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Abstract: Robinia pseudoacacia is widely planted in the Loess Plateau as a major soil and water con-
servation tree species because of its dense canopy, complex structure, and strong soil and water
conservation ability. The precise measurement of small-scale locust forest biomass is crucial to moni-
toring and evaluating the carbon sequestration functions of soil and water conservation vegetation.
This study focuses on an artificial locust forest planted in the early 1990s in Caijiachuan Basin, Jixian
County, Shanxi Province. A drone equipped with LiDAR was used to obtain point cloud data and
generate a canopy height model. A watershed segmentation algorithm was used to identify tree
vertices and extract individual trees. A relationship model between tree height, diameter at breast
height, and biomass, combined with sample survey data, was established to explore the spatial
distribution of biomass in the artificial locust forest at the level of the entire basin. The results show
the following: (1) the structural parameters of locust extracted using UAV point cloud data have
a good degree of fit and accuracy, and the recall rate is 72.7%; (2) the average error rate of the extracted
maximum tree height value of locust is 7%, that of the minimum tree height value is 14%, and that of
the average tree height value is 18%; (3) the average error rate of the extracted maximum diameter at
breast height of locust is 15%, that of the minimum diameter at breast height is 37%, and that of the
average diameter at breast height is 36%; and (4) the average error rate of the biomass estimation of
locust calculated using point cloud data is 16.0%.

Keywords: UAV LiDAR; individual tree segmentation; aboveground biomass; height–diameter–
biomass models; density

1. Introduction

A forest’s aboveground biomass is the energy basis and material source for its ecosys-
tem’s ecological service function [1]. It is a key indicator used to evaluate forest health
and the sustainable utilization of vegetation resources [2]. It is also the basis for the study
of ecosystem carbon cycles and carbon storage [3]. The accurate biomass monitoring of
small-scale soil and water conservation forests is key to scientifically assessing their eco-
logical service functions, such as soil conservation [4], water conservation [5], diversity
conservation [6], and soil improvement [7], as well as laying the groundwork for a scientific
response to climate change and to achieving carbon neutrality and carbon peaks [3].

The traditional method of aboveground biomass estimation is mainly based on field
surveys and biomass regression models, which are constructed by counting tree height,
diameter at breast height, and other related parameters of individual trees in sample plots
through anisotropic growth equations [8]. These biomass measurements can be used as
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basic data for the macro-estimation of biomass in the whole study area [9]. However, deter-
mining biomass by measuring forest structural parameters is costly and labor-intensive [10].

Estimating aboveground biomass using remote sensing is mainly based on features
such as spectrum, index, and texture, which are extracted from optical remote sensing
images to establish biomass inversion models [11–13]. Although these models can reach
high levels of accuracy, they are not usually generalizable and are limited by the accuracy of
image resolution. They also make it difficult to achieve biomass estimation at the individual
tree scale [14]. Microwave remote sensing data can also be used to obtain stand factors such
as tree height and crown width; combined with allometric growth models, these data can
aid in the construction of a biomass estimation model [15,16]. However, microwave radars
are easily influenced by the environment and monitored targets, among other limitations
on large-scale biomass estimation [17].

A laser radar uses a pulsed laser to measure a range or the distance to the Earth‘s
surface [18]. A sensor measures the return time of the laser pulse and can then be calibrated
using the Global Positioning System (GPS) to provide absolute x, y, and z values for each
return pulse [19]. In the context of forest biomass estimation, the first recorded signal
is reflected from the highest surface of the forest, and the final return signal is usually
considered to be reflected from its lowest point. At present, UAV LiDAR is not only
widely used in the biomass estimation of Betula platyphylla [20], Populus davidiana [21],
Picea crassifolia [22], Pinus sylvestris var.mongolica [23], Larix gmelinii [24], and other tree
species but also of coniferous forests [25–27], the Greater Khingan Range [28,29], cities [30],
tropical forests [31], and other large areas. Thus far, UAV LiDAR has found success in
extracting individual trees in the case of species whose crowns are essentially conical, like
those mentioned above. However, given that Robinia pseudoacacia has a relatively flat crown,
more robust research is needed on estimating its aboveground biomass using UAV LiDAR.

Therefore, our research object was an artificial locust forest planted in the early 1990s
in Caijiachuan River Basin, Jixian County, Shanxi Province. The relationship between the
growth data of locust and the point cloud data obtained using UAV was established by
combining the point cloud data with the tree height, DBH, and aboveground biomass
data obtained using plot surveys. The aim was to provide an effective UAV LiDAR-based
method for estimating the biomass of the locust forest on the level of the entire basin and to
then provide data supporting the evaluation of the carbon sink capacity of soil and water
conservation forests.

2. Materials and Methods
2.1. Study Area

The study area is located in the Caijiachuan River Basin, home to the National Field
Scientific Observation and Research Station for Forest Ecosystems in Jixian County, Shanxi
Province. The geographical coordinates are 110◦39′45′′–110◦47′45′′ E, 36◦14′27′′–36◦18′23′′ N.
The terrain is high in the east and low in the west, with an area of 39.33 km2 and a basin
length of about 14 km. The elevation is 900–1513 m. The annual average temperature
is 10.2 ◦C, and the annual average precipitation is 575.9 mm. Rainfall is mainly concen-
trated from July to September, accounting for about 59.5% of the annual precipitation.
The area has a warm temperate continental climate. The brown soils that predominate in
the area are of a Loess parent material and are slightly alkaline. The Caijiachuan River
Basin has abundant plant resources, with 194 species of common woody plants, 180 herba-
ceous plants, and 141 traditional Chinese herbs. Since the 1970s, afforestation has been
carried out in the basin, producing a forest coverage rate of over 80%. The upstream
mainly consists of natural secondary forests, populated by species such as Populus davidiana
and Quercus mongolica; the middle reaches are mainly artificial forests composed of Robinia
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pseudoacacia and Pinus tabuliformis; and the lower reaches are wasteland and farmland.
Apple (Malus pumila), pear (Pyrus spp.), apricot (Armeniaca vulgaris), and other fruit trees
are planted in the slope terraced fields. The area of the Caijiachuan River Basin selected
for this study, which was planted with acacia forests in the 1990s (Figure 1), has an area of
2.06 km2.
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Figure 1. Location of the study area.

2.2. Data Sources and Processing
2.2.1. Sample Survey

From May to August 2022, 14 quadrats (Table 1) 20 m × 20 m in size were selected in
the study area to measure each tree, and indexes such as diameter, tree height, and crown
width were recorded. Diameter at breast height was measured using a caliper, tree height
was measured using a telescopic rod, and crown width was measured using a tape measure.
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Standard trees were selected based on the average tree height and average diameter at
breast height of each plot. The mathematical equation between tree height, diameter at
breast height, and biomass was fitted based on standard tree data and used to estimate the
total biomass of each locust plot.

Table 1. Basic information on the sample area.

Plot
ID Longitude Latitude Density

(Tree/hm2) Altitude/m Aspect/◦ Slope/◦ Tree Height/m
(avg. ± SD) CV AGB/kg

1 110◦44′49.4810′′ E 36◦16′28.2848′′ N 950 1181 335 25 11.46 ± 2.63 Middle 2107.996
2 110◦45′27.1682′′ E 36◦16′15.3416′′ N 1156 1112 65 27 10.17 ± 3.59 High 1117.346
3 110◦44′24.8988′′ E 36◦16′32.1703′′ N 1150 1166 180 20 10.34 ± 3.39 High 3134.514
4 110◦45′26.5978′′ E 36◦16′18.8931′′ N 1475 1119 75 26 10.77 ± 3.53 High 2386.459
5 110◦45′50.7713′′ E 36◦16′30.3138′′ N 1500 1117 60 15 8.27 ± 3.91 High 2344.06
6 110◦44′31.3110′′ E 36◦16′30.0838′′ N 1525 1149 225 23 8.03 ± 2.31 Middle 3978.908
7 110◦46′11.1767′′ E 36◦16′18.0881′′ N 1950 1022 70 31 10.1 ± 2.61 Middle 4275.538
8 110◦46′08.4736′′ E 36◦16′18.0780′′ N 2200 958 50 15 10.15 ± 2.34 Middle 3177.047
9 110◦45′53.9493′′ E 36◦16′29.8737′′ N 2050 1086 40 15 9.56 ± 2.54 Middle 1734.486

10 110◦45′52.9134′′ E 36◦16′32.7558′′ N 2444 1088 35 0 10.2 ± 2.19 Middle 2331.556
11 110◦44′32.5029′′ E 36◦16′42.0954′′ N 2475 1168 196 22 12.98 ± 3.03 Middle 3383.656
12 110◦45′19.9705′′ E 36◦16′52.4691′′ N 2475 1110 195 28 12.05 ± 3.63 Middle 3156.846
13 110◦45′41.4187′′ E 36◦16′20.3522′′ N 3022 1056 150 14 8.85 ± 2.85 High 2108.085
14 110◦45′44.2842′′ E 36◦16′22.4456′′ N 3300 1081 180 36 9.05 ± 2.68 Middle 3355.007

2.2.2. LiDAR Data Acquisition and Processing

From May to June 2023, a DJI M300RTK UAV equipped with a Zen L1 radar lens was
used for data acquisition. The ground mode was used; the flight speed was 10 m/s, the
flight height was 80 m, the laser side overlap rate was 80%, and the average point density
was 147 points/m2. A total of 43.4 GB of LiDAR data and 2046 UAV images covering the
study area were obtained.

We used DJI Maps (v3.6) software to generate an orthographic UAV image of the study
area (Figure 2a); the spatial resolution was 1 m. The progressive encryption triangulation
filtering algorithm was used to classify the ground point cloud and the surface point
cloud [32,33]. The co-Kriging interpolation method was used to generate the digital surface
model (Figure 2b) and the digital elevation model (Figure 2c). The difference between the
digital surface model and the digital elevation model was calculated to obtain the canopy
height model (Figure 2d) of the study area, with a spatial resolution of 0.5 m.

2.2.3. Split Window Size

Segmentation windows of 0.1 m × 0.1 m, 0.2 m × 0.2 m, 0.3 m × 0.3 m, 0.4 m × 0.4 m,
and 0.5 m × 0.5 m were selected. The variable window-filtering algorithm was used to
analyze the optimal segmentation window for individual tree extraction [34].

2.2.4. Individual Tree Extraction and Segmentation

Firstly, individual tree position detection was carried out and the spatial position of
the crown vertex was determined. Secondly, the extracted crown vertices were used as
seed points to perform individual tree crown segmentation. During tree vertex recognition,
a local maximum algorithm was used, and raster data were searched through the moving
window step by step to determine whether the center point of the search window was the
local maximum value [35]. If that was the case, the pixel was marked as the tree vertex, and
then the watershed segmentation algorithm was used to accurately segment the individual
tree crown by using the optimal segmentation window [36,37]. This was achieved using the
point cloud toolbox in MATLAB R2023b. The results of individual tree vertex recognition
and individual tree extraction are shown in Figures 3 and 4.



Forests 2024, 15, 548 5 of 15

Forests 2024, 15, x FOR PEER REVIEW 4 of 16 
 

 

Table 1. Basic information on the sample area. 

Plot 
ID Longitude Latitude Density 

(Tree/hm2) Altitude/m Aspect/° Slope/° Tree Height/m 
(avg. ± SD) CV AGB/kg 

1 110°44′49.4810″ E 36°16′28.2848″ N 950 1181 335 25 11.46 ± 2.63 Middle 2107.996 
2 110°45′27.1682″ E 36°16′15.3416″ N 1156 1112 65 27 10.17 ± 3.59 High 1117.346 
3 110°44′24.8988″ E 36°16′32.1703″ N 1150 1166 180 20 10.34 ± 3.39 High 3134.514 
4 110°45′26.5978″ E 36°16′18.8931″ N 1475 1119 75 26 10.77 ± 3.53 High 2386.459 
5 110°45′50.7713″ E 36°16′30.3138″ N 1500 1117 60 15 8.27 ± 3.91 High 2344.06 
6 110°44′31.3110″ E 36°16′30.0838″ N 1525 1149 225 23 8.03 ± 2.31 Middle 3978.908 
7 110°46′11.1767″ E 36°16′18.0881″ N 1950 1022 70 31 10.1 ± 2.61 Middle 4275.538 
8 110°46′08.4736″ E 36°16′18.0780″ N 2200 958 50 15 10.15 ± 2.34 Middle 3177.047 
9 110°45′53.9493″ E 36°16′29.8737″ N 2050 1086 40 15 9.56 ± 2.54 Middle 1734.486 

10 110°45′52.9134″ E 36°16′32.7558″ N 2444 1088 35 0 10.2 ± 2.19 Middle 2331.556 
11 110°44′32.5029″ E 36°16′42.0954″ N 2475 1168 196 22 12.98 ± 3.03 Middle 3383.656 
12 110°45′19.9705″ E 36°16′52.4691″ N 2475 1110 195 28 12.05 ± 3.63 Middle 3156.846 
13 110°45′41.4187″ E 36°16′20.3522″ N 3022 1056 150 14 8.85 ± 2.85 High 2108.085 
14 110°45′44.2842″ E 36°16′22.4456″ N 3300 1081 180 36 9.05 ± 2.68 Middle 3355.007 

2.2.2. LiDAR Data Acquisition and Processing 
From May to June 2023, a DJI M300RTK UAV equipped with a Zen L1 radar lens was 

used for data acquisition. The ground mode was used; the flight speed was 10 m/s, the 
flight height was 80 m, the laser side overlap rate was 80%, and the average point density 
was 147 points/m2. A total of 43.4 GB of LiDAR data and 2046 UAV images covering the 
study area were obtained. 

We used DJI Maps (v3.6) software to generate an orthographic UAV image of the 
study area (Figure 2a); the spatial resolution was 1 m. The progressive encryption trian-
gulation filtering algorithm was used to classify the ground point cloud and the surface 
point cloud [32,33]. The co-Kriging interpolation method was used to generate the digital 
surface model (Figure 2b) and the digital elevation model (Figure 2c). The difference be-
tween the digital surface model and the digital elevation model was calculated to obtain 
the canopy height model (Figure 2d) of the study area, with a spatial resolution of 0.5 m. 

  

Forests 2024, 15, x FOR PEER REVIEW 5 of 16 
 

 

  
Figure 2. (a) Digital orthographic model. (b) Digital surface model. (c) Digital elevation model. (d) 
Canopy height model. 

2.2.3. Split Window Size 
Segmentation windows of 0.1 m × 0.1 m, 0.2 m × 0.2 m, 0.3 m × 0.3 m, 0.4 m × 0.4 m, 

and 0.5 m × 0.5 m were selected. The variable window-filtering algorithm was used to 
analyze the optimal segmentation window for individual tree extraction [34]. 

2.2.4. Individual Tree Extraction and Segmentation 
Firstly, individual tree position detection was carried out and the spatial position of 

the crown vertex was determined. Secondly, the extracted crown vertices were used as 
seed points to perform individual tree crown segmentation. During tree vertex recogni-
tion, a local maximum algorithm was used, and raster data were searched through the 
moving window step by step to determine whether the center point of the search window 
was the local maximum value [35]. If that was the case, the pixel was marked as the tree 
vertex, and then the watershed segmentation algorithm was used to accurately segment 
the individual tree crown by using the optimal segmentation window [36,37]. This was 
achieved using the point cloud toolbox in MATLAB R2023b. The results of individual tree 
vertex recognition and individual tree extraction are shown in Figures 3 and 4. 

 
Figure 3. Results of Robinia pseudoacacia distribution. Red dots identify the vertices of Robinia pseu-
doacacia trees. 

Figure 2. (a) Digital orthographic model. (b) Digital surface model. (c) Digital elevation model.
(d) Canopy height model.

Forests 2024, 15, x FOR PEER REVIEW 5 of 16 
 

 

  
Figure 2. (a) Digital orthographic model. (b) Digital surface model. (c) Digital elevation model. (d) 
Canopy height model. 

2.2.3. Split Window Size 
Segmentation windows of 0.1 m × 0.1 m, 0.2 m × 0.2 m, 0.3 m × 0.3 m, 0.4 m × 0.4 m, 

and 0.5 m × 0.5 m were selected. The variable window-filtering algorithm was used to 
analyze the optimal segmentation window for individual tree extraction [34]. 

2.2.4. Individual Tree Extraction and Segmentation 
Firstly, individual tree position detection was carried out and the spatial position of 

the crown vertex was determined. Secondly, the extracted crown vertices were used as 
seed points to perform individual tree crown segmentation. During tree vertex recogni-
tion, a local maximum algorithm was used, and raster data were searched through the 
moving window step by step to determine whether the center point of the search window 
was the local maximum value [35]. If that was the case, the pixel was marked as the tree 
vertex, and then the watershed segmentation algorithm was used to accurately segment 
the individual tree crown by using the optimal segmentation window [36,37]. This was 
achieved using the point cloud toolbox in MATLAB R2023b. The results of individual tree 
vertex recognition and individual tree extraction are shown in Figures 3 and 4. 

 
Figure 3. Results of Robinia pseudoacacia distribution. Red dots identify the vertices of Robinia pseu-
doacacia trees. 
Figure 3. Results of Robinia pseudoacacia distribution. Red dots identify the vertices of Robinia
pseudoacacia trees.



Forests 2024, 15, 548 6 of 15Forests 2024, 15, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 4. Individual tree segmentation results for Robinia pseudoacacia. Different colors represent 
the segmentation of individual Robinia pseudoacacia specimens. 

2.2.5. Verification of Individual Tree Segmentation Results 
The UAV orthophoto map was used as the verification base map to evaluate the in-

dividual tree segmentation results, which were classified as either correct segmentation, 
missed segmentation, or over-segmentation. Recall and accuracy rates were used to eval-
uate the interpretation results [38]. 𝑟 = 𝑇𝑇 + 𝐹  (1)

𝑝 = 𝑇𝑇 + 𝐹  (2)

In the above formula, r represents the recall rate, that is, the proportion of the number 
of correctly segmented plants to the number of actually investigated plants; p represents 
the correct rate, that is, the proportion of the number of correctly segmented plants to the 
number of plants extracted from point cloud data; Tp represents the number of correctly 
segmented plants; Fn represents the number of missing segmentation plants, that is, single 
trees that were not detected by the point cloud data; Fp represents the number of over-
segmented trees, that is, instances in which the point cloud data divided a tree into mul-
tiple trees. 

Taking the sample data as the measured value and the point cloud data extraction 
value as the estimated value, the tree height, diameter, and biomass error rates of the point 
cloud data were calculated. 𝑒 = |𝐸 −𝑀|𝑀 × 100% (3)

In the above formula, e represents the error rate; E represents the estimated value; 
and M represents the measured value. 

3. Results 
3.1. Height–Diameter–Biomass Models 

The relationship between the tree height and diameter of 514 individual locust trees 
in the study area, based on the data obtained from the ground quadrat survey, is shown 
in Figure 5. The regression equation of tree height and diameter was obtained by regres-
sion fitting with nonlinear function: 𝐷𝐵𝐻 = 0.8108 × 𝐻 .  (4)

In the above formula, DBH is the diameter at breast height, and the unit is cm; H is 
the tree height, and the unit is m; and the correlation coefficient R2 = 0.7294. 

Figure 4. Individual tree segmentation results for Robinia pseudoacacia. Different colors represent the
segmentation of individual Robinia pseudoacacia specimens.

2.2.5. Verification of Individual Tree Segmentation Results

The UAV orthophoto map was used as the verification base map to evaluate the
individual tree segmentation results, which were classified as either correct segmenta-
tion, missed segmentation, or over-segmentation. Recall and accuracy rates were used to
evaluate the interpretation results [38].

r =
Tp

Tp + Fn
(1)

p =
Tp

Tp + Fp
(2)

In the above formula, r represents the recall rate, that is, the proportion of the number
of correctly segmented plants to the number of actually investigated plants; p represents
the correct rate, that is, the proportion of the number of correctly segmented plants to
the number of plants extracted from point cloud data; Tp represents the number of cor-
rectly segmented plants; Fn represents the number of missing segmentation plants, that is,
single trees that were not detected by the point cloud data; Fp represents the number of
over-segmented trees, that is, instances in which the point cloud data divided a tree into
multiple trees.

Taking the sample data as the measured value and the point cloud data extraction
value as the estimated value, the tree height, diameter, and biomass error rates of the point
cloud data were calculated.

e =
(|E − M|)

M
× 100% (3)

In the above formula, e represents the error rate; E represents the estimated value; and
M represents the measured value.

3. Results
3.1. Height–Diameter–Biomass Models

The relationship between the tree height and diameter of 514 individual locust trees in
the study area, based on the data obtained from the ground quadrat survey, is shown in
Figure 5. The regression equation of tree height and diameter was obtained by regression
fitting with nonlinear function:

DBH = 0.8108 × H1.1716 (4)

In the above formula, DBH is the diameter at breast height, and the unit is cm; H is the
tree height, and the unit is m; and the correlation coefficient R2 = 0.7294.
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The height, diameter at breast height, and biomass of 14 standard trees were measured.
The mathematical relationship between tree height, diameter at breast height, and biomass
was fitted, and the fitting results are shown in Table 2. The best fitting relationship was
selected from Table 2.

Table 2. Nonlinear biomass estimation models of Robinia pseudoacacia.

Estimation Models Fitting Formula R2 MAE RMSE

AGB = aDBHb AGB = 3.362 × DBH1.11 0.67 12.086 8.398
AGB = aHb AGB = 3.438 × H1.07 0.41 12.086 11.34

AGB = a(DBH2 H)b AGB = 2.111 × (DBH2 H)0.4333 0.70 4.514 8.188
AGB = aDBHb Hc AGB = 2.354 × DBH0.9392 H0.3171 0.69 11.595 8.595

AGB = a(DBH3/H) b AGB = 6.24 × (DBH3/H)0.4261 0.58 13.454 9.481

Based on a comprehensive comparison of the R2, MAE, and RMSE produced by the
five models, the optimal aboveground biomass model was selected and is as follows:

AGB = 2.111 ×
(

DBH2H
)0.4333

(5)

In the above formula, AGB is the aboveground biomass of a single plant, and the unit
is kg; DBH is the diameter at breast height, and the unit is cm; and H is the tree height, and
the unit is m.

Using the above diameter–height regression equation, the diameter of individual trees
segmented by point cloud data was calculated, and then the aboveground biomass of locust
in the study area was estimated using the height–diameter–biomass model.

3.2. Analysis of Segmentation Window Size and Individual Tree Recognition Accuracy

Table 3 presents the results of individual tree segmentation conducted using
0.1 m × 0.1 m, 0.2 m × 0.2 m, 0.3 m × 0.3 m, 0.4 m × 0.4 m, and 0.5 m × 0.5 m segmen-
tation windows. It is evident that there were a total of 514 locust trees in the measured
quadrats. The recall and accuracy rates of the segmentation were calculated according to
Formulas (1) and (2). It can be seen that when the segmentation window is 0.1 m × 0.1 m,
the highest recall rate of individual tree segmentation is 72.7%, and the correct rate is 78.6%.
This result is similar to the result of single tree extraction obtained by Yin et al. [33]. The
total number of individual tree extractions obtained using the 0.1 m × 0.1 m segmentation
window is 476, the number of correct segmentations is 374, and the recall rate is 72.7%. On
the other hand, the minimum recall rate of the 0.5 m × 0.5 m segmentation window is 36%,
and there are more instances of missing segmentation.



Forests 2024, 15, 548 8 of 15

Table 3. The results of extracting the number of individual trees of Robinia pseudoacacia with different
segmentation windows.

Plot ID 2 3 4 5 6 7 8 9 10 13 14 SUM

Reality 60 31 44 32 63 52 22 49 34 64 63 514
0.1 × 0.1 m 47 33 28 28 50 52 22 44 42 58 70 476

Tp 39 25 14 22 46 40 20 37 32 52 47 374
Fn 21 6 30 10 17 12 2 12 2 12 16 132
Fp 8 8 14 6 4 12 2 7 10 6 23 102

r/% 75.0 80.6 31.8 68.8 73.0 76.9 90.9 75.5 94.1 81.3 74.6 72.7
p/% 83.0 75.8 50.0 78.6 92.0 75.5 90.9 82.2 76.2 89.7 67.1 78.6

0.2 × 0.2 m 40 32 25 30 45 46 21 40 38 54 64 435
Tp 32 24 11 24 41 33 19 32 28 48 41 333
Fn 28 7 33 8 22 19 3 17 6 16 22 173
Fp 8 8 14 6 4 13 2 8 10 6 23 102

r/% 61.5 77.4 25.0 75.0 65.1 63.5 86.4 65.3 82.4 75.0 65.1 64.7
p/% 80.0 75.0 44.0 80.0 91.1 71.7 90.5 80.0 73.7 88.9 64.1 76.6

0.3 × 0.3 m 35 27 19 25 37 42 19 36 31 45 43 359
Tp 27 19 5 19 33 29 17 28 21 39 20 257
Fn 33 12 39 13 30 23 5 21 13 25 43 249
Fp 8 8 14 6 4 13 2 8 10 6 23 102

r/% 51.9 61.3 11.4 59.4 52.4 55.8 77.3 57.1 61.8 60.9 31.7 50.0
p/% 77.1 70.4 26.3 76.0 89.2 69.0 89.5 77.8 67.7 86.7 46.5 71.6

0.4 × 0.4 m 32 23 18 22 29 36 15 31 22 38 30 296
Tp 24 15 4 16 29 26 13 23 21 33 24 228
Fn 36 16 40 16 34 26 9 26 13 31 39 278
Fp 8 8 14 6 0 10 2 8 1 5 6 68

r/% 46.2 48.4 9.1 50.0 46.0 50.0 59.1 46.9 61.8 51.6 38.1 44.3
p/% 75.0 65.2 22.2 72.7 100.0 72.2 86.7 74.2 95.5 86.8 80.0 77.0

0.5 × 0.5 m 25 15 17 20 25 30 12 28 20 31 24 247
Tp 18 10 4 14 23 20 10 21 18 25 19 182
Fn 42 21 40 18 40 32 12 28 16 39 44 324
Fp 7 5 13 6 2 10 2 7 2 6 5 65

r/% 34.6 32.3 9.1 43.8 36.5 38.5 42.5 42.9 52.9 39.1 30.2 35.4
p/% 72.0 66.7 23.5 70.0 92.0 66.7 83.3 75.0 90.0 80.6 79.2 73.7

Data points 1, 11, 12 are damaged.

Eleven plots were used to verify the results of individual tree segmentation (Figure 6).
It can be seen that the greater the number of locust trees, the more likely it is for values to
be underestimated.
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3.3. Results and Analysis of Extracted Tree Height

Figure 7 depicts the estimated tree height of each quadrat based on point cloud data
and the corresponding measured tree height. It can be seen that the estimated height of
locust is between 6.38 m and 15.58 m. According to Formula (3), the average error rate of
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the maximum tree height was 7%, that of the minimum tree height was 14%, and that of
the average tree height was 18%.
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Figure 7. Statistical analysis of tree height.

Figure 8 represents a comparison between the estimated and measured maximum
and average tree height. Within the range of 10–16 m, the maximum tree height of eight
out of the eleven sample plots was overestimated; in two plots, the estimated maximum
tree height was the same as the measured value, and in one plot, it was lower than the
measured value. Within the range of 8–11 m, the average tree height values of ten plots
were overestimated, and they were underestimated for only one sample plot.
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3.4. Results and Analysis of Extracted DBH

Figure 9 represents the estimated DBH of each quadrat based on point cloud data
and the corresponding measured DBH. It can be seen that the DBH of locust was between
5.28 cm and 27.42 cm. According to Formula (3), the average error rate of the maximum
diameter at breast height was 15%, that of the minimum diameter at breast height was 37%,
and that of the average diameter at breast height was 36%.
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Figure 10 compares the extracted and measured values of the average diameter at
breast height. It can be seen that in nine plots, the estimated average diameter was
overestimated, while in two plots, it was underestimated.
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3.5. Estimation and Analysis of Biomass

Biomass was estimated using Formulas (4) and (5). Figure 11 represents the estimated
biomass value of each quadrat based on point cloud data and the corresponding measured
biomass value. According to Formula (3), the average error rate of the estimated biomass
value was 16%.
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Figure 12 depicts a comparison between measured and estimated biomass, showing
that point cloud data can be used to estimate the biomass of locust.
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3.6. Biomass Estimation and Analysis in the Study Area

Figure 13 maps the spatial distribution of the aboveground biomass of single locust
trees in the study area, which ranges from 16.32 kg to 227.59 kg, with an average of 56.38 kg.

The global Moran’s I index was used to further analyze the spatial aggregation degree
of locust aboveground biomass distribution in the study area. The Moran’s I index was
0.338, the significance was p < 0.001, and the Z test result was 383.28 (confidence 99%),
showing a strong spatial aggregation. It can be seen in Figure 12 that there is a partial
spatial aggregation phenomenon in the aboveground biomass distribution of locust in the
study area.
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4. Discussion
4.1. Influencing Factors of Individual Tree Segmentation

In the process of individual tree segmentation, even if a 0.1 m × 0.1 m segmentation
window is used, there will still be missing trees. Therefore, follow-up studies should
consider continuing to reduce the size of the segmentation window. In addition, due to
the dense vegetation under the locust forest, lower trees were mixed up with taller shrubs.
When individual tree segmentation was carried out, these shrubs were often mistakenly
classified as locust, resulting in large errors. Therefore, in this study, during the field
investigation, the highest height of shrubs was taken as the minimum height threshold for
locust to reduce this misclassification.

4.2. Influencing Factors of Tree Height Extraction

Due to the aerial survey route and the probe inclination angle, point cloud density
directly below the LiDAR sensor is higher than point cloud density on either side of it,
meaning the extracted tree height will also change, thus affecting its estimation. Laser
radar uses a pulsed laser to measure the distance from the sensor to the laser irradiation
point on the ground by means of laser beam scanning; the distance between the sensor
and the ground sampling point is obtained by measuring the time delay between the
laser echo pulse of the ground sampling point and the main wave of the emitted laser.
Therefore, variations in the drone’s flight altitude will also cause differences in the quality
of point cloud data generation. When the drone is too high, ground points will be omitted,
resulting in the inability to generate DEM data. This study used the CHM segmentation
algorithm to extract individual locust trees. Therefore, the accuracy of DEM and DSM data,
which directly affects the accuracy of tree height extraction, is particularly important. In
addition to reducing flight altitudes, ground LiDAR will also be introduced in subsequent
research. Using ground LiDAR point cloud data to obtain high-precision DEM, combined
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with the DSM generated from airborne LiDAR point cloud data, will allow us to obtain
high-precision CHM and reduce estimation errors [39].

4.3. Influencing Factors of DBH Extraction

The values of diameter at breast height are estimated based on the relationship between
measured tree height and diameter at breast height data (Formula (4)). Therefore, any
errors in tree height estimation will translate into errors in diameter at breast height values.
Accurately extracting individual trees and their heights is crucial to reducing diameter
errors. In future research, we will increase the sample size to avoid errors caused by the
small sample used in this study.

4.4. Influencing Factors of Biomass Estimation Accuracy

In addition to the above factors, which affect the estimated number of individual
trees and tree height, the choice of model is also an important factor in biomass estimation.
Comparing the biomass of standard trees estimated using Formula (5), the biomass of
standard trees estimated using the allometric growth equation, and the actual mass, the
total biomass estimated using Formula (5) is 88.76 kg lower than the actual value, and the
average biomass per tree is 6.34 kg lower. The total biomass estimated using the allometric
growth equation is 254.30 kg lower than the actual value, and the average biomass per tree
is 18.16 kg lower. This may be related to the method used to select standard trees. This study
selected standard trees using the average DBH and tree height in the sample plot, which
may not have taken shorter and taller trees into account. Therefore, the height of locust
will be graded in future research. The number of standard trees will also be increased.

5. Conclusions

In this study, an artificial locust forest in Caijiachuan Basin, Jixian County, Shanxi
Province, was selected as the research area. UAV orthophoto images and LiDAR point
cloud data were used as the data sources, and the watershed segmentation algorithm was
used to extract the number of individual locust trees. On this basis, combined with the
growth parameters of locust measured in the field, a height–diameter–biomass model was
fitted, the accurate extraction of individual tree structure characteristics was performed,
and the aboveground biomass of locust in the study area was estimated. The following
conclusions were drawn:

(1) UAV point cloud data and orthophoto images can be used to extract the number
of individual locust trees. The recall rate is 72.7%, and the accuracy rate is 78.6%. Point
cloud data have also proven useful for estimating the biomass of locust and are a point of
reference for subsequent research;

(2) Based on UAV point cloud data and orthophoto estimation, the aboveground
biomass of locust in the study area ranged from 16.32 kg to 227.59 kg, with an average of
56.38 kg;

(3) The biomass distribution of locust had strong spatial aggregation at the level of the
basin as a whole.

Point cloud data can be used to achieve a cost-efficient and accurate AGB inversion
of locust. Moving forward, we plan to improve the model by increasing the number of
standard trees while classifying locust according to tree height in order to fully utilize the
proposed method.
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