; nu-
cleotide metabolism; xenobiotics biodegradation and metabolism; the metabolism of other
amino acids; glycan biosynthesis and metabolism; cell motility, cell growth, and death;
and infectious disease. Thus, several functional pathways were considerably affected
by warming.

To further clarify the relationship between the functions of the identified bacterial com-
munities, a network diagram was created, based on the results of the functional predictions
at the phylum level (Figure 6; Table S3) This illustrated that, among the bacterial phyla,
Patescibacteria (a candidate phylum) produced the largest node and also produced the
most functional connections: this phylum was negatively correlated with glycan biosyn-
thesis and metabolism, amino acid metabolism, metabolism of other amino acids, and
xenobiotics biodegradation and metabolism. The second most functionally determining
phylum was Proteobacteria, being positively correlated with cell motility and negatively
correlated with energy metabolism and with nucleotide metabolism. Both Proteobacteria
and Desulfobacterota were positively correlated with cell motility, while the group en-
compassing other phyla (‘others’) was strongly negatively correlated with this function.
Firmicutes were the only phylum producing a positive correlation with glycan biosynthesis
and metabolism, a function that more strongly negatively correlated with ‘other’ phyla
and with Patescibacteria (p < 0.05). The thickest arrows in the figure representing nega-
tive correlations connected ‘others’ with cell motility and with glycan biosynthesis and
metabolism, while Patescibacteria had the highest number of connections, which were also
relatively strong. Fewer positive correlations than negative correlations were identified,
and of the positive correlations, those between Proteobacteria and cell motility and be-
tween Acidobacteriota and amino acid metabolism were the strongest, as indicated by their
thicker lines.
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4. Discussion
4.1. Short-Term Warming Affects the Composition and Structure of the Bacterial Communities

Because of functional and structural properties, different bacterial groups respond
differently to changes in their environment [36,37]. In this study, Actinobacteriota and
Proteobacteria were the dominant phyla in each treatment, which was similar to the results
of a previous study on this permafrost soil [38]. Actinobacteriota had the highest average
relative abundance, and its presence in these low-temperature soil environments is mainly
attributed to its active DNA repair mechanism and strong metabolic capacity [39,40]. It
was found that the relative abundance of Actinobacteriota was significantly reduced under
warming conditions. Possibly, these bacteria are less capable of surviving acid conditions, as
a significant decrease in soil pH resulted from the warming treatment [41]. Proteobacteria,
on the other hand, underwent a vast increase in relative abundance as the temperature
rose. These bacteria are typically classified into a co-nutrient category; and the phylum
comprises a large number of bacterial species engaged in the initial metabolism of unstable
organic compounds [42]. Furthermore, Proteobacteria exhibit resilience to temperature
increases because of their superior capacity to break down resistant organic materials,
which allows them to access more nutrients for growth in a restricted environment [43,44].
It is interesting to note that, at the bacterial genus level, the total relative abundance of
unknown and unclassified bacteria decreased with increasing temperature. However, over
60% of the taxa were either norank or unclassified. That this fraction was so large may be
because the most recent data stored in taxonomic databases poorly match the bacterial
communities typically residing in permafrost soils [45].
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4.2. Short-Term Warming Affects the Bacterial Community Diversity

Temperature is a key factor for microbial survival, and warming generally affects
bacterial diversity [46,47]. Chen et al. [48] reported that warming significantly reduced bac-
terial Alpha diversity in permafrost soil, which is inconsistent with our findings. Microbial
communities exhibit large biogeographic distribution variances related to the high geo-
graphical variability caused by different vegetation types, soil conditions, and climate [49].
Due to the different responses of different microbial groups to warming [50], the results of
warming on the Alpha diversity of microorganisms in the forest soil of the Greater Khingan
Mountains may differ from that of the grasslands of the Qinghai–Tibet Plateau, producing
inconsistent results. During short-term warming, at first, soil nutrients become available
for microbial utilization as a result of permafrost thawing, so that dominant populations
do not immediately compete with and displace weaker populations [51,52]. Microbial
communities react to warming with a certain delay, so that the short-term simulated warm-
ing applied here might have been too short to negatively affect the Alpha diversity of the
bacterial communities [50,53]. In addition, Chen et al. [48] found that warming significantly
changed the Beta diversity of bacteria, and herein, we report similar observations: changes
in soil physicochemical properties after the thawing of the permafrost had an effect on
the Beta diversity of the microorganisms [54]. In the permafrost regions of the Tibetan
Plateau [31] and the Arctic [55], pH was revealed as the primary variable influencing
changes in soil bacterial community diversity at the regional scale. Our study also found
a substantial correlation between pH and Beta diversity. Members of soil bacterial com-
munities have different pH tolerance limits, meaning that variations in pH can impact
the bacterial communities’ composition and structure [56]. Furthermore, Zhang et al. [57]
discovered, through extensive sampling and incubation investigations, that nitrogen and
phosphorus co-limited soil microorganisms in the permafrost regions of the high-elevation
Tibetan Plateau. However, we found no correlations between TN, AN, and AP levels
in the soil and bacterial Beta diversity, illustrating that the results obtained with various
permafrost soils are not always consistent, possibly as a result of the different adaptive
capacities of the present bacterial taxa to environmental changes in different areas during
the formation of regional geology [58].

It is worth noting that AK correlated with bacterial Beta diversity in this study, which
is similar to the results of a pairwise study of forest soil bacteria in the permafrost regions
of the Tibetan Plateau [59]. This could be because some soil bacterial taxa can change
the solubility and efficacy of K, which, in turn, influences the selection of these particular
bacteria [60,61]. There is very limited literature on the potassium limitations of soil mi-
croorganisms. Mori et al. [62] found that K does not limit microbial activity. Moro’s [63]
field trial results showed that soil microorganisms were mainly limited by C and N but
not by K, even in soils with low K effectiveness. It is still unclear whether K significantly
influences the structure of bacterial communities in permafrost regions, as studies on the
relationship between K and bacterial community Beta diversity are rare, especially in
permafrost research.

4.3. Short-Term Warming Affects the Bacterial Community Functions

Microorganisms are important biological components of soils, and their functional
characteristics can partially reflect fundamental ecological processes including the cycling
of nutrients and carbon in the soil [48,64]. Carbohydrate metabolism is the secondary
functional pathway with the highest relative abundance, and it is widely involved in the
formation, transformation, and degradation of carbohydrates. Previous studies describe
that Actinobacteriota, Proteobacteria, and Bacteroidota are all closely associated with carbo-
hydrate metabolism [65,66]. However, we did not observe significant correlations between
this functionality and particular phyla, so carbohydrate metabolism is absent from the
network diagram presented in Figure 5. Functionality in the metabolism of carbohydrates is
possibly the result of multiple phyla working together, as evidenced by the lack of a strong
correlation (r < 0.6) with individual phyla. Amino acids are important carbon sources for
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metabolic processes. Yadav et al. [67] concluded that Acidobacteriota can utilize a wide
range of amino acids as substrates to complete respiration and fermentation processes.
Consistent with another study [68], the present work identified a positive correlation be-
tween Acidobacteriota and amino acid metabolism. In addition, the network diagram
showed that Proteobacteria have a strong correlation (represented by thicker lines) with
cell motility [69], and that Acidobacteriota are correlated with amino acid metabolism [70],
which corroborated our previous study. As for the negative correlations in the network
diagram, Patescibacteria were negatively correlated with amino acid metabolism, gly-
can biosynthesis and metabolism, the metabolism of other amino acids, and xenobiotics
biodegradation and metabolism, but there is a paucity of data on the role of these bacteria
in these metabolic pathways, and further studies are needed.

5. Conclusions

The experimental simulated warming of permafrost soil changed the composition and
structure of the bacteria present in the soil, in particular by altering the relative abundance of
the dominant phyla of Actinobacteriota and Proteobacteria, and affected the Beta diversity.
Among the changed soil chemical and physical characteristics, pH, MBC, and AK were
found to be the important factors influencing Beta diversity. Alpha diversity increased
and functional pathways changed after warming, and some predicted bacterial functions
were affected by shifts in the bacterial taxa. Empirical results obtained by our group and by
others have shown that the structure and diversity of bacterial communities are significantly
affected by short-term simulated warming. However, this research field is still developing,
and the existing data are not yet sufficient to address the following questions: (1) How does
the microbial community change in situ as permafrost soil is exposed to warming? (2) How
do the microbial communities of the permafrost layer and their functional genes respond to
long-term warming? (3) How do different permafrost ecosystems regulate the processes of
carbon and nitrogen cycling, possibly affecting greenhouse gas emissions? These research
subjects remain to be further studied.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/f15040693/s1, Figure S1: Map of the field sampling sites on the
Greater Khingan Mountains; Table S1: Soil physicochemical properties under different temperature
treatments; Table S2: Relative abundance (>1%) of potential functional pathways at level 2 in different
treatments; Table S3: Network diagram data.
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