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Abstract: This study provides the methodology for the development of sustainable forest management
activities and systematic strategies using national spatial data, satellite imagery, and a random forest
machine learning classifier. This study conducts a regional province-scale approach that can be used
to analyze forest clear-cutting in South Korea; we focused on the Chungcheongnam-do region. Based
on spatial information from digital forestry data, Sentinel-2 satellite imagery, random forest (RF)
classifier, and digital forest-type maps (DFTMs), we detected and analyzed the characteristics of
clear-cut areas. We identified forest clear-cut areas (accounting for 2.48% of the total forest area).
The methodology integrates various vegetation indices and the RF classifier to ensure the effective
detection of clear-cut areas at the provincial level with an accuracy of 92.8%. Specific leaf area
vegetation index (SLAVI) was determined as the most important factor for accurately detecting
clear-cut areas. Moreover, using a DFTM, we analyzed clear-cutting characteristics in different forest
types (including private, national, natural, and planted forests), along with age class and diameter-
at-breast-height class. Our method can serve as a basis for forest management and monitoring by
analyzing tree-cutting trends in countries with forest areas, such as Republic of Korea.

Keywords: forest clear-cutting; random forest classifier; vegetation indices; forest management;
digital forestry data; integrating spatial data and satellite imagery

1. Introduction

Forests provide important basic provisional, ecosystem, and socioeconomic services
that are essential for life at the global scale [1–3]. Forests also act as significant sinks for
atmospheric carbon dioxide and play an important role in mitigating climate change. Hence,
there is growing global recognition of the importance of forests, with respect to adapting to
climate change and the effective regulation of atmospheric carbon dioxide concentrations.
With respect to adapting to climate change, the importance of forest management has been
increasingly emphasized. In response, various strategies have been deployed to monitor
and assess forest management while exploring its role in environmental sustainability [4].
Globally, forests cover 4.06 billion ha, accounting for 31% of the total land area, and the
area with forest management plans significantly increased from 233 million ha in 2000
to 2.05 billion ha by 2020 [5]. Generally, forest management activities follow a cyclical
process of afforestation, forest tending, tree-cutting (harvesting), and reforestation (to
produce forest products) to maintain the health of the forest ecosystem. Among forest
management activities, tree-cutting is closely related to carbon emissions on a global scale,
and regionally, it is deeply related to timber use and income. Therefore, tree-cutting should
be performed comprehensively, while considering the forest’s carbon sequestration and its
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economic and commercial situation. Furthermore, strategically implemented tree-cutting
can ensure the sustained effectiveness of forests as carbon sinks. However, there is a global
trend of increasing illegal tree-cutting. Therefore, quantitative tracking of tree-cutting at
the national and regional levels is required to manage carbon emissions and conserve
forest ecosystems.

Previous studies analyzed the impact of tree-cutting on carbon dioxide emissions
and assessed the effectiveness of reforestation efforts at the regional and national scales.
Such studies were conducted globally using remote sensing (RS) because RS is useful
for large-scale detection and monitoring. These studies used multispectral sensors from
MODIS, Landsat, and Sentinel-2 satellite imagery at moderate and finer spatial resolutions
(100 m, 30 m, 10 m) to detect tree-cutting areas [6–12], used very-high-spatial-resolution
imagery (e.g., WorldView-4 ~0.3 m, Pleiades’ (1A/1B) ~0.5 m, and Quick bird ~1 m) to
detect small-scale or selective tree-cutting, and applied methods to detect forest cover
changes by classifying land use changes using multispectral bands or vegetation indices
(VIs). The application of remote sensing to derive VIs, including the normalized difference
vegetation index (NDVI) and enhanced vegetation index (EVI), is the most commonly
adopted method for monitoring forest change. These studies confirmed that tree-cutting
patterns can be accurately detected with high accuracy using multispectral bands; this is
mainly because in a temporal image dataset, this type of cover change in forested land
is generally expressed as a large spectral contrast [6,7]. In addition, clear-cutting studies
that cover large geographical areas and are based on relatively dense and freely available
multispectral imagery [13]. Recent studies focus on integrating VIs with machine-learning
techniques to achieve accurate land use and forest change detection [14–18]. Machine
learning techniques have attracted considerable interest from multidisciplinary fields,
especially the field of remote sensing, because these techniques provide a high classification
accuracy and are robust to noise [19–24]. Maximum likelihood, random forest (RF), deep
learning, artificial neural networks (ANNs), conventional neural networks, and fuzzy
classification are used to analyze forest and land cover changes. Among these classifiers,
RF has gained attention and evolved due to its improved accuracy using training data,
efficiency, and comparatively low computational process [16]. Therefore, the RF classifier
has frequently been applied in forest distribution attribution algorithms; in general, it
includes a suite of predictor variables to optimize the classification results. Notably, RF
classification has proven to be a successful and powerful method for separating classes [25].
Moreover, the RF classifier is a popular ensemble method used for various remote sensing
applications, e.g., vegetation mapping. The basic concept of an ensemble classifier is that
a combination of multi-base classifiers can provide better prediction results than a single
classifier; RF classifiers have been successfully applied for various classifications, using
remote sensing data [19]. To achieve successful classification using RF, it is important to
have sufficient and accurate data for training. Previous studies have only used ground
truth data from areas where tree-cutting has occurred, identified through Google Earth,
visual interpretation, and small size of field data [11,16,17,19,26,27]. The collection of
ground truth data can help to calibrate other sources of data, such as remote sensing data,
using geographic information systems (GISs), and also support the interpretation and
analysis of satellite imagery and aerial photography, among other methods of remote data
collection [28]. In the Republic of Korea, ground base national spatial data that can be used
for training data to detect tree clear-cutting are collected. Therefore, using such spatial data
would enable the accurate detection of clear-cutting.

The Republic of Korea shares the Yellow Sea with the People’s Republic of China
to the west and the East Sea and Korean Straits with Japan to the east and the south
(125◦04′ and 131◦52′ E longitude, 38◦27′ N latitude). The Republic of Korea’s total forest
area is 6.29 million ha, accounting for 62.2% of the country’s land area; thus, the country
requires robust forestry and effective activities to manage forest resources. Recently, in the
Republic of Korea, with the increasing emphasis on the importance of the role of forests
in climate change and the need for sustainable management, the country has initiated
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a policy shift toward environmentally sustainable harvesting methods and is currently
discussing sustainable forest management to achieve carbon neutrality and the nationally
determined contribution (NDC) targets. In the Republic of Korea, 67% of forests are
privately owned [29], making the active participation of private forest owners essential for
the effective implementation of related policies. However, most owners prefer clear-cutting
to maximize profits. Therefore, a systematic approach is necessary to manage the cyclical
system of clear-cutting, reforestation, and utilization for sustainable forest management.
The Korea Forest Service implements a system to collect and manage spatiotemporal
management information from local governments. As a national business, they have
performed projects such as construction of Digital Forestry (DF) data, which spatializes
information on forest management activities conducted in private forests. However, it
has yet to be able to be used as a national data source due to large variations in collection
rates by region. Local governments are responsible for permitting and managing tree-
cutting activities in private forests; the collection and management of data on this level
are insufficient, resulting in a lack of comprehensive data on tree-cutting in national
spatial data. Therefore, collecting systematic data is necessary to manage carbon sink
and establish sustainable forest management policies at the national level. Furthermore,
the government should attempt to mediate and change forest management activities by
arranging consultations with the aim of developing and promoting effective and sustainable
forest management activities and policies.

The purpose of this study was to provide a methodology to detect and analyze
clear-cut areas used by national spatial data (DF data) and VIs from Sentinel-2 imagery
and an RF classifier. Furthermore, we aimed to understand forest management activities
and support policymaking by identifying the characteristics of clear-cut areas through
integration with DFTMs.

2. Materials and Methods
2.1. Study Area

In this study, the detection of tree-cutting was conducted in Chungcheongnam-do, and
the training area for the RF was Buyeo-gun, a regional unit within Chungcheongnam-do.
Chungcheongnam-do is one of the 17 provinces in the Republic of Korea, located in the west
of the country’s center (latitude: 35◦59′02′′–37◦04′19′′ N; longitude: 126◦06′39′′–127◦37′23′′ E),
with a total forest area of 404,927 ha, accounting for 6.4% of the Republic of Korea’s total
forest area. In Chungcheongnam-do’s forests, deciduous forests represent 37.0%, coniferous
forests 46.0%, and mixed forests 12.3%. Medium-sized trees represent 66.0% of the tree size
class, small-sized trees 24.0%, saplings 9.0%, and large-sized trees 1.0%. In addition, 87.0%
of the forests in Chungcheongnam-do are privately owned, leading to various activities
being performed to gain income from forests. Chungcheongnam-do was selected as the
study area because it has a relatively large amount of Digital Forestry (DF) data (data
constructed from spatial data between 2015 and 2022 that contains all aspects of forestry
information at the local and national levels in the Republic of Korea and provides forest
management activity information) containing information on forest management activities
in the Republic of Korea compared to other provinces. Therefore, sufficient training and
validation data can be used for RF.

The training area, Buyeo-gun (latitude: 36◦16′35′′ N; longitude: 126◦54′40′′ E), covers a
land area of 62,450 ha, which amounts to 8% of the total land area of Chungcheongnam-do;
31,964 ha (47%) of land in Buyeo-gun is forested. Buyeo-gun was selected for its efficiency
in running the RF classifier, as it had the highest amount of DF data per forest area within
Chungcheongnam-do (Figure 1).

By using this scale-up method, it will be possible to detect tree-cutting in larger
areas with only small amounts of data from field surveys or small-scale regions, thereby
providing local governments and others with valuable data on clear-cut areas.
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Figure 1. Map portraying clear-cut areas in the Republic of Korea, with the location and forest cover.

We performed the detection process in areas where the forest area in digital forest-
type maps (DFTMs) overlapped with the forest land in cadastral maps (CDMs). In the
Republic of Korea, forest areas have different definitions based on the land cover and
land use concept, resulting in the construction of different spatial datasets. In DFTMs,
using the land cover concept, forests are defined as covered forests if they cover areas of
at least 0.5 ha, or plantation forests if they cover an area of more than 0.1 ha of trees [29].
However, CDMs, using the concept of land use and management, define forests as areas
that contain trees, including rocky areas and small-scale residential areas within forest
boundaries [30]. Forest management activities in the Republic of Korea are conducted
based on CDMs. However, within CDMs, there are areas where the actual land cover is not
forested, which can lead to the false detection of tree-cutting in these areas. Therefore, in
this study, based on these two spatial datasets, we selected the areas that were uniquely
classified as “forests”. This approach ensures an accurate analysis of clear-cutting and
avoids potential misclassifications of urban areas or other non-forested areas as clear-cut
areas, thereby increasing the accuracy and relevance of the results. Table 1 presents the
data considered for setting the spatial range for this study.

Table 1. Data considered for setting the spatial range for our analysis.

Data Description Source Data Type Year

Digital Forest-type
Maps

(scale: 1:5000)

Republic of Korea’s forest information
constructed from digitizing orthoimages

Forest Geospatial Information System
(http://fgis.forest.go.kr,

accessed on 3 December 2023)
Vector 2018

Forest land category
in Cadastral Maps

Map dividing the national land into
28 categories, according to land use and status

National Spatial Infrastructure Portal
(https://www.vworld.kr/dtna/
dtna_guide_s001.do, accessed on

3 December 2023)

Vector 2018

The details of the forest areas considered in this study and their characteristics within
the spatial data range in Chungcheongnam-do are shown in Table 2. The total forest
area covers 329,042 ha, with national forests accounting for 40,275 ha and private forests
accounting for 288,789 ha, with the latter accounting for 88% of the total forest area.

http://fgis.forest.go.kr
https://www.vworld.kr/dtna/dtna_guide_s001.do
https://www.vworld.kr/dtna/dtna_guide_s001.do


Forests 2024, 15, 450 5 of 18

Table 2. Characteristics of forest area in Chungcheongnam-do Province *.

(Unit: ha)

Division Conifer Deciduous Mixed Total

National Forests

Planted 5487 1903 87 7476

Natural 8789 18,356 5622 32,767

Subtotal 14,276 20,259 5708 40,243

Private Forests

Planted 51,333 33,572 1610 86,515

Natural 70,341 98,128 33,813 202,284

Subtotal 121,674 131,700 35,423 288,798

Total 135,950 151,960 41,132 329,042
* The forest areas were analyzed for overlapping areas in digital forest-type (DFTMs) maps and cadastral maps
(CDMs).

2.2. Workflow Overview

The workflow consisted of the following steps: (1) obtaining vegetation indices,
(2) acquiring the training and validation datasets from the vegetation index values that
were calculated based on DF data for clear-cut areas (for RF classification), (3) detecting the
clear-cut areas with RF and validating the detection results through accuracy assessment,
and (4) analyzing the characteristics of the clear-cut areas using DFTMs (Figure 2).

Forests 2024, 15, x FOR PEER REVIEW 5 of 18 
 

 

Table 2. Characteristics of forest area in Chungcheongnam-do Province *. 

(Unit: ha) 
Division Conifer Deciduous Mixed Total 

National Forests 
Planted 5487 1903 87 7476 
Natural 8789 18,356  5622 32,767 
Subtotal 14,276 20,259 5708 40,243 

Private Forests 
Planted 51,333 33,572 1610 86,515 
Natural 70,341 98,128 33,813 202,284 
Subtotal 121,674 131,700 35,423 288,798 

Total 135,950 151,960  41,132  329,042 
* The forest areas were analyzed for overlapping areas in digital forest-type (DFTMs) maps and 
cadastral maps (CDMs). 

2.2. Workflow Overview 
The workflow consisted of the following steps: (1) obtaining vegetation indices, (2) 

acquiring the training and validation datasets from the vegetation index values that were 
calculated based on DF data for clear-cut areas (for RF classification), (3) detecting the 
clear-cut areas with RF and validating the detection results through accuracy assessment, 
and (4) analyzing the characteristics of the clear-cut areas using DFTMs (Figure 2). 

 
Figure 2. Flowchart portraying the methodology of this study. Abbreviations: atmospherically re-
sistant vegetation index (ARVI), advanced vegetation index (AVI), soil and atmospherically re-
sistant vegetation index (SARVI), soil-adjusted vegetation index (SAVI), enhanced vegetation index 
(EVI), green normalized difference vegetation index (GNDVI), normalized difference vegetation in-
dex (NDVI), specific leaf area vegetation index (SLAVI). 

2.3. Data Collection 
2.3.1. Vegetation Indices (VIs) 

VIs were used to train the RF classifier to ensure the accurate detection of clear-cut 
areas. In this study, VIs were based on different wavelength reflectance in the electromag-
netic spectrum for each target, achieved using both active and passive sensors [26]. These 
indices were designed to highlight specific properties of vegetation [27]. We used the VIs 
that minimized the effects of the atmosphere and soil, i.e., atmospherically resistant veg-
etation index (ARVI), advanced vegetation index (AVI), soil and atmospherically resistant 
vegetation index (SARVI), and soil-adjusted vegetation index (SAVI). Several previous 
studies developed VIs to minimize the effects of atmospheric aerosols and soil reflectance 

Figure 2. Flowchart portraying the methodology of this study. Abbreviations: atmospherically
resistant vegetation index (ARVI), advanced vegetation index (AVI), soil and atmospherically resistant
vegetation index (SARVI), soil-adjusted vegetation index (SAVI), enhanced vegetation index (EVI),
green normalized difference vegetation index (GNDVI), normalized difference vegetation index
(NDVI), specific leaf area vegetation index (SLAVI).

2.3. Data Collection
2.3.1. Vegetation Indices (VIs)

VIs were used to train the RF classifier to ensure the accurate detection of clear-cut ar-
eas. In this study, VIs were based on different wavelength reflectance in the electromagnetic
spectrum for each target, achieved using both active and passive sensors [26]. These indices
were designed to highlight specific properties of vegetation [27]. We used the VIs that mini-
mized the effects of the atmosphere and soil, i.e., atmospherically resistant vegetation index
(ARVI), advanced vegetation index (AVI), soil and atmospherically resistant vegetation
index (SARVI), and soil-adjusted vegetation index (SAVI). Several previous studies devel-
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oped VIs to minimize the effects of atmospheric aerosols and soil reflectance [28–32]. In
addition, we used the green normalized difference vegetation index (GNDVI), normalized
difference vegetation index (NDVI), enhanced vegetation index (EVI), and specific leaf
area vegetation index (SLAVI), which are widely used to assess biomass and vegetation
density [33,34]. We used these eight indices to determine the ones that were the most
suitable for analyzing the areas affected by clear-cutting. The VIs were computed using the
spectral bands of Sentinel-2 on the Google Earth Engine (GEE) platform (Table 2). Sentinel-2
data, which have a high spatial resolution of 10 m for bands in the visible and near-infrared
spectra, allowed for the detection of changes in smaller areas and the identification of
individual clear-cutting events; GEE provided the fundamental calculation functions for
the raster and vector data, along with the application programming interfaces (APIs) for
JavaScript and Python [35]. We calculated the VIs using the spectral bands of Sentinel-2
Level-2A (COPERNICUS/S2_SR) in the GEE. Level-2A processing included corrections for
atmospheric gases, aerosols, and Rayleigh scattering effects, thus significantly improving
the data quality. This enhanced quality was beneficial to accurately computing the VIs.
The VIs were computed using the Level-2A images from 1 June 2019 to 30 September 2019,
when the cloud cover was less than 10%. We used the median values of these indices from
the images collected for the analysis. Table 3 presents the details of the VIs calculated for
this study using Sentinel-2 data.

Table 3. Vegetation indices (VIs) calculated based on Sentinel-2 data.

Vegetation Indices Remarks Formula References

Atmospherically Resistant
Vegetation Index (ARVI)

Minimizes the impact of atmospheric
scattering from aerosols ARVI = NIR − (2 × Red) + Blue

NIR + (2 × Red) + Blue
[36]

Advanced Vegetation Index (AVI)
Provides vegetation cover by using

the infrared spectral band to
sensitively assess vegetation density

AVI =
(NIR × (1 − Red)× (NIR − Red))

1
3

[36]

Enhanced Vegetation Index (EVI) Corrects for atmospheric effects and
soil background EVI = 2.5 × NIR − Red

NIR + 6 × Red − 7.5 × Blue + 1 [37]

Green Normalized Difference
Vegetation Index (GNDVI)

More sensitive to changes in
chlorophyll content than NDVI GNDVI = NIR − Green

NIR + Green [38]

Normalized Difference
Vegetation Index (NDVI)

Presents vegetation cover ratio and
vegetation characteristics such as
biomass and chlorophyll content

NDVI = NIR − Red
NIR + Red [39]

Soil and Atmospherically
Resistant Vegetation

Index (SARVI)

Minimizes the effect of atmospheric
aerosols and reduces the influence

of soil

SARVI =
NIR − ((Red − 1) × (Blue − Red))
NIR + ((Red − 1) × (Blue − Red)) × (1 + 0.5) [34]

Soil-Adjusted Vegetation
Index (SAVI)

Minimizes spectral reflection
variations based on soil types SAVI = 1.5 × ( NIR − Red

NIR + Red + 0.5 ) [35]

Specific Leaf Area Vegetation
Index (SLAVI)

Estimates the leaf area ratio within
a forest SLAVI = NIR

NIR + SWIR [40]

Abbreviations: For the Sentinel-2 satellite, near-infrared (NIR) corresponds to band 8 (842 nm), ‘Red’ to band
4 (665 nm), ‘Blue’ to band 2 (490 nm), ‘Green’ to band 3 (560 nm), and short-wave infrared (SWIR) to band 11
(1610 nm) and band 12 (2190 nm).

2.3.2. Training and Validation Dataset

The training and validation datasets were obtained from the Republic of Korea’s DF
data for 2018. This dataset consisted of polygonal spatial data containing information on
forest management, e.g., afforestation, tending, and harvest-cutting in national, public,
and private forests. The purpose of the data collection was to systematically analyze
and manage the forest management activities in the Republic of Korea, including the
identification of target areas and prevention of duplication of forest-management activities.
To detect clear-cutting in the Republic of Korea, we used the available Sentinel-2 satellite
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imagery. However, due to the spatial resolution limitations of the satellite images (10 m),
detecting selective logging and forest thinning activities proved challenging. Therefore, our
study focused on detecting clear-cutting. However, the spatial information for clear-cutting
in this dataset is not well-detailed, because the data are based on forestland registers and
the cadastral numbers of areas where forest management activities were conducted. To
address this issue, we compared the DF data with orthoimages acquired from National
Geospatial-Intelligence Platform (https://map.ngii.go.kr/, accessed on 24 December 2023)
to identify the areas for which clear-cutting and spatial information matched exactly. In the
Republic of Korea, clear-cutting generally begins after September and lasts for less than six
months. The analysis used DF data from 2018, which is earlier than the acquisition time of
the Sentinel-2 satellite imagery in 2019. From the 533 original data polygons collected for
Buyeo-gun (the target area for training), we used 127 polygons as the training data.

2.4. Detection of Clear-Cut Areas Using Random Forest Classifier

We used an RF classifier that has been successfully applied for various classifications
using remote sensing data [19]. The RF algorithm generates and combines multiple decision
tree classifiers for classification and prediction and is known for its immunity to overfitting
(relative to other models), making it a robust choice for such analyses. In addition, RF
provides a simple method for evaluating the importance of each variable in the prediction
process. This feature was used to identify the relevant spectral bands or derive the indices
that were important for detecting the areas of change. The RF algorithm was used with
VIs from the training datasets (based on DF data) to classify the clear-cut areas. The DF
data were divided into an 80% training set and 20% validation set for processing. A five-
fold cross-validation method was used within the training set to ensure robustness. The
performance of the RF classifier was evaluated using various metrics, such as accuracy,
precision, recall, and F1 score. The variable importance of VIs were evaluated using the
mean decrease in impurity (MDI) importance method. This method measures the impor-
tance of each feature in a decision tree. The process is used to determine the importance of
different features based on the decrease in data impurities. MDI importance is often used
in tree-based machine learning models because it provides an intuitive understanding and
straightforward interpretation of feature importance. Therefore, in this study, MDI was
used to analyze the importance of VIs and determine the indices that should be prioritized
when analyzing clear-cut areas. In this study, clear-cut areas were identified by the overlap-
ping spatial extent of forest land in CDMs and DFTMs, thereby setting the detection area.
Note that we excluded results for areas smaller than 0.5 ha. This exclusion was based on the
regulatory context in the Republic of Korea, wherein clear-cutting activities within small
areas (<0.5 ha) do not require national or local government permission. This exclusion was
essential because data for smaller areas were generally not included in the dataset, leading
to an increase in the error and inaccuracy of the study results.

2.5. Accuracy Assessment

To assess the accuracy of the RF classifier in detecting clear-cut areas, a confusion
matrix was constructed using validation samples. This matrix was used to calculate the
overall accuracy and kappa coefficients of the classifier. The process of constructing the
confusion matrix included a comparative analysis of the 2019 orthoimages, focusing on
sampled points within both clear-cut and non-clear-cut areas.

Visual interpretation methods were used for comparison. Clear-cut areas were primar-
ily identified by specific land cover, e.g., grassland and the presence of harvested trees in
rows (which are characteristic indicators of clear-cutting activities). The sample size for
accuracy assessment was determined by random selection from each class (clear-cut and
non-clear-cut areas). This sample size was determined while achieving a 95% confidence
level and 3% sampling error for each pixel count, resulting in 1100 sample points for each
class of more than 1068 clear-cut area and 1063 non-clear-cut area samples, respectively.

https://map.ngii.go.kr/
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2.6. Characteristics Analysis of the Clear-Cut Areas

In this study, we used DFTMs to analyze the detection results. The maps included
the spatial distribution and detailed attributes of forests in the Republic of Korea, e.g., tree
species, types, age class (age classes are classified in 10-year intervals), and diameter at
breast height (DBH) class. These data provide an understanding of the characteristics of
the clear-cut areas identified by the RF classifier, e.g., ownership type (national or private
forest), forest composition (natural or planted forest), age class, and DBH class. Thus, our
study can serve as a foundation for the development of systematic management strategies
for future clear-cutting activities in the Republic of Korea.

3. Results
3.1. Detection of Clear-Cut Areas

The analysis of clear-cut areas in Chungcheongnam-do (conducted using the RF
classifier) detected that the total clear-cut area was 8164.0 ha, accounting for 2.5% of the
total forested area (Figure 3). Compared to national and DF data statistics, our result
indicates a more extensive coverage of clear-cut areas in Chungcheongnam-do. The area of
clear-cutting detected by the RF classifier exceeded the estimations of 7300.6 ha reported in
the DF data and those of 6456.0 ha reported in national statistical data [41].

Forests 2024, 15, x FOR PEER REVIEW 8 of 18 
 

 

2.6. Characteristics Analysis of the Clear-Cut Areas 
In this study, we used DFTMs to analyze the detection results. The maps included 

the spatial distribution and detailed attributes of forests in the Republic of Korea, e.g., tree 
species, types, age class (age classes are classified in 10-year intervals), and diameter at 
breast height (DBH) class. These data provide an understanding of the characteristics of 
the clear-cut areas identified by the RF classifier, e.g., ownership type (national or private 
forest), forest composition (natural or planted forest), age class, and DBH class. Thus, our 
study can serve as a foundation for the development of systematic management strategies 
for future clear-cutting activities in the Republic of Korea. 

3. Results 
3.1. Detection of Clear-Cut Areas 

The analysis of clear-cut areas in Chungcheongnam-do (conducted using the RF clas-
sifier) detected that the total clear-cut area was 8164.0 ha, accounting for 2.5% of the total 
forested area (Figure 3). Compared to national and DF data statistics, our result indicates 
a more extensive coverage of clear-cut areas in Chungcheongnam-do. The area of clear-
cutting detected by the RF classifier exceeded the estimations of 7300.6 ha reported in the 
DF data and those of 6456.0 ha reported in national statistical data [41]. 

 
Figure 3. Detection result of clear-cut areas in Chungcheongnam-do province using a random-forest 
(RF) classifier. Scale of clear-cut areas: (a,b) 30 ha; (c,d) 10 to 29 ha; (e,f) 5 to 9 ha; (g,h) 1 to 4 ha. 

For Chungcheongnam-do, the analysis of clear-cutting detection results at the re-
gional level indicated that the total clear-cut area composed of areas of 1 to 4 ha in scale 
was 3806.1 ha, accounting for 46.6% of the total clear-cut area in Chungcheongnam-do, 
the highest ratio. In the Republic of Korea, forest management tasks are directly managed 
by local governments. As a result, local governments are responsible for authorizing clear-
cutting activities and providing related data to the government. However, they do not 
provide sufficient data on areas where clear-cutting is performed. Therefore, this study 
analyzed the characteristics of clear-cutting in various regions of Chungcheongnam-do. 
The results showed that large-scale clear-cut areas, ranging from 30 ha to 60 ha, were ob-
served in Cheongyang-gun (119.0 ha), Gongju-si (85.2 ha), and Seosan-gun (32.4 ha). In 
particular, Gongju-si contained the highest clear-cut area (1470.0 ha) and Gyeryong-si had 
the smallest total clear-cut area (45.8 ha) (Table 4). This result has confirmed that there are 

Figure 3. Detection result of clear-cut areas in Chungcheongnam-do province using a random-forest
(RF) classifier. Scale of clear-cut areas: (a,b) 30 ha; (c,d) 10 to 29 ha; (e,f) 5 to 9 ha; (g,h) 1 to 4 ha.

For Chungcheongnam-do, the analysis of clear-cutting detection results at the regional
level indicated that the total clear-cut area composed of areas of 1 to 4 ha in scale was
3806.1 ha, accounting for 46.6% of the total clear-cut area in Chungcheongnam-do, the
highest ratio. In the Republic of Korea, forest management tasks are directly managed by
local governments. As a result, local governments are responsible for authorizing clear-
cutting activities and providing related data to the government. However, they do not
provide sufficient data on areas where clear-cutting is performed. Therefore, this study
analyzed the characteristics of clear-cutting in various regions of Chungcheongnam-do. The
results showed that large-scale clear-cut areas, ranging from 30 ha to 60 ha, were observed
in Cheongyang-gun (119.0 ha), Gongju-si (85.2 ha), and Seosan-gun (32.4 ha). In particular,
Gongju-si contained the highest clear-cut area (1470.0 ha) and Gyeryong-si had the smallest
total clear-cut area (45.8 ha) (Table 4). This result has confirmed that there are differences
in the scale of clear-cutting among the various regions of Chungcheongnam-do. Areas
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where large-scale clear-cutting has been conducted, as well as regions with relatively large
clear-cut areas, have been identified. Furthermore, this result enables targeted management
and supervision within the province for those areas that require it.

Table 4. Scale and extent of clear-cut areas in different regions of Chungcheongnam-do Province.

(Unit: ha)

Region <1ha 1~4 ha 5~9 ha 10~29 ha 30~60 ha Total

Asan-si 64 188 103 11 - 366

Boryeong-si 102 400 173 67 - 742

Buyeo-gun 224 580 173 314 - 1291

Cheongyang-gun 130 412 234 89 119 984

Dangjin-si 94 239 47 50 - 431

Cheonan-si 97 341 123 132 - 692

Geumsan-gun 56 185 120 84 - 444

Gongju-si 208 578 315 283 85 1470

Gyeryong-si 18 14 14 - - 46

Hongseong-gun 76 206 39 22 - 344

Nonsan-si 62 154 77 45 - 339

Seocheon-gun 55 155 7 25 - 241

Seosan-si 53 148 72 19 32 325

Taean-gun 50 64 30 - - 145

Yesan-gun 63 142 50 48 - 304

Total 1354 3806 1577 1190 237 8164

3.2. Accuracy Assessment, Variable Value, and Importance

With respect to the performance of the RF classifier for Buyeo-gun, the accuracy
metrics indicated high precision and effectiveness. The classifier achieved precision, recall,
and F1 scores of 1.0, indicating perfect classification accuracy. In the case of clear-cut area
class detection accuracy, the precision, recall, and F1 score were 0.99, 0.76, 0.86, respectively.
The overall average for both clear-cut area and forest area classes was impressive, with
a precision of 0.99, a recall of 0.88, and an F1 score of 0.93. Furthermore, the accuracy
assessment for detecting clear-cut areas in Chungcheongnam-do using the error matrix
showed an overall accuracy of 92.8% and a kappa coefficient of 85.6%. These results
indicated an “almost perfect” level of accuracy in the classifier’s performance. In detail,
the producer’s accuracy for clear-cut areas was 91.2% and the user’s accuracy was 90.9%.
For non-clear-cut areas, the producer and user accuracies were 94.5 and 94.7%, respectively.
These results demonstrate the robustness and reliability of the RF classifier in detecting
clear-cut and non-clear-cut forest areas.

The differences in VIs between clear-cut and non-clear-cut areas in Buyeo-gun were
statistically verified. In non-clear-cut forest areas, the mean values of ARVI, AVI, EVI,
GNDVI, and NDVI were 0.5–0.8, with standard deviations of 0.08–0.1. For SARVI and
SAVI, the mean was 1.1, with a standard deviation of 0.2. The mean value of SLAVI was 2.8,
with a standard deviation of 0.87 (Figure 4a). In clear-cut areas, the mean values of ARVI,
AVI, and EVI were 0.3–0.4, with standard deviations of 0.1–0.2. The GNDVI and NDVI
had mean values of 0.5, with standard deviations of 0.1 and 0.2, respectively. The SARVI
and SAVI had mean values of 0.6 and 0.7, respectively, with standard deviations of 0.3,
respectively. The mean SLAVI value was 1.2, with a standard deviation of 0.7 (Figure 4b).
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Figure 4. Vegetation index (VI) statistics for non-clear-cut (a) and clear-cut areas (b) in the training
dataset. Abbreviations: atmospherically resistant vegetation index (ARVI), advanced vegetation index
(AVI), soil and atmospherically resistant vegetation index (SARVI), soil-adjusted vegetation index
(SAVI), enhanced vegetation index (EVI), green normalized difference vegetation index (GNDVI),
normalized difference vegetation index (NDVI), specific leaf area vegetation index (SLAVI).

When assessing the importance of the variables within the model, SLAVI was ranked
as the most important index, whereas EVI and AVI were ranked as the least important
indices. This difference may be attributed to SLAVI’s wide range of values compared to
other VIs and its clear differentiation between values, specifically for the clear-cut areas. In
contrast, EVI and AVI received lower importance scores because of the minor differences
between values for clear-cut and non-clear-cut areas. The results indicate the effectiveness
of SLAVI in identifying clear-cut areas; we conclude that it is an effective vegetation index
for forest management monitoring. Table 5 presents the variable importance of the eight
variables considered in this study based on the mean decrease in impurity (MDI) method.

Table 5. Variable importance as determined by the mean decrease in impurity (MDI) method.

Variables Importance

SLAVI 0.261940

SARVI 0.193277

NDVI 0.171838

ARVI 0.136113

SAVI 0.079224

GNDVI 0.064720

EVI 0.049265

AVI 0.043622
Abbreviations: Atmospherically resistant vegetation index (ARVI); advanced vegetation index (AVI); soil and
atmospherically resistant vegetation index (SARVI); soil-adjusted vegetation index (SAVI); enhanced vegetation
index (EVI); green normalized difference vegetation index (GNDVI); normalized difference vegetation index
(NDVI); specific leaf area vegetation index (SLAVI).

3.3. Characteristics of Clear-Cut Areas

The results obtained using the RF classifier and analyzed using the DFTMs demon-
strated the effectiveness of the proposed method for characterizing clear-cut areas. In
Chungcheongnam-do, 2.4% of privately owned forests and 0.1% of national forests were
clear-cut areas relative to the total forest area. The analysis showed that within national
forests, clear-cut areas were more prominent in natural forests than in planted forests, with
the most extensive clear-cut areas observed in age class V (Figure 5a). In private forests,
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larger clear-cut areas were observed in age classes IV, V, and I, compared to those observed
in other age classes. Furthermore, within privately owned forests, clear-cut areas were
more extensive in natural forests than in planted forests (Figure 5b). However, the results
of clear-cut areas divided by natural and planted forests in Chungcheongnam-do show
that, in private forests, the proportion of clear-cut areas in planted forests was 3.4% of the
total planted forest area, while the proportion of clear-cut areas in natural forests was 1.9%
of the total natural forest area (Table 6). Moreover, the total clear-cut area in planted forests
was higher, at 3.5%, than the area in natural forests, at 2.1%. The reason for this is that
although natural forests represent 71.4% of the total forest area in Chungcheongnam-do,
the proportion of the actual clear-cut area is lower than that of planted forests.
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Table 6. Ratio of clear-cut area to total area of planted and natural forests by age class in
Chungcheongnam-do.

(Unit: %)

Division I II III IV V VI Ratio to Total Area

Planted

National forest 0.1 0.1 0.2 0.1 0.2 0.0 0.1

Private forest 4.2 3.3 2.8 2.8 3.3 4.4 3.4

Total 4.3 3.5 3.0 2.9 3.5 4.4 3.5

Natural

National forest 0.1 0.0 0.1 0.1 0.2 0.0 0.1

Private forest 2.0 1.7 1.9 1.8 2.3 0.7 1.9

Total 2.1 1.7 2.0 1.9 2.5 0.8 2.1

In planted forests, clear-cutting mainly occurred in age class I, with deciduous species
being cut more frequently than coniferous species. The largest clear-cut area in planted
forests was observed in age class I deciduous species; we noted a decreasing trend in
clear-cut areas in older age classes. In coniferous forests, age class IV experienced the
most extensive clear-cutting activities, followed by classes I and V (Figure 5c). In natural
forests, the highest clear-cutting occurred in age classes IV and V, with deciduous and
coniferous species undergoing clear-cutting mainly in age classes IV and class V, respectively
(Figure 5d). However, the ratio of clear-cut trees by species was found to be similar, at
1.8% for conifers and 1.6% for deciduous trees, and the ratio of harvested area by species
was found to be the highest, at 4.0%, for age class VI conifers in planted forests. In natural
forests, conifers and deciduous trees underwent clear-cutting at a similar rate of 0.9%, with
the highest rate of clear-cutting at 1.9% for age class I deciduous trees (Table 7).

Table 7. Ratio of clear-cut area to total area by tree species and age class in Chungcheongnam-do.

(Unit: %)

Division I II III IV V VI Ratio to Total Area

Planted

Coniferous 1.4 0.3 1.1 2.7 3.5 4.0 1.8

Deciduous 2.7 3.1 1.9 0.2 0.0 0.3 1.6

Mixed 0.1 0.1 0.0 0.0 0.0 0.0 0.1

Total 4.3 3.5 3.0 2.9 3.5 4.4 3.5

Natural

Coniferous 0.1 0.2 0.4 0.7 1.4 0.6 0.9

Deciduous 1.9 1.2 1.2 0.9 0.7 0.1 0.9

Mixed 0.0 0.2 0.4 0.3 0.5 0.0 0.4

Total 2.1 1.7 2.0 1.9 2.5 0.8 2.1

With respect to DBH class in clear-cut areas in planted and natural forests, a higher
proportion of clear-cut areas was found in classes with medium-diameter trees (18–29 cm),
accounting for 40 and 80.5% of planted and natural forests, respectively (Figure 5e,f).

According to DBH class, the highest proportion of clear-cut areas in planted forests
was found for small-diameter trees, which accounted for 4.1%, followed by large-diameter
trees, at 3.2%. In natural forests, the highest proportion of young growth reproduction was
found to be 2.4%, followed by 2.1% in the medium-diameter tree class (Table 8). The result
of clear-cutting trends obtained through overlay analysis with DFTMs shows that while
there are differences between natural and planted forests in terms of area and tree species
when considering the composition of forests within Chungcheongnam-do, a higher rate
of clear-cutting is observed in planted forests compared to natural forests. The rates of
clear-cutting are highest in age classes V and VI, and tree species are clear-cut relatively
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similarly. Additionally, in terms of DBH class results, clear-cutting occurred prominently in
young growth reproduction, followed by higher rates in larger diameter classes.

Table 8. Ratio of clear-cut area to total area by tree species and DBH class in Chungcheongnam-do.

(Unit: %)

Division <6 cm 6~17 cm 18~29 cm >29 cm Ratio to Total Area

Planted

Coniferous 1.3 0.9 2.5 0.7 1.7

Deciduous 2.6 1.6 0.6 2.4 1.5

Mixed 0.1 0.0 0.0 0.0 0.1

Total 4.1 2.5 3.1 3.2 3.3

Natural

Coniferous 0.1 0.4 0.9 0.9 0.8

Deciduous 2.3 1.0 0.8 0.1 0.8

Mixed 0.0 0.3 0.3 0.1 0.3

Total 2.4 1.8 2.0 1.1 2.0

4. Discussion
4.1. Discussion of Result

This study used spatial data on forest management from the Republic of Korea to
detect and analyze clear-cut areas at the provincial level. VIs from Sentinel-2 imagery and
an RF classifier were applied to achieve this. Overlay analysis with DFTMs further iden-
tified clear-cutting characteristics, enhancing our understanding of forest management’s
spatial dynamics.

Although the RF classifier in this study was highly accurate, it detected discrepancies
of 863.4 ha and 1708.0 ha in clear-cut areas in Chungcheongnam-do when compared
to national statistics and DF data, respectively. As indicated by Ham et al. [42], these
discrepancies may be due to inconsistencies between spatial and management registry
data. National statistical data on forest management in the Republic of Korea are based
on cadastral registry data, which may not be consistent with spatially focused data. In a
scenario wherein accurate registry data on forest management activities are unavailable,
DF data are generally based on the area of cadastral parcels, resulting in discrepancies
from the actual areas of activities. Registry data and spatial discrepancies indicate potential
variances in actual forest management activities. The significance of a well-defined training
dataset is critical in machine learning models, affecting model accuracy and reliability.
Therefore, for accuracy and consistency, obtaining precise spatial and location information
through comparative analysis with remote sensing results [42,43], as shown in this study, is
important. Enhancing the accuracy of national statistics and detection outcomes necessitates
boosting DF data collection rates and ensuring precise field and spatial data gathering. The
RF classifier’s accuracy is significantly influenced by training data characteristics, such
as sample size, class proportions, and spatial autocorrelation. Utilizing a larger training
sample has been shown to reduce both out-of-bag and independent assessment errors.
Therefore, larger training sample sizes are recommended to enhance RF classifier accuracy
and stability [44]. This underscores the importance of extensive field data collection and the
continuous enhancement of digital forest management resources. Such data collection and
processing advancements facilitate more precise and reliable assessments and can support
effective forest management and policymaking.

This study detected clear-cut areas effectively using VIs. The importance of the vari-
ables in the RF classifier was demonstrated. Compared to previous studies, which primarily
relied on NDVI and EVI, we included additional indices to reduce soil and atmospheric
effects, improving accuracy [45–50]. These VIs enhanced land cover classification for forests
and other land types. Including diverse datasets broadened the spectral signatures for RF
classifier training, enhancing classification accuracy with training data variability [51,52].
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Among the eight VIs evaluated, SLAVI, which reflects changes in plant leaf surface and
photosynthetic activity, was the most important. Morcillo-Pallarés et al. [53] confirmed the
effectiveness of SLAVI in identifying vegetation conditions, as it has a positive correlation
with NIR and SWIR bands and a negative correlation with the red band. SLAVI’s design
also makes it unaffected by cloud shadows, providing reliable detection capabilities [54].
Bolyn et al. [55] and Boonprong et al. [56] noted the critical role of SWIR in mapping forest
species and monitoring forest regeneration, with SLAVI being the only index to include the
SWIR band. Although EVI and AVI were useful for evaluating vegetation productivity and
coverage, SLAVI was found to be superior in detecting vegetation presence and reducing
soil reflectance effects, making it ideal for identifying sparse vegetation areas [40]. Future
research should focus on exploring SLAVI’s applicability in detecting clear-cutting.

In the analyzing of characteristics, the majority of clear-cutting was noted in age classes
III–V, which corresponded to the legal harvest age. However, we noted a considerable
amount of clear-cutting of deciduous species within age class I in planted forests. Related
to these age class results, it was also found that the rate of clear-cut areas with a DBH class
of less than 6 cm is high. These results are considered to be errors due to limitations in
detecting clear-cut areas due to the resolution and time-series of satellite imagery, where
areas already afforested as age class I do not appear to have a dense tree cover. These
errors may also be related to the update cycle of DFTMs. In the Republic of Korea, attribute
information for areas with forest management activities is updated annually. For other
areas, attribute information is updated for one region per year, and it takes up to five years
for the entire dataset to be updated. Therefore, future research should consider the regional
update cycles of DFTMs to detect and analyze the characteristics of clear-cut areas more
accurately. Using additional data from afforestation areas can help identify clear-cutting
characteristics more accurately.

As a result, the detection, verification, and characteristics analysis of clear-cut areas
require the use of data with more accurate information. To improve data precision and
provide more meaningful and officially usable results at the national level, it is essential
to construct data on forest management activities in a complementary approach, as was
performed in this study, through the analysis of field or administrative records (documents
or spatial data) and remote sensing data.

4.2. Limitation

This study has limitations. First, detection was limited to a single period, which
may have caused discrepancies with national statistics. Previous research has shown the
effectiveness of the RF classifier in detecting land use change and forest dynamics [16,57,58];
however, these studies have been limited to single-period analysis. This approach may
include areas where clear-cutting occurred just before the base year of 2018, such as in
2017 or 2016, without reforestation. Therefore, time-series analysis is needed to accurately
identify clear-cut areas over time [6,7,26,59–61]. Our study encountered limitations in
conducting a time-series analysis due to the beginning of clear-cutting data construction in
2018 DF data, with no previous data. Future studies should focus on time-series analysis
starting in 2018 to detect clear-cut areas.

Second, in this study, while high-accuracy detection was achieved through the RF
classifier, this study identified false positives in areas with lower forest density and exposed
ground, such as rocky areas and forest roads. Therefore, it is possible to identify a more
suitable machine learning approach for detecting clear-cut areas through comparative
analysis with other methods (e.g., CNNs, U-net, AdaBoost, K-NN, ANN). These machine
learning methods can effectively learn high-dimensional features, improve generalization
abilities, and iteratively refine training results for enhanced detection accuracy. Therefore,
future research should compare these machine learning approaches to evaluate their utility
and accuracy. Additionally, our result indicates the necessity of incorporating ancillary
data, such as land cover and forest road network maps, in future research to enhance
detection accuracy.
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Third, the spatial resolution limitations of remote sensing data can impact the accuracy
of the detected boundaries and areas. The detectable size of clear-cut areas varies with the
resolution of remote sensing data. Junaid et al. [16] detected large tree-cutting areas at a
50 m resolution and identified smaller areas at a 20 m resolution. Sentinel-2 imagery offers
meaningful information at the national and regional scales, as supported by various stud-
ies [17,62–64]. In this study, we detected small clear-cut areas, but spatial resolution may
have led to inaccuracies in boundary detection, especially at the edges. These discrepancies
can be rectified with higher-resolution aerial imagery. If high-resolution remote sensing
imagery is used, it is useful to combine a RF classifier with texture analysis [65]. Clear-cut
areas reveal the ground surface, which differs in characteristics from areas with grassland
and shrubbery or regions with rocks. This integration can help reduce the false positives
associated with resolution and provide a more accurate analysis by including additional
factors related to the object’s characteristics.

4.3. Implications

Integrating remote sensing imagery and RF classifier detection results with spatial
datasets is a powerful approach for collecting comprehensive data for analyzing and man-
aging clear-cut areas. Forests are characterized by diverse activities and varying ownership,
covering extensive areas. Collecting data on forest management activities can be challeng-
ing due to regional diversity. Integrating remote sensing clear-cutting detection with spatial
data containing forest characteristics information (DFTMs) provides valuable insights into
forest land use and cover. Additionally, analyzing ancillary spatial data such as forest roads,
elevation, and slope can provide insights into clear-cutting practices and help identify
illegal clear-cut areas. This methodology can provide deeper insights into forest conditions
and management practices and enhance our understanding of the management status of
clear-cutting at the regional and national levels for forest management decision-making.
This approach improves our understanding of forest dynamics and aids in developing
sustainable management strategies that balance ecological, economic, and social needs,
ensuring the preservation of forest ecosystems. It is a methodology that can be adapted
to different regions and countries to enhance forest management and detect areas tar-
geted by REDD+ (reducing emissions from deforestation and forest degradation plus) in
various countries.

5. Conclusions

In this study, we analyzed clear-cut areas in the Chungcheongnam-do region in the
Republic of Korea. We accurately detected clear-cut areas by integrating spatial forest
management data (DF data) with high-resolution Sentinel-2 satellite imagery using an RF
classifier. The proposed approach, which combined various VIs and machine learning
techniques, proved effective in detecting and analyzing clear-cut areas at the regional and
provincial levels. We identified clear-cutting patterns in different forest types and age
classes using DFTMs. Furthermore, we verified the importance of specific VIs, particularly
SLAVI, for accurately detecting clear-cut areas. However, the results portrayed a greater
extent of clear-cutting than that reported in national statistics. This discrepancy may be
related to limitations and inaccuracies in national and spatial data. The discrepancies
between spatial and registry data and the limitations associated with single-period analyses
may be the causes of this issue. However, these limitations provide opportunities for future
studies. Notably, our study confirms the importance of conducting time-series analyses,
including additional ancillary data, and considering spatial resolution when detecting
clear-cut areas in forests.

Our study offers an effective methodology for monitoring and analyzing clear-cutting
activities, thus contributing to forest management. This study presents an effective method-
ology for continuous data collection for forest clear-cut areas. The collected data can be
used for the establishment of forest policies at the regional and national levels. Monitor-
ing clear-cut areas is important for improving the efficiency of national forest restoration
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projects and establishing sustainable forest management strategies. The insights from our
study can support policymaking and the development and implementation of sustainable
and systematic forest management strategies at the national and regional levels. Notably,
our method can serve as a basis for forest management and monitoring by analyzing
tree-cutting trends in countries with complex forest conditions, such as Republic of Korea.
Furthermore, this methodology could usefully be applied in identifying target areas for
carbon reduction, such as REDD+.
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