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Abstract: Efficient analysis of non-susceptibility to landslides targets regions with minimal or zero
landslide probability, thereby obviating the need to estimate the likelihood for low-susceptibility
zones. This study assesses the effectiveness of the quantile non-linear (QNL) model in delineating
the non-susceptibility of landslides in China through a topographic index. The topographic index en-
compassed slope angle and topographic relief, which are calculated using a 3 × 3 and 15 × 15 square
cell moving window, respectively. Additionally, a global landslide susceptibility model established
using a comprehensive global landslide database and fuzzy algorithm was employed for comparative
analysis, providing a holistic evaluation of the QNL model’s accuracy. The results show that while
the overall distribution of the two QNL models for non-susceptible landslide areas was roughly
consistent, notable discrepancies were observed in localized regions, especially in the Southwest and
Qinghai-Tibet geological environment areas where landslides are prone to occur. The applicability
of the QNL model is significantly limited in these areas. In addition, the predicted results of the
QNL_CHN model are closer to those based on the global landslide susceptibility model of the fuzzy
algorithm. This study provides valuable insights to enhance the QNL model’s applicability, thereby
strengthening forest ecosystem management and mitigating ecological disaster risks.

Keywords: non-susceptible landslide areas; quantile non-linear model; fuzzy algorithm; Chinese
area; topographic index

1. Introduction

Landslides are globally significant and sudden geological disasters characterized
by high frequency, widespread occurrence, and substantial destructiveness, with their
most prominent feature being their potential to cause disaster. China stands out as one of
the countries most severely affected by casualties resulting from landslide disasters [1–5].
According to the China Statistical Yearbook data, an average of 22,000 landslides occurred
annually between 2000 and 2017, resulting in an average of 649 deaths per year. Specifically,
from 2010 to 2017, landslides accounted for 27% of the total deaths caused by natural
disasters [6]. Moreover, landslides pose significant threats to forest ecosystems worldwide,
leading to widespread destruction and alteration of natural landscapes. The damage
inflicted by landslides on forests can have enduring effects on ecosystem health and
resilience. Loss of vegetation cover diminishes the ability of forests to intercept rainfall,
regulate water flow, and prevent soil erosion, thereby heightening the risk of subsequent
landslides and ecological degradation. Consequently, accurate estimation of landslide
locations and spatial distribution is essential for reducing the risk of landslides and averting
potential hazards. Developing susceptibility maps for landslides has proven to be an
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effective strategy for identifying high-risk areas and mitigating the risks associated with
landslide disasters.

Landslide susceptibility assessment refers to the spatial likelihood or probability of
landslide occurrence in a given study area under specific geological and environmental
conditions [7,8]. Therefore, landslide susceptibility assessment involves numerous possi-
ble influencing factors and employs qualitative or quantitative methods to evaluate the
spatial probability of landslides at the level of individual landslides or different spatial
scales [9–11]. For example, Huang et al. [12] employed a machine learning model integrat-
ing various factors, including topography, hydrology, lithology, geological structure, and
land cover, to develop a landslide susceptibility assessment model for the Ruijin region
in Jiangxi, China. This model categorizes landslide susceptibility into five levels repre-
senting relative probabilities of landslide occurrence within the study area. Dai et al. [13]
incorporated factors such as topography, lithology, land cover, and soil moisture in their
landslide susceptibility modeling for Hong Kong. The resulting susceptibility distribution
was classified into four categories representing varying levels of susceptibility, namely low,
moderately low, moderately high, and high susceptibility to landslides. While the relevant
studies on landslide susceptibility models have reached a level of maturity, resulting in
relatively high accuracy, they nonetheless encounter notable challenges. The primary issue
is the applicability of the models to specific regions since they are mostly trained based on
regional landslide data, limiting their suitability due to regional characteristics [14]. There-
fore, recent studies have increasingly focused on developing landslide susceptibility models
for larger regional scales [15–17], continental scales [18], and even global scales [19–21].
These studies collect landslide data and topographical, geomorphic, and geological data
on a large regional scale to train models, ultimately obtaining landslide susceptibility
assessment models theoretically applicable to extensive regions.

The current landslide susceptibility assessment models can be categorized into qualita-
tive and quantitative models [22]. Qualitative models assess landslide susceptibility based
on factors defined by experts, while quantitative models rely on statistical and machine
learning techniques such as logistic regression [23,24], random forests [25], artificial neural
networks [22], convolutional neural networks [26], support vector machines [27], and
decision trees [28]. In recent years, with the advancement of machine learning technologies,
these algorithms have been widely applied in landslide susceptibility assessment. Leverag-
ing their robust data-driven capabilities, these algorithms learn the relationships between
landslide occurrences and related predictors to construct predictive models [29–31], ul-
timately providing landslide susceptibility assessment results for the region. Due to the
generalized lack of accurate and complete landslide information [32], these synoptic-scale
attempts have either omitted information on the location and extent of landslides or used
unsystematic point landslide information to determine landslide susceptibility.

In contrast to traditional landslide susceptibility assessment methods, non-susceptibility
analysis focuses on identifying areas where the probability of landslide occurrence is
either zero or minimal. This approach offers the benefit of avoiding the need to estimate
varying degrees of likelihood for areas deemed to have negligible susceptibility. Some
studies emphasize the dominant role of terrain slope and relief in the spatial distribution
characteristics of non-landslides. Godt et al. [33] initially proposed a threshold-based
method to define areas where the probability of landslide occurrence is negligible. Non-
susceptibility analyses are grounded on the assumption that flat, low-relief areas are
less susceptible to landslides, a premise supported by the dominant role of topography
in landslide susceptibility assessment. In a comparative analysis, Marchesini et al. [34]
evaluated the fitting performance using different landslide inventories and linear regression,
quantile regression, and QNL for terrain threshold-based models, with the QNL exhibiting
the best simulation results. Differing from Godt et al. [33]’s approach of selecting only
five representative points, Marchesini et al. [34] extracted terrain conditions corresponding
to all landslide point data, thereby enhancing the model’s applicability. Building upon
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these methods, Jia et al. [35] extended the model using the Global Landslide Catalog (GLC)
dataset, presenting a comprehensive global landslide non-susceptibility map.

At present, non-susceptibility analysis predominantly focuses on regional scales, with
only a limited number of researchers addressing global landslide non-susceptibility [36,37].
Reichenbach et al. [31] advocated for the extension and rigorous testing of “non-susceptible”
terrain zoning across diverse geographical regions to ensure its reliability. The geological
and geomorphological features of China exhibit remarkable diversity and complexity,
contributing to the intricate spatial distribution of landslide risks across the country. From
the towering peaks of the Himalayas to the expansive plateaus of the Tibetan Plateau
and the rugged terrain of the karst landscapes in the south, China’s geological terrain is
characterized by a myriad of formations and processes. Moreover, the densely populated
nature of many regions further amplifies the potential consequences of landslides. It is
imperative to recognize the unique challenges and geological complexities inherent in
China’s vast and diverse landscapes, necessitating robust risk assessment methodologies
tailored to China’s unique geological and environmental contexts.

Therefore, this study aims to delve into the potential effectiveness of QNL models
in non-landslide susceptibility research specifically adapted to the intricacies of China’s
geological and geomorphological landscapes. We used two regional datasets and obtained
two topographic indexes, including topographic relief and slope angle data, from the
Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM). We proposed
a China landslide non-susceptibility map (CLNSM) based on the existing QNL model
proposed by Marchesini et al. [34] and compared our CLNSM with the global landslide
susceptibility model proposed by Stanley et al. [37], which is based on a fuzzy algorithm.
Our study contributes valuable insights into landslide susceptibility modeling, emphasiz-
ing the intricate relationship between geological factors and model outcomes. This study
provides an effective reference for identifying non-susceptible landslide areas and predict-
ing regional landslide risks, thereby improving forest protection strategies and promoting
ecosystem protection and management.

2. Study Area

China’s landscape comprises mountainous, plateau, and hilly terrains, encompassing
approximately 67% of its total land area, with basins and plains constituting the remaining
33%. This diverse and intricate topography features a variety of landforms, including
plains, plateaus, mountains, hills, and basins. The mountainous regions, which occupy
around two-thirds of the country’s landmass, primarily follow east–west and northeast–
southwest orientations. The terrain typically slopes from west to east, creating a three-
tiered distribution. The first tier encompasses the southwestern Qinghai-Tibet Plateau,
boasting an average elevation exceeding 4000 m. The second tier, extending eastward
from the Daxing’anling Mountains, Taihang Mountains, and Wushan Mountains to the
Yungui Plateau, ranges in elevation between 1000 and 2000 m and is characterized mainly
by plateaus and basins. The third tier, situated to the east of the second tier, features
landscapes below 500 m above sea level, comprising hills and plains (Figure 1).

Significantly, the majority of catastrophic landslide events occur at the junction be-
tween the first and second tiers, particularly along the eastern edge of the Qinghai-Tibet
Plateau, and the transition between the second and third tiers, encompassing the Loess
Plateau and the middle reaches of the Yangtze River. Other high-incidence areas include
the Sichuan Basin and surrounding mountainous regions, the Yungui Plateau, and the
mountainous and hilly areas in the southeast. A smaller number of landslide disasters
are observed in the northwestern Tianshan region, the western section of the Kunlun
Mountains, and the northeastern Changbai Mountains region [38–40].
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Figure 1. Geomorphological and geological environment regions of China (The blue Roman numer-
als represent seven geological environmental zones, and the black Roman numerals represent thirty-
nine secondary geological environmental zones).  
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where S is the local terrain slope in degrees; R is the regional relative relief in meters; α 
and β are regression parameters. Specifically, the numerical value of α aligns with the 
minimum slope threshold (R = 0), while β signifies the shape parameter, delineating the 
rate of change of the threshold curve. 

The compilation of the 13 regional geomorphological, event, and multi-temporal in-
ventory maps constitutes a robust and consistent dataset of high quality [41] for investi-
gating terrain characteristics predisposed (or not) to landslides in Italy. These 13 invento-
ries offer a comprehensive representation of the physiographical provinces across Italy 
where landslides are abundant. The Italian national landslide inventory encompassed a 
wide range of landslide types distributed across various physiographical regions and was 
utilized to validate the QNL model in Italy (QNL_ITA) [42]. The QNL_ITA model is 𝑆 = 3.539 × 𝑒𝑥𝑝 (0.0028 × 𝑅) (0 < 𝑅 < 1000𝑚). (2)

The Global Landslide Catalog (GLC) offers landslide records with occurrence dates, 
locations, types, triggers, and location accuracy estimates [43,44]. Additionally, NASA 
launched the Cooperative Open Online Landslide Repository (COOLR) to enhance da-
taset completeness through citizen science and original research contributions, with accu-
racy ensured via location accuracy measurements from multiple sources 
(https://gpm.nasa.gov/landslides/; accessed on 20 December 2023). Utilizing this dataset, 

Figure 1. Geomorphological and geological environment regions of China (The blue Roman nu-
merals represent seven geological environmental zones, and the black Roman numerals represent
thirty-nine secondary geological environmental zones).

3. Materials and Methods
3.1. QNL Model

The QNL model represents the critical topographical conditions required for landslide
occurrence. In this study, we employ the model proposed by Marchesini et al. [34], which
is generally expressed as follows:

S = α × exp(β × R), (1)

where S is the local terrain slope in degrees; R is the regional relative relief in meters; α and
β are regression parameters. Specifically, the numerical value of α aligns with the minimum
slope threshold (R = 0), while β signifies the shape parameter, delineating the rate of change
of the threshold curve.

The compilation of the 13 regional geomorphological, event, and multi-temporal inven-
tory maps constitutes a robust and consistent dataset of high quality [41] for investigating
terrain characteristics predisposed (or not) to landslides in Italy. These 13 inventories offer
a comprehensive representation of the physiographical provinces across Italy where land-
slides are abundant. The Italian national landslide inventory encompassed a wide range
of landslide types distributed across various physiographical regions and was utilized to
validate the QNL model in Italy (QNL_ITA) [42]. The QNL_ITA model is

S = 3.539 × exp(0.0028 × R) (0 < R < 1000 m). (2)

The Global Landslide Catalog (GLC) offers landslide records with occurrence dates,
locations, types, triggers, and location accuracy estimates [43,44]. Additionally, NASA
launched the Cooperative Open Online Landslide Repository (COOLR) to enhance dataset
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completeness through citizen science and original research contributions, with accuracy
ensured via location accuracy measurements from multiple sources (https://gpm.nasa.
gov/landslides/; accessed on 20 December 2023). Utilizing this dataset, Jia et al. [35]
analyzed the spatial distribution characteristics of landslides, partitioning it into four major
regions (North America, East Asia, Eurasia, and Oceania). The parameters of the QNL
models for the China region (QNL_CHN) are outlined as follows:

S = 1.246 × exp(0.0036 × R) (0 < R < 1000 m). (3)

3.2. Data Sources

The data employed in this study includes elevation data obtained from the Shuttle
Radar Topography Mission (SRTM) Digital Elevation Model (DEM) at a resolution of
3 arc-seconds (https://srtm.csi.cgiar.org/srtmdata/; accessed on 20 December 2022), which
was projected and resampled to a 100 m resolution DEM data to depict the elevation
distribution across the entire Chinese region. The construction of the QLN model relies
on the calculation of relative relief and terrain slope data. To ensure the independence of
the two terrain data indicators, distinct grid sizes for adjacent sliding calculation windows
were applied in the computation of topographic relief and slope angle; the calculation
window for relative relief utilized a 15 × 15 grid size, representing the relative variation in
elevation within the window, equal to the difference between the maximum and minimum
elevations. Slope calculations were performed using the Surface Analysis tool in ArcGIS
software, extracting slope values from the DEM data with a 3 × 3-pixel window. Here,
the slope was calculated as the surface change rate (increment) from the central pixel to
each neighboring pixel in both the horizontal (dz/dx) and vertical (dz/dy) directions.
Figures 2 and 3 show the distribution of slope angle and topographic relief, respectably.
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Through an integrated analysis of foundational background conditions using a dom-
inant factor analysis approach, the China Geological Survey systematically partitioned
the Chinese area into seven geological environment regions [45]. Initially, the primary
geological environment regions were delineated based on topographic features (eleva-
tion and relief), primary tectonics structures, and climate factors. Subsequently, specific
characteristics of each primary geological environment region were considered, and key
indicators influencing the primary geological environment were selected from criteria such
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as landform units, surface lithology, secondary active structures, hydrogeological engineer-
ing geological conditions, susceptibility to geological hazards, and human activities. These
indicators facilitated further subdivision into seven primary regions and 39 secondary
regions (Figures 1 and 4).
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The primary regions encompass the following: (I) Northeast Plain and Mountain
Geological Environment Region (Northeast region); (II) Huang-Huai-Hai and Yangtze
River Delta Plain Geological Environment Region (Huanghuaihai Yangtze River Delta
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region); (III) South China Low Mountain and Hill Geological Environment Region (South
China region); (IV) Northwest Loess Plateau Geological Environment Region (Loess region);
(V) Southwest Karst and Rocky Mountain Geological Environment Region (Southwest
region); (VI) Northwest Arid Desert Geological Environment Region (Northwest region);
(VII) Qinghai-Tibet Plateau Cold Frozen Soil Geological Environment Region (Qinghai
Tibet region).

The topographic relief and slope angle of the 39 geological environment subregions
were computed, providing regional area, average relief, and average slope angle for each.
Figure 4 illustrates the area, average topographic relief, and average slope across different
geological environment subregions. The results reveal a consistent pattern, with regions
exhibiting higher average relief corresponding to larger average slopes. Based on the
geological environment subregions table, the 39 subregions were categorized according to
geological hazard susceptibility. Among them, eight regions were identified as highly sus-
ceptible, primarily concentrated in the Northwest Loess Plateau, Southwest Mountainous
Region, Himalayan Region, and Taiwan Region. These regions include the Taiwan Plain
and Mountain Geological Environment Subregion, Longdong-Shaanbei Loess Plateau Geo-
logical Environment Subregion, Shaanxi Loess Plateau Geological Environment Subregion,
Qinba Mountain Geological Environment Subregion, Three Gorges of the Yangtze River
Geological Environment Subregion, Dianzhong-Chuanxinin Southwest Plateau Mountain
Geological Environment Subregion, Western Yunnan Geological Environment Subregion,
Western Sichuan-Eastern Tibet Plateau Geological Environment Subregion, and the Hi-
malayan Extremely High Mountain Geological Environment Subregion. These areas exhibit
distinct topographic features characterized by higher relief and steeper slopes, with the
geological environment subregions in the loess region displaying relatively lower relief
and slope compared to other regions.

4. Result and Analysis

Based on the average relief and slope angle of the 39 secondary geological environ-
ment subregions, we observed a strong correlation between the two variables (Figure 5).
Simultaneously, the QNL model fitted curve based on landslide data in the East Asia region
reveals that, excluding regions with small relief (less than 50 m) and low slope (less than 3◦),
all data points from the geological environment subregions lie above this curve. Compared
to the expected slope obtained from the QNL model based on Italian landslide data, this
curve exhibits relatively lower slopes, indicating that, under similar relief conditions, the
evaluated slope of landslide-prone areas is relatively lower. This is one of the reasons why
this curve predicts a higher number of non-prone areas. The QNL model based on Italian
landslide data predicts relatively larger slopes, with corresponding slopes of 4.7◦, 14.4◦,
and 33.2◦ for relief of 100 m, 500 m, and 800 m, respectively. In contrast, the QNL model
based on East Asian landslide data predicts relatively smaller slopes, with corresponding
slopes of 1.8◦, 7.5◦, and 22.2◦ for relief of 100 m, 500 m, and 800 m, respectively. In summary,
the fitted curve based on Italian landslide data closely aligns with geological environment
subregion points. For relief values below 150 m and above 500 m, different geological
environment subregion points are consistently below the blue fitted curve. However, when
relief is in the range of 200 to 500 m, various geological environment subregion points are
consistently above the blue-fitted curve. In contrast, the fitted curve based on East Asian
landslide data generally lies below the geological environment subregion points.

To assess the effectiveness of the two models in the Chinese region, we employed
terrain data for QNL model computations. Figure 6 illustrates the map of non-landslide-
prone areas calculated using the QNL model based on local Chinese landslide data, while
Figure 7 presents the map derived from Italian landslide data. It is noteworthy that the
non-landslide-prone areas predicted through the QNL model using Chinese local landslide
data are relatively smaller, with landslide-prone areas being comparatively larger. The
proportions of these two areas are 44.9% and 55.1%, respectively, relative to the total
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national land area. In contrast, the QNL model based on Italian landslide data predicts a
larger non-landslide-prone area, constituting 72% of the total national land area.
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To quantitatively compare the non-landslide-prone areas predicted via the two models
in the Chinese region, we calculated the percentage of non-landslide areas under seven
primary geological environmental zones relative to the total area. Figure 8 depicts the per-
centage of non-landslide-prone areas in different geological environmental zones. Overall,
the predictive results of the two QNL models exhibit a consistent trend across the seven
geological environmental zones. Specifically, in the Northeast Plain and Mountainous
Geological Environment Zone (I), the Yangtze River Delta Region (II), the Northwest Arid
Desert Geological Environment Zone (VI), and the Qinghai-Tibet Plateau Region (VII), non-
landslide-prone areas account for over 70% of the entire region, indicating that the majority
of these areas are characterized as non-landslide-prone. In contrast, the South China Region
(III), Loess Plateau Region (IV), and Southwest Region (V) have non-landslide-prone areas
constituting approximately 30% of the total area, representing high landslide-prone regions
such as Yunnan, Sichuan, Gansu, Shaanxi, and Taiwan in China.
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Due to the lack of comprehensive landslide records in China, we are unable to validate
the prediction results of the two QNL models. Therefore, we have opted to compare the
accuracy of the prediction results of the two QNL models with a new global susceptibility
map calculated using global landslide data and a heuristic fuzzy approach. The National
Aeronautics and Space Administration (NASA) launched the Global Landslide Catalog
(GLC), in which records are available with occurrence dates and locations, types, triggers,
and estimates of location accuracy since 2007. Stanley et al. [37] established a global
landslide susceptibility model based on a global landslide database and fuzzy algorithm,
presenting a global-scale susceptibility distribution map at a resolution of 1 km. The data
pertaining to slope, faults, geology, forest loss, and road networks were amalgamated
utilizing a heuristic fuzzy approach [37]. The resulting map underwent evaluation utilizing
the Global Landslide Catalog (GLC) developed by the National Aeronautics and Space
Administration (NASA) alongside several local landslide inventories. The fuzzy overlay
model integrated data on the topographic index, faults, forests, and roads utilizing a fuzzy
gamma operator, where the coefficient (c) was set at 0.9 [37]. The application of fuzzy
logic within a Geographic Information System (GIS) entails two distinct steps. Firstly, a
fuzzy membership function is assigned to each variable. This function serves to transform
the values of the explanatory variable into a range between zero and one, reflecting the
relationship between the variable and landslide susceptibility. To facilitate the interpretation
of the global landslide susceptibility map, the susceptibility values outputted using the
fuzzy overlay model were categorized into five classes: very low, low, moderate, high, and
very high.

Figure 9 illustrates the landslide susceptibility distribution map for the Chinese region
generated using this model. To facilitate comparison with the QNL model mentioned
earlier, we designated areas with low and very low susceptibility levels as non-landslide-
prone zones, as depicted in Figure 10. The comparison reveals a broad agreement between
the susceptibility zoning results of this model and the non-landslide-prone zones based
on landslide data from the East Asia region. However, local discrepancies are evident,
particularly in regions such as parts of Sichuan and Yunnan provinces, Xinjiang, the
Daxing’anling area, and Taiwan. Notably, the entire Sichuan and Yunnan region, including
the geological subzones of the Western Sichuan-Tibetan Plateau (VII3), the Mountainous
Geological Environment Subzone of Central-Southwestern Sichuan Plateau (V4), and
the Central Geological Environment Subzone of Western Yunnan (V6), is predominantly
identified as landslide-prone. Simultaneously, the central-eastern part of Taiwan (III6),
located in the Central Mountain Range, is also classified as landslide-prone area. In
contrast, the susceptibility zoning based on East Asia landslide data tends to underestimate
the susceptibility of these regions to some extent.

Godt et al. [33] emphasized that landslide spatial modeling based on terrain features
complements and verifies traditional susceptibility analysis, enhancing understanding
of the true distribution of landslide disasters. We conducted a statistical analysis of the
non-landslide area proportions for three models across 39 geological environment subre-
gions (Figure 11). While the overall distributions of the predictions from the two models
align reasonably well with the potential landslide hazard zone, significant discrepancies
persist in localized regions. For instance, in the Longmenshan tectonic zone of the Sichuan-
Yunnan region, categorized under the geological environment subregion VII3 of the Western
Sichuan-Eastern Tibetan Plateau, which is a high susceptibility zone for landslides, the
QNL model designates it as a non-landslide susceptible area. The non-landslide suscep-
tible areas predicted through the QNL model are 44.6% and 67.1%, while those obtained
through statistical analysis are only 7.8%. Additionally, in the karst mountainous geological
environment subregion (V) in the southwest, the fuzzy logic model consistently predicts
non-landslide susceptibility areas at less than 15%, whereas the QNL_CHN model predicts
proportions above 20%, and the QNL_ITA model yields significantly higher values, with
most non-landslide susceptible areas exceeding 50%. Furthermore, in the Xianggan Gui
Low Mountain and Hilly Geological Environment Subregion (III2) and the southeastern
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Hilly Mountain Geological Environment Subregion (III4), all three models exhibit noticeable
deviations. In the rainy season, this area is a potential high susceptibility zone for landslides.
Based on the fuzzy logic model and QNL_CHN model predictions, non-landslide suscep-
tibility areas account for approximately 25%, while the QNL_ITA model estimates reach
50%, indicating a clear underestimation of landslide susceptibility through the QNL_ITA
model. From the three models’ results, it can be observed that the non-susceptible landslide
areas predicted via the QNL_CHN model and those derived from the fuzzy logic-based
model are more consistent. In contrast, the QNL_ITA model, although exhibiting overall
accurate predictions in non-susceptible landslide areas, demonstrates significant disparities
in spatial distribution and subregional proportions compared to the actual conditions. Com-
paratively, within the QNL models, the QNL_CHN model demonstrates more accurate
predictions of non-susceptible landslide areas within the China region.
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5. Discussion

Accurate and comprehensive landslide records serve as the foundation for landslide
simulation and assessment [46–48]. On the one hand, the spatial distribution of historical
landslide data can reveal high-frequency/hotspot areas of landslide occurrences. On the
other hand, historical landslide data can be utilized to fit and validate assessment models,
thereby enhancing model applicability. The Global Landslide Catalog (GLC) has compiled
main rainfall-induced landslide events worldwide since 2007, providing extensive informa-
tion, including landslide occurrence time, location, fatalities, affected population, economic
losses, landslide types, scale, and triggering factors. Both the QNL_CHN model and the
fuzzy logic-based model are trained based on the GLC, utilizing consistent fundamental
landslide data. However, they differ in the factors considered to be influencing. The
QNL_CHN model only considers topographic relief and slope angle, the two most direct
factors influencing landslide occurrence. In contrast, the fuzzy logic model considers addi-
tional factors such as faults, geology, forest loss, and road networks. The QNL_ITA model
is developed based on 13 regional geomorphological, event, and multi-temporal inventory
maps to fit non-susceptibility landslide models for Italy [34]. From the results of the three
models, overall, the QNL_CHN model and the fuzzy logic-based model yield more consis-
tent results in predicting non-susceptible landslide-prone areas (Table S1). However, the
QNL_ITA model shows differences in the proportion of predicted non-susceptible areas for
39 subregions compared to the previous two models. We attribute this phenomenon mainly
to the differences in the landslide data used during model fitting. As the likelihood of land-
slides occurring in a spatial region primarily depends on local geographic environmental
conditions, the main influencing factors controlling landslide occurrence vary significantly
across different regions, leading to differences in fitted model parameters [31,35]. Despite
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the differences in methods between the QNL_CHN model and the fuzzy logic-based model,
their predicted results are closer, reflecting that landslide data, rather than the models
themselves, are the primary determinant of predictive model accuracy. However, the land-
slide records in this database mainly rely on textual information channels such as relevant
disaster reports and news, resulting in recorded landslide events mainly being catastrophic
landslides while often neglecting other unrecorded landslide events. Additionally, this
landslide database mainly consists of point data, with some datasets estimating the spatial
range of landslide points based on the radius of administrative regions, leading to errors in
the positional accuracy of some landslide geographical coordinate information. Therefore,
in future research, constructing a complete and accurate regional landslide database is
crucial for establishing accurate landslide susceptibility assessment models. However, the
continuous iteration and optimization of assessment models may have a limited impact on
improving model accuracy.

Both Godt et al. [33] and Marchesini et al. [34] assumed terrain slope and relief as
key variables for selecting landslide non-susceptible locations at the pixel level. The key
assumption of non-susceptibility analyses is that flat, low-relief regions are not prone to
landslides, which is supported by the fact that topography is the main influencing factor in
landslide susceptibility analysis. This method stands out for its simplicity, linking landslide
susceptibility directly to terrain features, making the analysis more intuitive and practical.
Selecting terrain slope and relief as key variables acknowledges the impact of natural
topography on landslide risk, providing robust support for landslide risk assessment.
Moreover, conducting analyses at the pixel level helps refine the study area at the spatial
scale, enhancing analysis precision. However, this approach comes with certain potential
limitations. Firstly, it overlooks other factors that could influence landslide occurrence,
such as soil type, vegetation cover, human activities, and more. Secondly, its adaptability to
climate change is limited, as shifting climate conditions may render past terrain features less
accurate in reflecting landslide susceptibility. Additionally, terrain alone represents just one
aspect of landslide susceptibility, and considering a broader range of factors may improve
the predictive accuracy of the model. Therefore, when applying this method, it is essential to
carefully balance its advantages and limitations, considering the introduction of additional
factors for a more comprehensive landslide risk assessment. Such a comprehensive analysis
contributes to a better understanding of landslide characteristics in non-susceptible areas,
enhancing predictive accuracy and practical utility.

6. Conclusions

In conclusion, our study delves into the applicability and performance of the QNL
model in landslide susceptibility assessment across various geological environments in
China. By comparing QNL model outcomes utilizing landslide databases from Italy
and East Asia, we unveil significant disparities in fitted curves and predicted slopes.
Specifically, the East Asian model delineates smaller non-susceptible areas and larger
landslide-prone areas compared to the Italian model, with notable variations observed
across different geological zones. While broad alignment is evident, localized disparities
persist, particularly in regions such as parts of Sichuan, Xinjiang, Daxing’anling, and Taiwan
in different assessment models (QNL and fuzzy algorithm model). Otherwise, despite the
overall agreement with observed landslide spatial distribution, significant discrepancies
were noted in specific regions such as the Longmen Mountain Tectonic Zone of the Sichuan-
Yunnan region, the Southwest Karst Mountain Geological Environment Zone, and the
Southeast Hilly Mountain Geological Environment Zone. These discrepancies highlight
the need for cautious interpretation of model outputs and the incorporation of additional
factors such as soil type, vegetation cover, and human activities influencing landslides for
enhanced predictive accuracy.

Within the QNL models, the QNL_CHN model demonstrates more accurate pre-
dictions of non-susceptible landslide areas within the China region compared with the
QNL_ITA model. We attribute this phenomenon mainly to the differences in the landslide
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data used during model fitting. Therefore, in future research, constructing a complete and
accurate regional landslide database is crucial for establishing a reliable susceptibility assess-
ment model. Our study contributes valuable insights into landslide susceptibility modeling,
emphasizing the intricate relationship between geological factors and model outcomes.
These insights are vital for forest protection, guiding risk assessment, ecosystem manage-
ment, vegetation restoration, water resource conservation, and public safety measures,
ensuring informed decision-making and proactive interventions in landslide-prone areas.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/f15040678/s1, Table S1: The proportion of non-susceptible landslide
areas in different geological environment sub-regions.
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