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Abstract: The Loess Plateau (LP) is a typical climate-sensitive and ecologically delicate area in
China. Clarifying the vegetation–climate interaction in the LP over 40+ years, particularly pre- and
post-Grain to Green Program (GTGP) implementation, is crucial for addressing potential climate
threats and achieving regional ecological sustainability. Utilizing the kernel Normalized Difference
Vegetation Index (kNDVI) and key climatic variables (precipitation (PRE), air temperature (TEM), and
solar radiation (SR)) between 1982 and 2022, we performed an extensive examination of vegetation
patterns and their reaction to changes in climate using various statistical methods. Our findings
highlight a considerable and widespread greening on the LP from 1982 to 2022, evidenced by a
kNDVI slope of 0.0020 yr−1 (p < 0.001) and a 90.9% significantly increased greened area. The GTGP
expedited this greening process, with the kNDVI slope increasing from 0.0009 yr−1 to 0.0036 yr−1

and the significantly greened area expanding from 39.1% to 84.0%. Over the past 40 years, the LP
experienced significant warming (p < 0.001), slight humidification, and a marginal decrease in SR.
Post-GTGP implementation, the warming rate decelerated, while PRE and SR growth rates slightly
accelerated. Since the hurst index exceeded 0.5, most of the vegetated area of the LP is expected to be
greening, warming, and humidification in the future. In the long term, 75% of the LP vegetated area
significantly benefited from the increase in PRE, especially in relatively dry environments. In the LP,
61% of vegetated areas showed a positive correlation between kNDVI and TEM, while 4.9% exhibited
a significant negative correlation, mainly in arid zones. SR promoted vegetation growth in 23% of the
vegetated area, mostly in the eastern LP. The GTGP enhanced the sensitivity of vegetation to PRE,
increasing the area corresponding to a significant positive correlation from 15.3% to 59.9%. Overall,
PRE has emerged as the dominant climate driver for the vegetation dynamics of the LP, followed
by TEM and SR. These insights contribute to a comprehensive understanding of the climate-impact-
related vegetation response mechanisms, providing guidance for efforts toward regional sustainable
ecological development amid the changing climate.

Keywords: vegetation variation; kNDVI; climate factors; Loess Plateau; climate zones; Grain to
Green Program

1. Introduction

Vegetation is pivotal within terrestrial ecosystems by aiding in the regulation of
material and energy exchanges within the land–climate system [1,2]. It also contributes
significantly to upholding ecosystem stability and ensuring the sustainable development
of human societies [3–5]. Long-term satellite observations have illuminated a widespread
process of vegetation greening globally since the 1980s [6], with climate change emerging as
a noteworthy driving force [7]. Interactions between the vegetation and climate systems are
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governed by complex biophysical factors and processes, thereby amplifying the uncertainty
associated with ecological strategies in response to a changing climate [8,9]. Vegetation
growth on land exerts a dual influence on the global carbon–water cycle, leading to a reduc-
tion of atmospheric CO2 concentrations via photosynthesis [10] and the regulation of water
fluxes via transpiration in the soil–vegetation–atmosphere continuum [11]. Simultaneously,
climate change precipitates rapid alterations in plant growth and the regional coupling
dynamics of carbon and water [12], thus affecting ecosystem adaptation and resilience [13].
Consequently, unraveling the drivers of climate-induced changes in vegetation growth has
assumed paramount significance in addressing and forecasting potential climate threats.

The spatiotemporal patterns of vegetation are regulated by external climatic conditions,
with PRR, TEM, and SR being recognized as the predominant climate regulators [14–16].
For instance, the physiological processes of vegetation, such as photosynthetic activity
and respiratory rates, exhibit sensitivity to ambient temperature variations [17]. Specifi-
cally, vegetation in the Northern Hemisphere undergoes substantial increases in coverage
attributed to the advancement and extension of the vegetative growing season resulting
from warmer temperatures [18,19]. In contrast, vegetated areas in dry environments are
more susceptible to water stress, with insufficient precipitation having been identified
as the primary factor restricting vegetation growth [20,21]. Solar radiation (SR), which
serves as a potential heat source for vegetation photosynthesis, has been confirmed as the
primary driver for vegetation dynamics [22,23]. Vegetation also influences local, regional,
or global climate conditions by regulating important processes such as surface energy
balance, evapotranspiration, and surface water fluxes [6,11,24].

Quantitative investigations into the vegetation–climate relationship have garnered sig-
nificant scholarly attention [25–27]. Traditional station-based observation methods, albeit
valuable, face challenges in providing comprehensive, long-term, and large-scale insights
into vegetation dynamics [28]. The advent of remote sensing technology has become in-
strumental in facilitating extensive monitoring for determining vegetation dynamics [29].
Detecting and attributing vegetation dynamics at large scales relies on various vegetation
indices (VIs) derived from satellite observations, with Normalized Difference Vegetation
Index (NDVI) and Enhanced Vegetation Index (EVI) being the prevailing options [30–32].
A strong association between the NDVI and biophysical and biochemical factors, including
leaf area, chlorophyll density, green biomass, and growth conditions, is evident based on
some studies [33–35]. Nevertheless, the precision of the data is impeded by the abundance
of plants in thick foliage and its susceptibility to variations in the brightness of the canopy
background [36,37]. In contrast, the EVI diminishes the effects of aerosols and soil back-
ground on different types of vegetation cover on the basis of the NDVI, yet saturation
remains an issue [38,39]. Addressing these concerns, Camps-Valls et al. [40] proposed
the kernel NDVI (kNDVI) grounded in kernel approach principles. In comparison to the
NDVI and EVI, the kNDVI demonstrates enhanced consistency with primary productivity,
saturation resistance, bias mitigation, and resilience to phenological cycles [40,41]. The
kNDVI improves robustness and instability toward noise on both spatial and temporal
scales and has proven effective for assessing vegetation dynamics [42–44].

Located in China’s climatic transition zone, the LP is characterized by limited water
resources, extensive soil erosion, a delicate ecological environment, and a high susceptibility
to climate change [45,46]. A number of ecological projects, notably the Grain to Green
Program (GTGP) initiated in 1999 [47,48], have greatly enhanced the ecological conditions
in the LP. Several research studies have investigated the impact of weather conditions
on plant life in the LP region, utilizing the Global Inventory Monitoring and Modelling
Studies (GIMMS) NDVI dataset from 1982 to 2015 [49–51]. However, the limitations of
these investigations lie in the absence of data beyond 2015. In contrast, MODIS-related VIs
provides contemporary insights [52–54], but their validity extends only to periods post-
GTGP implementation. The integration of GIMMS NDVI and MODIS data has emerged as
a promising strategy for overcoming these constraints [55,56]. Nonetheless, it is essential to
recognize that the challenge pertaining to saturation in VIs persists.
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To fill this gap, we calculated the monthly kNDVI values for the Loess Plateau based
on a more-than-40-year continuous NDVI dataset, which covers both the periods pre-
(1982–1999) and post-implementation (2000–2022) of the GTGP. Moreover, the variability of
vegetation dynamics and its reaction to climate variation were comparatively evaluated
across three distinct climatic zones. Our objectives were to (1) analyze the spatiotemporal
patterns of kNDVI and important climatic factors in the LP across different time periods;
(2) investigate the overall capacity of climatic variables to explain vegetation changes in the
LP; and (3) assess the impact of climatic variables on vegetation dynamics and determine
the primary drivers of these changes. The findings can offer theoretical backing for shaping
and refining regional ecological preservation strategies amidst climate-altered conditions.

2. Materials and Methods
2.1. Study Area

The Loess Plateau, located in the northwest region of China (between 100◦54′–114◦33′ E
and 33◦43′–41◦16′ N), covers a vast expanse of around 640,000 square kilometers (see
Figure 1a). The LP has a varied topography, ranging from 85 to 5010 m in elevation, with
its high elevation in the northwest and lower elevation in the southeast (Figure 1b). Char-
acterized by a temperate continental climate, the LP transitions from an arid climate in the
northwestern interior to a humid monsoon climate in the southeastern warm temperate
zone. Based on the climate regionalization system developed by Zheng et al. [57], the LP
can be categorized into three different climatic zones: arid, semi-arid, and semi-humid.
This classification has been consistently employed in relevant studies [58,59]. Climate and
topography interact profoundly to affect vegetation distribution in the LP [60], resulting
in discernible zonal patterns (Figure 1c). Specifically, forests predominantly occupy the
southeastern expanse of the LP, as well as the elevated mountainous regions. The north-
central LP is predominantly covered by extensive grasslands. Furthermore, croplands are
ubiquitously dispersed throughout the LP, primarily concentrated in plains, basins, and
areas featuring suitable irrigation conditions and frequent human activity.
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atmospheric interferences, the maximum-value composite algorithm was used to calcu-
late monthly NDVI [22], and the noise was removed by smoothing with the Savitzky–
Golay filter [62]. To minimize the influence of water bodies and snow cover, the average 
Growing Season NDVI was computed for the period of April to October, excluding values 
where the multiyear Growing Season NDVI was less than 0.1. 
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observation sites in China. These datasets provide monthly and 1 km temporal and spatial 
resolution, covering the period from 1901 to 2022. Data on solar radiation (SR, W m−2) were 
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resampled to align with the spatiotemporal resolution of the NDVI data for further anal-
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Figure 1. Geographic maps depicting (a) the spatial positioning, (b) the topographical and climatic
classification, and (c) the dispersion of the main vegetation categories on the Loess Plateau. Topo-
graphical data were obtained from Digital Elevation Models (DEMs) of the Shuttle Radar Topography
Mission (SRTM) with 90 m spatial resolution. The land use data were obtained from the “China
Multi-Period Land Use Remote Monitoring Data Set (CNLUCC)” provided by the Resource and
Environment Science and Data Center of the Chinese Academy of Sciences (CAS).
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2.2. Data
2.2.1. NDVI Data

We obtained one of the longest spanning continuous GIMMS-3G+ NDVI datasets from
the Oak Ridge National Laboratory Distributed Active Archive Center. The dataset was
compiled using data from various AVHRR sensors, considering factors like calibration loss,
orbital drift, and volcanic eruptions. The spatial resolution of this worldwide dataset is
0.0833 degrees and covers every two weeks from 1982 to 2022 [61]. To eliminate atmospheric
interferences, the maximum-value composite algorithm was used to calculate monthly
NDVI [22], and the noise was removed by smoothing with the Savitzky–Golay filter [62]. To
minimize the influence of water bodies and snow cover, the average Growing Season NDVI
was computed for the period of April to October, excluding values where the multiyear
Growing Season NDVI was less than 0.1.

2.2.2. Climate Data

Data on monthly precipitation (PRE, mm) and average air temperature (TEM, ◦C) were ac-
quired from the dataset titled ”1-km monthly precipitation dataset for China (1901–2022)” and
“1-km monthly mean temperature dataset for China (1901–2022)” created by Peng et al. [63],
respectively. The fusion of the CRU climate dataset and the WorldClim dataset was used to
generate these datasets. The Delta downscaling technique was employed, and validation was
carried out using data from 496 separate meteorological observation sites in China. These
datasets provide monthly and 1 km temporal and spatial resolution, covering the period
from 1901 to 2022. Data on solar radiation (SR, W m−2) were obtained from the TerraClimate
dataset [64], spanning from 1958 to 2022, featuring a spatial resolution of 4 km. In order to
maintain uniformity, all climate datasets were resampled to align with the spatiotemporal
resolution of the NDVI data for further analysis.

2.3. Methods
2.3.1. Calculation of kNDVI

The kNDVI, rooted in the theory of kernel methods, is defined as follows:

kNDVI =
k(n, n)− k(n, r)
k(n, n) + k(n, r)

(1)

where NIR (n) and red (r) bands are denoted as the reflectance. The term k is used to
describe the “kernel function” that can be defined as k(n, r) = exp

(
−(n − r)2/

(
2σ2)) ,

where σ determines the measure of distance between n and r. Thus, Equation (1) can be
simplified as follows:

kNDVI =
1 − k(n, r)
1 + k(n, r)

= tanh

((
n − r

2σ

)2
)

(2)

Considering the equal distance between the NIR and red bands, Equation (1) can be
further reduced to

kNDVI = tanh
(

NDVI2
)

(3)

In this study, we used a simplified algorithm (Equation (3)) to calculate the monthly
kNDVI, which was then enumerated into the average growing season kNDVI to reflect the
dominant vegetation growth process.

2.3.2. Linear Regression Analysis

In order to measure the yearly changes in vegetation dynamics and climate conditions
in the LP, we created a linear regression model that relates kNDVI (a meteorological factor)



Forests 2024, 15, 471 5 of 22

to time. The model parameters were estimated using the least squares method with the
help of the following formulas.

slope =
n × ∑n

i=1 i × kNDVIi − ∑n
i=1 i∑n

i=1 kNDVIi

n × ∑n
i=1 i2 − (∑n

i=1 i)2 (4)

Here, slope denotes the change rate, kNDVIi denotes the variable of the i-th value, for
slope > 0, an increasing trend is evident, and a decreasing trend is apparent for slope < 0.
The significance of the F-test was determined as follows:

F =
SR

SE/(n − 2)
(5)

Here, SR = ∑n
i=1 (

ˆkNDVIi − kNDVI)
2

represents the sum of the regression squares,

SE = ∑n
i=1 (kNDVIi − ˆkNDVIi)

2
represents the sum of the residual squares, n − 2 repre-

sents the freedom degrees of residuals, and ˆkNDVIi is the linear regression value of the
variable. According to the results of the F-test, the trend of the change can be categorized
as significant (p < 0.05), more significant (p < 0.01), and extremely significant (p < 0.001).

2.3.3. Theil–Sen Median and Mann–Kendall Trend Test

The Theil–Sen median is a non-parametric statistical method of trend calculation.
The Mann–Kendall trend test method is a non-parametric statistical technique [65]. The
calculation formula is as follows:

β = median
( kNDVI j − kNDVIi

j − i

)
, ∀i < j (6)

The Mann–Kendall (MK) is a nonparametric statistical approach that does not necessi-
tate time series to conform to a specific distribution [66]. It has been extensively utilized
in trend analysis for time series of ecological and meteorological data. The MK test is
conducted in the scenario where there is a kNDVI series of length n.

Zs =


S−1√
Var(S)

, S > 0

0, S = 0
S+1√
Var(S)

, S < 0
(7)

S = ∑n−1
i=1 ∑n

j=i+1 sgn
(
kNDVI j − kNDVIi

)
(8)

Var(s) =
n(n − 1)(2n + 5)− ∑

p
i=1 tj

(
tj − 1

)(
2tj + 5

)
18

(9)

sgn
(
xj − xi

)
=


1 xj − xi > 0
0 xj − xi = 0
−1 xj − xi < 0

(10)

In this case, the kNDVI in years i and j are represented by kNDVI j and kNDVI j,
respectively. The sgn is a symbolic function. The p is the number of the tied groups in
the dataset, and tj is the number of data points in the j-th tied group. The significance of
temporal trends is determined by 0.1, 0.05, and 0.01 levels when |Zs|> 1.64 , |Zs|> 1.96 , and
|Zs|> 2.58 , respectively. In the present research, the R Package “trend” [67] was employed
to conduct the MK trend test.
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2.3.4. Hurst Exponent

Hurst [68] proposed the Hurst exponent (H) to evaluate the persistence of a time series.
For the long-term kNDVI with a length of n, the primary computational procedures for the
Hurst exponent are as follows:

(1) Divide the original kNDVI into subsequences kNDVIτ with a length of τ and calculate
the mean value of each subsequence;

kNDVIτ =
1
τ ∑τ

t=1 kNDVI(t), τ = 1, 2, 3, . . . , n (11)

(2) Calculate the cumulative deviation (V(t, τ)) and its fluctuation range (R(τ)) for each
kNDVIτ ;

V(t, τ) = ∑τ

t=1

(
kNDVI(t) − kNDVI(t)

)
(12)

R(τ) = maxV(t,τ) − minV(t,τ), 1 ≤ t ≤ τ; τ = 1, 2, 3, . . . , n (13)

(3) Calculate the standard deviation (Sτ) for the deviation of each subsequence; then, the
H exponent can be found from the following expression:

Sτ = [
1
τ ∑τ

t=1

(
NDVI(t) − kNDVI(t))

2
]

1
2

(14)

R(τ)

S(τ)
= (cτ)H (15)

The H exponent indicates whether changes in kNDVI are persistent or not, with
H > 0.5, H < 0.5, and H = 0.5 representing the presence of persistence, anti-persistence,
and non-persistence for kNDVI, respectively.

2.3.5. Partial Correlation Analysis

The correlation between vegetation dynamics and a single climatic variable is fre-
quently impacted by additional variables, leading to correlation coefficients (CC) that
may not accurately portray the true degree of correlation. Consequently, to mitigate the
influence of other variables, we employed second-order Pearson partial correlation analysis.
This analytical approach allowed for the control of two additional variables, facilitating a
focused analysis of the correlation between the kNDVI and individual climatic variables.
The primary calculation procedures of the partial correlation coefficient (PCC) are outlined
as follows [22]:

Rxy =
∑n

i=1 [(xi − x)(yi − y)]√
∑n

i=1 (xi − x)2
√

∑n
i=1 (yi − y)2

(16)

Rxy,z =
Rxy − Rxz × Ryz√
(1 − R2

xz)
(

1 − R2
yz

) (17)

Rxy,zw =
Rxy,z − Rxw,zRyw,z√(
1 − R2

xw,z
)(

1 − R2
yw,z

) (18)

Here, Rxy denotes the CC between x and y; Rxy,z represents the PCC between the x
and y when z is controlled; and Rxy,zw represents the PCC between the variables x and
y when controlling for the variables z and w. The significance of the PCC was determined
by the t-test:

t = R
√

n − q − 2
1 − R2 (19)
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Here, R represents the PCC, n denotes the sample size, and q signifies the order of
partial correlation. The statistical variable t follows a t-distribution with n − q − 2 degrees
of freedom.

2.3.6. Multiple Correlation Analysis

Multiple correlation analysis describes the joint influence of a set of independent
variables (two or more) on a single dependent variable [69], and the degree of this multiple
correlation can be measured using the multiple correlation coefficient (MCC). In this study,
the PCC was applied to estimate the MCC between the kNDVI and the three climatic
variables using the following formula [70]:

Rx,yzw =

√
1 −

(
1 − R2

xy

)(
1 − R2

xz,y

)(
1 − R2

xw,yz

)
(20)

F =
R2

x,yzw

1 − R2
x,yzw

× n − k − 1
k

(21)

Here, Rx,yzw is the multiple correlation coefficient (MCC). To ascertain the importance
of the MCC, the F-test is conducted, with n and k denoting the number of samples and
independent variables, respectively.

In this study, all map graphics were plotted using the software ArcGIS 10.6, while the
other graphics were plotted by Origin 2021.

3. Results
3.1. Spatial-Temporal Patterns of kNDVI and Climate Variables
3.1.1. Intra-Annual Variability in Vegetation Dynamics and Climate Factors

In various climatic zones of the LP, Figure 2 illustrates the fluctuation of kNDVI
and climate factors throughout the year. Throughout the year, the kNDVI in the arid
and semi-arid regions displayed a curved pattern, with its highest points occurring in
August at 0.10 ± 0.02 and 0.22 ± 0.04, respectively (Figure 2a). In contrast, the semi-humid
zone displayed a double-peak pattern, with kNDVI peaks occurring in May and August,
corresponding to values of 0.39 ± 0.03 and 0.42 ± 0.03, respectively. This pattern aligns
with the agricultural cycle, as the semi-humid zone serves as the primary production area
for winter wheat, maturing in May and harvested thereafter. The intra-annual precipitation
in the LP exhibited pronounced seasonality, concentrating between June and September,
constituting over 70% of the annual precipitation (Figure 2b). In the arid, semi-arid, and
semi-humid regions, rainfall exhibited a single-peaked pattern, occurring predominantly
in August, July, and July, with respective amounts of approximately 54 ± 22, 95 ± 27, and
124 ± 36 mm. Temperature patterns on the LP displayed a single-peaked distribution
throughout the year, with the highest TEM occurring in July (Figure 2c). During the period
from October to March of the next year, the temperatures experienced in the arid and
semi-arid regions were similar, and they were both lower than the temperatures in the
semi-humid zone. In contrast, during the months of June to August, the temperatures in
the arid and semi-humid regions were comparable but higher than those in the semi-arid
region. Solar radiation on the LP followed a unimodal pattern, peaking in June (Figure 2d).
The highest SR values were ordered as arid region (275 ± 14 W m−2), semi-arid region
(261 ± 15 W m−2), and semi-humid region (251 ± 19 W m−2).
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dashed line indicates the average monthly value of the variable, while the shading indicates the
variability of the monthly values.

3.1.2. Spatial Patterns of kNDVI and Climate Variables during the Growing Season

From 1982 to 2022, the average kNDVI and climate variables during the vegetation
growing season on the LP showed spatial heterogeneity (Figure 3). A latitudinal zonal
distribution of kNDVI values was observed on the LP, with an increasing kNDVI from
northwest to southeast (Figure 3a). In the semi-humid zone, the kNDVI exhibited a higher
value of 0.35 ± 0.11, which was followed by the semi-arid zone with a value of 0.15 ± 0.10.
Conversely, the arid zone had a lower kNDVI value of 0.06 ± 0.05. The LP exhibited a
latitudinal zonal distribution of average rainfall during the growing season, with lower
values in the northwest and higher values in the southeast. The rainfall gradually increased
from the northwest to the southeast, as depicted in Figure 3b. The growing season mean
precipitation values in each climatic zone were ranked as follows: semi-humid zone
(79.0 ± 6.8 mm), semi-arid zone (57.4 ± 11.5 mm), and arid zone (28.5 ± 5.7 mm). As
illustrated in Figure 3c, in the semi-humid zone, a high temperature of 17.8 ± 2.5 ◦C was
observed, followed by the arid zone with a temperature of 16.8 ± 1.1 ◦C, and the semi-arid
zone with a temperature of 14.9 ± 3.2 ◦C. The mean solar radiation (SR) declined from the
northeastern region to the southwestern region, exhibiting SR values of 231 ± 8 W m−2,
218 ± 12 W m−2, and 208 ± 8 W m−2 in the arid, semi-arid, and semi-humid zones,
respectively (Figure 3d).



Forests 2024, 15, 471 9 of 22

Forests 2024, 15, x FOR PEER REVIEW 9 of 23 
 

 

latitudinal zonal distribution of average rainfall during the growing season, with lower 
values in the northwest and higher values in the southeast. The rainfall gradually in-
creased from the northwest to the southeast, as depicted in Figure 3b. The growing season 
mean precipitation values in each climatic zone were ranked as follows: semi-humid zone 
(79.0 ± 6.8 mm), semi-arid zone (57.4 ± 11.5 mm), and arid zone (28.5 ± 5.7 mm). As illus-
trated in Figure 3c, in the semi-humid zone, a high temperature of 17.8 ± 2.5 °C was ob-
served, followed by the arid zone with a temperature of 16.8 ± 1.1 °C, and the semi-arid 
zone with a temperature of 14.9 ± 3.2 °C. The mean solar radiation (SR) declined from the 
northeastern region to the southwestern region, exhibiting SR values of 231 ± 8 W m−2, 218 
± 12 W m−2, and 208 ± 8 W m−2 in the arid, semi-arid, and semi-humid zones, respectively 
(Figure 3d). 

 
Figure 3. Spatial patterns of growing season kNDVI and climatic variables in the Loess Plateau. (a) 
kNDVI; (b) precipitation; (c) temperature; (d) solar radiation. 

3.2. Spatio-Temporal Trends of kNDVI and Climate Variables 
3.2.1. Temporal Trends in Regional kNDVI and Climate Variables 

In order to examine how effective the GTGP project has been in restoring vegetation 
in the LP, we segmented the study period into three sub-periods: before the GTGP was 
implemented (1982–1999), after the GTGP was implemented (2000–2022), and the entire 
period (1982–2022). Furthermore, the trends of vegetation dynamics and climatic variables 
in different climatic zones of the LP during various periods were analyzed (Figure 4). The 
LP experienced highly significant vegetation greening during 1982–2022, with a slope of 
0.0020 yr−1 (p < 0.001) for kNDVI. The variation in vegetation changes differed among dif-
ferent climatic zones, with arid, semi-arid, and semi-humid zones experiencing slopes of 
0.0007 yr−1, 0.0023 yr−1, and 0.0022 yr−1, respectively. The implementation of the GTGP ac-
celerated vegetation greening on the LP. Specifically, the slopes of the kNDVI during 1982–
1999 were 0.0006 yr−1 (p < 0.05), 0.0006 yr−1 (p < 0.001), 0.0008 yr−1 (p < 0.05), and 0.0014 yr−1 
(p > 0.05), respectively. In contrast, the corresponding kNDVI variations during 2000–2022 

Figure 3. Spatial patterns of growing season kNDVI and climatic variables in the Loess Plateau.
(a) kNDVI; (b) precipitation; (c) temperature; (d) solar radiation.

3.2. Spatio-Temporal Trends of kNDVI and Climate Variables
3.2.1. Temporal Trends in Regional kNDVI and Climate Variables

In order to examine how effective the GTGP project has been in restoring vegetation
in the LP, we segmented the study period into three sub-periods: before the GTGP was
implemented (1982–1999), after the GTGP was implemented (2000–2022), and the entire
period (1982–2022). Furthermore, the trends of vegetation dynamics and climatic variables
in different climatic zones of the LP during various periods were analyzed (Figure 4). The
LP experienced highly significant vegetation greening during 1982–2022, with a slope of
0.0020 yr−1 (p < 0.001) for kNDVI. The variation in vegetation changes differed among
different climatic zones, with arid, semi-arid, and semi-humid zones experiencing slopes of
0.0007 yr−1, 0.0023 yr−1, and 0.0022 yr−1, respectively. The implementation of the GTGP
accelerated vegetation greening on the LP. Specifically, the slopes of the kNDVI during
1982–1999 were 0.0006 yr−1 (p < 0.05), 0.0006 yr−1 (p < 0.001), 0.0008 yr−1 (p < 0.05), and
0.0014 yr−1 (p > 0.05), respectively. In contrast, the corresponding kNDVI variations during
2000–2022 were 4, 2, 5, and 2.4 times higher than those before the implementation of GTGP,
respectively (p < 0.001).

Climatic conditions on the LP have also changed over the past 40 years, demonstrating
spatiotemporal heterogeneity. In general, the LP indicated a trend of increasing temperature
and humidity, with variations in PRE and TEM of 0.1698 mm per year (p > 0.05) and
0.0325 ◦C per year (p < 0.001), respectively. However, SR exhibited a slight decline. In all
climatic zones, the patterns of PRE and TEM were in line with those of LP overall, showing
notable warming (p < 0.001) and a slight increase in humidity (p > 0.05). With the exception
of the minor rise in SR within the semi-humid zone, all remaining climatic zones exhibited
a slight decline in SR. Following the execution of the GTGP, both LP and all climatic zones
displayed a steady slowdown in the rate of warming, a slight uptick in PRE, and a marginal
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improvement in SR. Specifically, the TEM changed from a highly significant increase
(p < 0.001) to a slight increase (p > 0.05) compared to the pre-GTGP implementation period.
Precipitation shifted from experiencing a slight decrease to registering a slight increase
overall, except in the semi-arid area, where a consistent slight increase was observed. Apart
from a slight rise in SR in the semi-humid region, the remaining climatic zones exhibited a
transition from a minor decline to a minor growth in SR.
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2000−2022, and 1982−2022. Data for the entire Loess Plateau and various climate zones are repre-
sented by dotted lines of different colors, with green, yellow, blue and purple solid lines correspond-
ing to the Loess Plateau, arid, semi-arid and semi-humid zones, respectively. The red, green, and
black dashed lines represent the slopes of change of variables during 1982−1999, 2000−2022, and
1982−2022, respectively.

3.2.2. Spatial Trends in Regional kNDVI and Climate Variables

The trends of vegetation dynamics and climate conditions in the LP have been charac-
terized by spatial heterogeneity over the past 40 years, with typical differences in the phases
defined by the GTGP, as shown in Figure 5. From 1982 to 2022, the LP experienced extensive
greening, with 96.5% of the LP demonstrating an increase in kNDVI, of which 90.9% of
the LP showed a significant increase. Urban areas like Xi’an and Yinchuan exhibited a
concentrated browning trend. Following the implementation of the GTGP, the vegetated
area exhibiting a greening trend increased from 83.0% to 94.6%, and the area experiencing
significant greening expanded from 29.1% to 84.0% in the LP. The GTGP implemented in
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1999 is thought to have significantly contributed to fostering the greening of the LP, leading
to a broader spectrum and a more pronounced pattern of vegetation expansion.
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Figure 5. The trends of climate variables and kNDVI in the Loess Plateau were analyzed for the
periods 1982−1999, 2000−2022, and 1982−2022, focusing on their spatial patterns. kNDVI trends
during (a) 1982−1999, (b) 2000−2022, and (c) 1982−2022; precipitation trends during (d) 1982−1999,
(e) 2000−2022, and (f) 1982−2022; temperature trends during (g) 1982−1999, (h) 2000−2022, and
(i) 1982−2022; solar radiation trends during (j) 1982−1999, (k) 2000−2022, and (l) 1982−2022.

The LP experienced an extensive wetting process during 1982–2022, with 98.8% of the
LP experiencing an increasing trend in PRE, of which 15.3% of the LP showed a significant
increase, mostly located in the western and central LP. A continuous increase in temperature
was noticed throughout the LP, with over 90% of the region displaying a notable warming
pattern. Solar radiation has been characterized by a spatial pattern of decreasing and
increasing from west to east over the past 40 years, with significant decreases (18.8%)
concentrated in the western part of the plateau and significant increases (7.8%) in the
southeastern part. In comparison to the time prior to the GTGP being put into effect, the
proportion of the region witnessing a rise in PRE rose from 26.7% to 99.3%, while the
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portion undergoing notable alteration shifted from 4.0% (a substantial decline primarily
in the southeastern region of the LP) to 18.9% (a substantial growth concentrated in the
semi-arid zone). After the implementation of the GTGP, the warming rate slowed down
in the LP, and the area experiencing significant warming decreased from 49.0% to 9.7%.
After the GTGP was put into effect, there was a noticeable rise in SR. The portion of land
experiencing increased SR expanded from 52.9% to 75.5%, while the portion with notable
alterations decreased from 13.8% (mainly in the western region of the LP) to 3.7% (mainly
in the northern region of the LP), indicating a significant increase.

3.2.3. Persistence of Variations in Vegetation Dynamics and Climate Variables

From 1982 to 2022, the Hurst exponent of the kNDVI was greater than 0.5 (indicative of
the persistence of vegetation dynamics) in 98.7% of areas of the LP, suggesting that the LP
will tend toward greening in the future. In contrast, the areas with the Hurst exponent of the
kNDVI less than 0.5 were concentrated in a few urban areas, where kNDVI changes in the
future may be opposite to the historical trend (Figure 6a). In the majority (78.7%) of the LP,
the rainfall exhibited persistence (H > 0.5), mainly in the semi-arid and semi-humid regions,
suggesting the possibility of sustained moisture increase in the coming years. The arid zone,
however, showed anti-persistence (H < 0.5), revealing that slight aridity may be predominant
in the arid zone in the future. The LP shows consistent warming, as the H exponent exceeded
0.5. In the future, three-quarters of the LP will be characterized by persistent changes in SR,
with an emphasis on persistent decreases in the western LP and persistent increases in the
southeastern LP. Overall, in the future, the LP will remain featured by vegetation greening, a
warmer and wetter climate, and a slight weakening of SR.
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3.3. Response of Vegetation Dynamics to Changing Climate
3.3.1. Sensitivity of Vegetation Dynamics to Climate Variables

The relationship between kNDVI and climate variables was further investigated by
conducting a partial correlation analysis (Figure 7). A strong relationship was observed
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between kNDVI and PRE in 76.1% of the LP from 1982 to 2022. Out of these, 75% showed a
significant positive correlation, primarily in arid and semi-arid regions. In the semi-humid
zone, a majority of the LP showed a mere 1.1% occurrence of an adverse relationship
between kNDVI and PRE. Following the implementation of the GTGP, vegetation exhibited
heightened sensitivity to PRE, as evidenced by the rise in areas displaying positive corre-
lation and significant positive correlation between the kNDVI and PRE, which increased
from 44.1% to 65.1% and 15.3% to 59.9%, respectively.
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Figure 7. The spatial arrangement of partial correlation coefficients (PCC) between the kNDVI and
climate factors in the Loess Plateau from 1982 to 1999, 2000 to 2022, and 1982 to 2022. Specifically,
PCC between the kNDVI and precipitation during (a) 1982–1999, (b) 2000–2022, and (c) 1982–2022;
PCC between the kNDVI and temperature during (d) 1982–1999, (e) 2000–2022, and (f) 1982–2022;
PCC between the kNDVI and solar radiation during (g) 1982–1999, (h) 2000–2022, and (i) 1982–2022.

Over the past four decades, the TEM has had a significant impact on 65.9% of the
vegetated regions in the LP. Within these regions, a majority of 61% displayed a notable
and favorable association between kNDVI and TEM, primarily observed in semi-arid and
semi-humid areas. Conversely, 4.9% of the vegetated areas are significantly negatively
affected by TEM, distributed widely in arid zones. As compared to the pre-GTGP, there
were comparable areas with a positive and negative correlation between the kNDVI and
TEM, whereas areas with significant positive correlations increased from 11.9% to 17.7%,
while those with significant negative correlations increased from 1% to 2.7%. Out of all
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the LP, 42.7% had positive correlations between kNDVI and SR, while 57.3% had negative
correlations. Among them, 23.1% and 1.6% were significant, respectively. The regions where
SR significantly affected the vegetated area were primarily found in the northeastern semi-
arid zone (with a positive correlation) and the central semi-humid zone (with a negative
correlation). With the implementation of the GTGP, the area with positive responses of the
kNDVI to SR increased from 40.8% to 45%, of which the positive response area increased
from 7% to 12.3%, mainly concentrated in the transition zone from semi-arid to semi-
humid zones. The proportion of regions exhibiting negative responses of the kNDVI to SR
declined from 59.2% to 55%, accompanied by a decrease in the area displaying a noteworthy
negative correlation from 2.8% to 2%. These changes were primarily concentrated within
the semi-humid zones.

3.3.2. Driving Patterns of Climate Change-Related Vegetation Dynamics

Figure 8 shows the multiple correlation coefficients indicating the influence of the main
climate factors (PRE, TEM, and SR) on kNDVI in the LP. Prior to the implementation of the
GTGP, most vegetated areas were not significantly affected by climate change, while the area
wherein integrated climate contributed significantly to vegetation dynamics amounted to
6.5% (Figure 8a). The GTGP’s implementation led to a notable rise in the vegetated region’s
response to climate change, reaching 35.2%. This increase was particularly prominent in
arid and semi-arid zones, where the impact of climate change on the vegetated area has
significantly grown (Figure 8b). From a long-term perspective (1982–2022), climate change
generated a widespread effect on vegetation dynamics in the LP, with 76% of the LP being
significantly affected. In the eastern semi-arid region, the areas with the greatest MCC were
usually found, where the kNDVI rose as TEM and PRE increased while SR decreased. The
greening of vegetation in the semi-arid zone showed an upward trend as PRE increased and
TEM decreased while SR decreased. Vegetation growth in the southwest semi-arid zone
was positively influenced by rising PRE and TEM, as well as declining SR. It is important
to mention that in mainly urban construction areas (for example, Xi’an and Yinchuan), the
growth of vegetation may be hindered by rises in PRE, TEM, and SR.
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Furthermore, we superimposed the regions with significant multiple correlation co-
efficients and partial correlations to categorize the climate variables driving vegetation
dynamics on the LP, as summarized in Table 1 and presented in Figure 9. The extent to
which climate change significantly affected vegetation dynamics prior to the implementa-
tion of the GTGP was limited. Following the implementation of the GTGP, the vegetation
of the LP gradually recovered and was more sensitive to climate change. Among the
climate variables analyzed, PRE had the widest impact on vegetation during this period,
with rainfall-related factors (involving Types 1, 2, 5, and 6) significantly affecting 32%
area of the LP. Temperature is the second most significant driver, significantly affecting
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14.1% of the vegetated area, involving Types 1, 3, 5, and 7. Radiation-related significantly
affected areas accounted for 8.2%, involving Types 1, 4, 6, and 7. During the period from
1982 to 2022, the dominant factor influencing changes in vegetation on the LP was the
combination of PRE and TEM (Type 5), covering approximately 33.3% of the area. This type
was primarily found in the semi-arid zone. Following this, the combined impact of PRE,
TEM, and SR accounted for 17.7% of vegetated areas, mainly located in the northeastern
part of the semi-arid zone, with some localized areas in the semi-humid zone. Precipitation
significantly influenced vegetation dynamics (Type 2), with an area coverage of 11.6%,
mainly distributed in the arid zone. Overall, PRE is the dominant climatic driver impacting
vegetation dynamics in the LP, with 67.1% of the relevant area being significantly impacted.
In particular, PRE is the determinant climate variable driving vegetation changes in the
arid zone. Temperature is the second most impactful climate driver of vegetation dynamics
in the LP, corresponding to 59% of the significantly influenced area, with more than half of
the area being jointly influenced by PRE and TEM. Additionally, SR plays a crucial role in
altering vegetation in the LP, impacting an extensive region of 22.8%, mainly within the
semi-arid and semi-humid zones located in the northeast.

Table 1. Classification of vegetation dynamics-related climate drivers in the Loess Plateau.

Number Types of Driving Factors
Classification Rules

PCCkNDVI,PRE PCCkNDVI,TEM PCCkNDVI,SR MCC

1 precipitation, temperature,
and radiation t > t0.05 t > t0.05 t > t0.05

F > F0.05

2 precipitation t > t0.05 t ≤ t0.05 t ≤ t0.05
3 temperature t ≤ t0.05 t > t0.05 t ≤ t0.05
4 radiation t ≤ t0.05 t ≤ t0.05 t > t0.05
5 precipitation and temperature t > t0.05 t > t0.05 t ≤ t0.05
6 precipitation and radiation t > t0.05 t ≤ t0.05 t > t0.05
7 temperature and radiation t ≤ t0.05 t > t0.05 t > t0.05

8
Weakly driven by

precipitation, temperature,
and radiation

t ≤ t0.05 t ≤ t0.05 t ≤ t0.05

9 Driven by non-climate factors F ≤ F0.05

Note: PCCkNDVI,PRE, PCCkNDVI,TEM , and PCCkNDVI,SR represent the partial correlation coefficients between the
kNDVI and precipitation (PRE), temperature (TEM), and solar radiation (SR) obtained by controlling the other
two variables, respectively. MCC represents the multiple correlation coefficient between the kNDVI and climate
variables. t0.05 and F0.05 denote the significance levels of the t-test and F-test, respectively.
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4. Discussion
4.1. Temporal and Spatial Fluctuations in the Dynamics of Vegetation and Climate Factors in the LP

By analyzing the changes in vegetation and climate in the LP over time, this study
examines the spatial and temporal variations using monthly KNDVI and climate data (PRE,
TEM, and SR) from 1982 to 2022. The main focus is on comparing the variability before and
after the GTGP was implemented, which offers insights into evaluating the effectiveness of
this ecological conservation project. The findings suggest that the LP has shown variation
in space and time within a year and between years in terms of kNDVI and climate factors
from 1982 to 2022. Generally, the kNDVI and climatic variables presented a single-peak
distribution within a year, with peaks occurring in August for the kNDVI and PRE, in July
for TEM, and in June for SR. Distinct variations in kNDVI were observed among different
climatic zones, particularly in the semi-humid region. In the semi-humid region, there
was a dual peak observed in the kNDVI, aligning with the peaks occurring in May and
August, respectively. This pattern aligns with the agricultural cycle, as the semi-humid zone
serves as the primary production area for winter wheat, maturing in May and harvested
thereafter [28,71]. This has been confirmed in previous studies, emphasizing the influence
of crop-specific phenology on the intra-annual dynamics of regional vegetation.

Between 1982 and 2022, the LP underwent a substantial and noteworthy process of
vegetation greening, with more than 90% of its area displaying a significant upward trend in
terms of the kNDVI. All of our findings suggest a consistent and significant trend of vegetation
greening on the LP [49,72–74], despite variations in the rate and extent of increase in the
vegetation index compared to previous studies. The difference may be due to the different
types and lengths of the VIs employed. Compared with the period pre-GTGP implementation,
the vegetation condition in the LP has dramatically improved, with the change slope of the
kNDVI ranging from 0.009 yr−1 (p < 0.05) to 0.0036 yr−1 (p < 0.001), and the area with a
significant increasing trend increasing from 29.1% to 84.0%. This indicates that the GTGP
project’s execution effectively improved the vegetation state of the LP, particularly in the semi-
arid region [47,75–77]. In contrast, rapid urbanization has exacerbated vegetation degradation
in urban areas (e.g., Xi’an, Yinchuan, etc.), reminding people to reconcile social development
and ecological protection [78,79]. Furthermore, the LP has undergone substantial warming
and slight humidification over the past 40 years [80,81]. After the GTGP was implemented,
the warming trend of the LP slowed down, and the humidification trend slightly increased.

4.2. Climate Change Plays a Crucial Role in Driving Changes in Vegetation Dynamics

Vegetation change and its relevance to climate variations are a crucial focus within
global climate change research. Hydrothermal conditions are the primary climatic factors
controlling vegetation growth, with TEM, PRE, and SR being closely linked to photosyn-
thesis by vegetation. The findings of our research indicated that a significant majority
(75%) of the vegetated regions in the LP experienced a rise in PRE between 1982 and
2022. These particular areas were predominantly located in arid and semi-arid zones,
highlighting the crucial role of PRE in promoting vegetation growth in regions with limited
water availability [82,83]. In these zones, PRE is the predominant recharge source of soil
moisture and affects vegetation growth by influencing soil moisture content [84,85]. In
the semi-humid zone, the correlation between kNDVI and PRE is generally negative and
not statistically significant. The delay in vegetation growth due to the water deficit was
caused by the ample PRE and elevated soil moisture content in the semi-humid area [86].
Furthermore, the forest ecosystems in the semi-humid region have extensively spread root
systems, facilitating the absorption of nutrients from the lower layers of soil. Additionally,
their physiological attributes equip them with enhanced resilience to water scarcity [87].
Additionally, the increased cloudiness and decreased SR caused by PRE affect photosyn-
thesis, thereby discouraging vegetation growth [88,89]. The irrigation zone is another
typical region with low sensitivity to PRE variations (dominated by negative correlations),
where irrigation attenuates the dependence of crop growth on PRE [90,91]. After the GTGP
was implemented, the sensitivity of the LP vegetation to PRE increased, reminding those
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responsible for the development of sustainable ecological conservation policies to adapt to
the regional water resources situation [92].

Overall, increasing TEM widely promoted vegetation growth in the LP. The possible
reasons for this are that the warming climate prolonged the vegetation growing season [18,93]
and facilitated soil organic matter and nutrient availability [94,95], thereby promoting veg-
etation growth. A majority of the vegetated regions in the dry zone exhibited a notable
inverse relationship between the kNDVI and TEM. Over the past 40 years, the LP has ex-
perienced a significant increase in TEM but slight changes in PRE, resulting in increased
evaporation and accelerated soil moisture depletion, thus limiting vegetation growth. This
phenomenon remains valid for SR as well, as enhanced SR also amplifies regional evaporation
and exacerbates water deficits. Moreover, it is noteworthy that higher climate variables do
not necessarily mean continuous acceleration of vegetation growth despite the significant
correlation between vegetation and kNDVI. Put simply, there is a set limit for how much
climate can affect vegetation [96,97]. Once this limit is surpassed, the relationship between
vegetation and climate may turn adverse.

4.3. Potential and Uncertainty

Our study period covers the longest available NDVI series (from 1982 to 2022), and
the kNDVI was calculated to minimize the effects of aerosol and soil background on differ-
ent types of vegetation cover for the NDVI. Furthermore, we systematically evaluated the
spatiotemporal vegetation (climate) dynamics in different climatic zones of the LP during
different periods (including the periods before and after the implementation of GTGP) using
various statistical methods and further deeply explored the response of vegetation dynamics
to key climatic factors. The results of this research offer fresh insights for tackling the risk
of vegetation due to climate and promoting sustainable ecological development in the LP
region amidst the changing climate. However, some limitations need to be noted. Firstly,
more data sources and data fusion methods may be employed to improve spatial resolution
and reduce uncertainty. Secondly, future studies should consider incorporating other climate
variables, such as the deficit of water vapor pressure (VPD). Additionally, this study examines
the correlation between the kNDVI and concurrent climate factors, with a notable absence
of research on the temporal impacts of climate on vegetation (such as climate time lag and
cumulative effects), which will be addressed in our forthcoming research.

5. Conclusions

This study conducted a systematic analysis of vegetation and climate change in the LP
by utilizing kNDVI and important climate variables (PRE, TEM, and SR) data spanning from
1982 to 2022. It examined the spatiotemporal patterns of vegetation and climate change,
investigated how vegetation responds differently to climate variations, and determined the
primary climatic factors that influence vegetation dynamics. The studies were conducted at
various times (prior to and following the implementation of GTGP, as well as throughout
the entire duration of the study) and in diverse climate regions (dry, semi-dry, and semi-
moist zones). The main findings are summarized below.

Throughout the year, except for the kNDVI, which exhibits a bimodal pattern in the
semi-humid region (with peaks in May and August), all climatic zones displayed unimodal
distributions of the kNDVI and climatic factors. This highlights the significant impact of
local farming methods on vegetation changes. Over the last forty years, there has been
significant spatial variation in the evolution of vegetation changes and climate conditions
across LP. These variations have been particularly evident in distinct phases identified by
the GTGP. Specifically, more than 90% of the LP underwent significant greening, with a
kNDVI slope of 0.0020 yr−1 (p < 0.001). Compared with the pre-GTGP period, the kNDVI
slope of the LP increased threefold during the GTGP period, and the significantly greened
area expanded by 54.9%, especially in the semi-arid areas. These findings emphasize the
remarkable effectiveness of the GTGP in improving the vegetation conditions in the LP.
Climate change in the LP is primarily characterized by significant warming and slight
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humidification, accompanied by a slight decrease in SR. Since the introduction of the GTGP,
there has been a clear slowdown in the warming process, while the rates of PRE and SR
increase have shown a notable rise. The arid and semi-arid zones saw a significant increase
in PRE, benefiting approximately 75% of the vegetated areas in the LP. Increased TEM
facilitated vegetation growth across 61% of the LP region while inhibiting vegetation growth
in 4.9% of the area concentrated in the arid zone. Solar radiation, although exerting a limited
influence, significantly affected 24.7% of the vegetated area. The GTGP’s implementation
exacerbated the dependence of vegetation on PRE in the LP, with the area wherein the
kNDVI and PRE were significantly positively correlated increasing by 44.6%. The key
climatic variables discussed herein played a crucial role in explaining vegetation dynamics
across 76% of the LP’s vegetated area over the past four decades. Precipitation has emerged
as the dominant climatic driver, significantly impacting 67.1% of the relevant area, especially
in the arid zone, followed by TEM and SR, covering 59% and 22.8% of the significantly
influenced area, respectively. The findings offer a valuable understanding of the intricate
connections between vegetation changes and climate in the LP, adding theoretical guidance
to the advancement and adaptation of regional ecological conservation strategies in the
face of global warming.
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