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Abstract: Forest productivity is influenced by various factors, including biodiversity, environmental
factors, functional traits, and forest types. However, the relative importance of these factors in
determining the productivity of subtropical forests in southern China remains controversial. In this
study, we analyzed a dataset of 24 forest plots from four subtropical forest types in the Nanling
Mountains with the main goal of identifying and quantifying the relative contribution of the main
driving factors of forest productivity in these forests. Generalized linear regression and structural
equation modeling were used to examine the relationship between forest biomass productivity
(aboveground, belowground and total), biodiversity (taxonomic diversity, phylogenetic diversity
and functional diversity), and environmental variables (i.e., physiography and climate). The results
indicated that both environmental factors and biodiversity played pivotal roles in explaining the
biomass productivity of the Nanling subtropical forests. Environmental factors had the greatest
influence on total productivity, while the impacts of different types of biodiversity on various
productivity components (aboveground and belowground) varied notably. Taxonomic diversity
showed the strongest positive effect on the aboveground and belowground biomass productivity.
However, phylogenetic and functional diversity had negative effects on productivity. Furthermore,
these relationships also exhibited variations when considering different altitude gradients, with low
altitudes generally leading to negative biodiversity–productivity correlations. We contextualized
our results regarding the three state-of-the-art theories about biodiversity–productivity relationships
(selection probability, niche complementarity, and biomass ratio) and concluded that both selection
probability and niche complementarity are the driving mechanisms of productivity in the subtropical
forests of the Nanling Mountains. This study offers valuable insights into the functioning and
biodiversity mechanisms of subtropical forest ecosystems in southern China.

Keywords: biodiversity; subtropical forests; Nanling Mountains; biomass productivity

1. Introduction

The relationship between forest biodiversity and ecosystem functions represents a
critical and extensively investigated aspect of forest ecosystems [1,2]. With the increasing
impacts of global climate change and human activities, this relationship has attracted
marked attention [3–5]. Numerous studies have shown that biodiversity plays a crucial role
in forest productivity, as forests with high biodiversity tend to have higher productivity
and be better providers of ecosystem services [6–8]. However, the relationship between
biodiversity and productivity is not always straightforward, as research indicates that
the correlation may not be linear [9,10]. There are instances where high biodiversity
does not necessarily lead to a proportional increase in productivity [11]. In fact, some
studies indicate that productivity may decrease after surpassing a specific biodiversity
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threshold [12,13]. Therefore, it is essential to further explore the complex relationship
between forest biodiversity and productivity [9,14].

Many studies have tackled the complex dynamics linking productivity and biodiver-
sity [6,15]. The main hypotheses for how biodiversity affects forest productivity are the
niche complementary effect, the selection probability effect, and the biomass-ratio effect.
The niche complementary effect hypothesizes that high biodiversity can increase forest
productivity through niche differentiation and promotion [11]. The selection probability
effect suggests that higher species richness boosts community productivity by raising
the likelihood of having high-yielding species [16]. Under this situation, the impact of
functional diversity on productivity is notably weaker than that of taxonomic diversity.
The biomass-ratio hypothesis, on the other hand, postulates that the characteristics of the
dominant species within the community drive ecosystem functions, which is a mechanism
that does not conflict with niche complementarity [17]. These three ecosystem functioning
hypotheses could coexist to some extent [18,19], though their relative significance remains
an ongoing discussion [17,20].

Further investigation into the association between biodiversity and productivity re-
quires a deeper understanding of the role environmental factors play [2,21,22]. These
factors, such as climate, soil, and physiography, have a strong influence on the relationship
between biodiversity and productivity in forest ecosystems [2]. Climatic and soil fac-
tors [23,24], as well as light and moisture conditions [25,26], are examples of environmental
factors that can have a significant impact on the distribution, growth, and competition of
forest ecosystems [19,27], which in turn affects the interaction between forest biodiversity
and productivity [15,24]. Numerous studies have revealed that the relationship between
biodiversity and productivity varies under different environmental conditions [21,27,28].
For example, as altitude increases, forest ecosystems show significant changes in climate,
soil, and vegetation [29], and these changes ultimately affect forest biodiversity and pro-
ductivity [30]. In addition, several studies have shown that the relationship between forest
biodiversity and productivity is significantly impacted by changes in altitude [31,32]. In
these studies, the relationship between biodiversity and productivity displayed negative or
unimodal patterns in response to increasing altitude [31,33,34]. Changes in environmental
conditions, such as variations in temperature and precipitation that covariate with altitude,
might also affect forest biodiversity and productivity [19,33,35]. Moreover, altitude changes
can also have an impact on forest vegetation types, species composition, and ecosystem
functions [36]. Consequently, exploring the relationship between biodiversity and produc-
tivity along altitude gradients might be essential to understand ecological processes and
response mechanisms in forest ecosystems [33,36].

In the current study, our objective was to examine the impact of biodiversity and
environmental factors on the productivity of various subtropical forest communities in
the Nanling Mountains of southern China. Based on the monitoring data of 24 fixed
plots of four different forest types in the Nanling Mountains, we selected a number of
biodiversity indices, including taxonomic, phylogenetic, and functional diversity. Forest
productivity was estimated in terms of aboveground, belowground, and total tree biomass.
The influence of biodiversity indices and environmental factors on forest productivity
was analyzed through generalized linear regression and structural equation models to
examine three main questions: (1) the impact of various biodiversity indices on forest
productivity, (2) the relative contribution of environmental factors and biodiversity to
biomass productivity of forest communities, and (3) the role of altitude in shaping the
biodiversity–productivity relationship.

2. Materials and Methods
2.1. Study Area

The study area is located in the Nanling National Nature Reserve, in the middle of
the Nanling Mountains, in the north of Guangdong Province, southern China. It spans
three counties, namely Ruyuan, Yangshan and Lianzhou, with geographical coordinates
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24◦37′ N–24◦57′ N, 112◦30′ E–113◦04′ E, and covers an area of 58,400 hectares. The highest
peak, Shikeng Kong, is 1902 m above sea level and has a relative elevation difference of
1489 m. The study site was established in 2017 following the CTFS ( Center for Tropical For-
est Science of The Smithsonian Tropical Research Institute) standard census methods, and
vegetation types include valley evergreen broad-leaved forest (VBF), mountain evergreen
broad-leaved forest (MBF), evergreen coniferous broad-leaved mixed forest (EMF), and
evergreen broad-leaved dwarf forest (DWF). The study region exhibits specific monsoon
climate between Central Asia and South Asia. The annual average temperature is 17.7 ◦C,
with annual minimum and maximum temperatures of −4.2 ◦C and 34.4 ◦C, and an annual
average frost-free period of 276 days. The annual average precipitation is 1705 mm, with
the annual average relative humidity of 84%. Most of the annual rainfall is distributed
between March and October, making up roughly 82% of the total annual rainfall. The soils
of the reserve region primarily include red soil, yellow soil, and mountain scrubby-meadow
soil [37].

2.2. Data Collection

Data were collected from 24 permanent plots of 40 m × 40 m in the Nanling National
Nature Reserve (Figure 1), which were surveyed in the years 2017 and 2020. Six VBF plots,
nine MBF plots, six EMF plots, and three DWF plots were among the various vegetation
types found in the plots. Each fixed plot was divided into four 20 m × 20 m quadrats as
vegetation survey units, except for the mountain scrubby-meadow fixed plot, which was
divided into four 10 m × 10 m quadrats. The four corners of the quadrats were marked
and fixed with cement piles. The geographic location (latitude, longitude) and topographic
variables (altitude, slope, aspect) were collected for each plot (Supplementary Table S1).
All woody stems with ≥1 cm diameter at a breast height of 1.3 m (DBH) in the plot were
mapped, identified, and their DBH, tree height, and crown width were measured.

2.3. Productivity Calculations

The woody biomass of all individual trees was calculated using species-specific allo-
metric growth equations [38–41]. All tree individuals with a DBH ≥5 cm were used in the
analysis. For each tree, the variation in tree biomass over a three-year period was evalu-
ated to determine the aboveground biomass productivity (ABP), belowground biomass
productivity (BBP), and total biomass productivity (TP). A total of 18,715 tree individu-
als, belonging to 201 species, were counted throughout both inventories, excluding dead
trees and recruits, which were not taken into account. In the end, the biomass increments
from 2017 to 2020 were used to calculate each plot’s forest biomass productivity. Addi-
tional comprehensive details regarding the productivity estimation can be found in the
Supplementary Table S2.

2.4. Biodiversity Indices and Functional Traits

Three different criteria (taxonomic species diversity, phylogenetic diversity and func-
tional diversity) were used to examine the effect of biodiversity on forest productivity.
Species richness (number of species per plot, S), the Shannon–Weaver diversity index (H),
the Simpson diversity index (DS), and Pielou evenness index (J) were used to quantify
taxonomic species diversity (TD).

For phylogenetic diversity (PD), we used the software of Phylomatic-awk-1.0.0 (http:
//www.phylodiversity.net accessed on 1 June 2023) [42]. The tree with branch lengths
generated by Zanne et al. [43], which combined the DNA marker data with a molecular
phylogeny for land plants, was more accurate than using the tree APG III system as a skele-
ton, and was consequently selected for estimating diversity indices. Three phylogenetic
diversity indices were calculated based on this phylogenetic tree (Figure S1) as follows:
the phylogenetic diversity (pd), defined as the total branch length across the phylogenetic
tree of all the species within the community [44]; the mean pairwise phylogenetic distance
(mpd) between all the species in each community; and the mean nearest taxon distance
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(mntd), defined as the mean distance separating each of the species within the community
from its closest relative [43]. The phylogenetic analysis was implemented in Phylocom
version 4.2 [42] and the R package “picante” [45].
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Figure 1. Spatial distribution of the forest plots in the Nanling National Nature Reserve, southern
China. Abbreviations: DWF, evergreen broad-leaved dwarf forest; EMF, evergreen coniferous
broad-leaved mixed forest; MBF, mountain evergreen broad-leaved forest; VBF, valley evergreen
broad-leaved forest.

Functional diversity indices were estimated using the functional traits which better
reflected the growth capacity of the considered species. The functional traits of 201 tree
species were utilized, including total carbon content, total nitrogen content, total phospho-
rus content, total potassium content, sulphur content, calcium content, magnesium content,
gross caloric value, ash content of steam, leaves, and roots (Table 1). For the 56 species for
which trait measurement data were available, we used the means of genera to approximate
the traits of the 155 unmeasured species. We applied the means of total data to unmeasured
tree species that did not belong to any measured genus.

Using the dbFD function of the R package ‘FD’, three functional diversity indices
(FD) were used: functional evenness (FEve) and functional divergence (FDiv) proposed by
Villeger et al. [46], and functional dispersion (FDis) proposed by Laliberté and Legendre [47].
Community-weighted means (CWM) of each trait, weighted by the density of each species
for each plot, were also calculated using the R package “FD” [48].
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Table 1. Summary of functional traits data from the 24 plots in Nanling’s subtropical forests.

Variables Abbreviation Units Ecological Roles ¯
x ± std

Stem Total Carbon content stc % stem structure and function 50.76 ± 0.78

Stem Total Nitrogen content stn g/kg plant growth and photosynthesis 12.81 ± 0.62

Stem Total Phosphorus content stp g/kg reproduction and energy transfer 1.25 ± 0.06

Stem Total Potassium content stk k/kg enzyme activation and the transport of
nutrients and water 7.08 ± 0.49

Stem Sulphur content ssc g/kg component of proteins 1.79 ± 0.4

Stem Calcium content scc g/kg prevention of plant diseases and
maintenance of cell structure 15.63 ± 3.22

Stem Magnesium content smc mg/kg photosynthesis 2.16 ± 0.28

Stem Gross caloric value sgc KJ/g energy content 26.28 ± 1.88

Stem Ash content sac % inorganic mineral content 7.33 ± 0.15

Leaves Total Carbon content ltc % leaves structure and photosynthesis 50.76 ± 0.78

Leaves Total Nitrogen content ltn g/kg key component of chlorophyll,
photosynthesis 14.03 ± 0.6

Leaves Total Phosphorus content ltp g/kg energy transfer and metabolic processes 1.37 ± 0.07

Leaves Total Potassium content ltk k/kg osmoregulation and stomatal control 8.34 ± 0.75

Leaves Sulphur content lsc g/kg defense mechanisms 2.25 ± 0.55

Leaves Calcium content lcc g/kg resistance 19.82 ± 3.75

Leaves Magnesium content lmc mg/kg key component of chlorophyll,
photosynthesis 2.56 ± 0.3

Leaves Gross caloric value lgc KJ/g energy content 19.29 ± 2.19

Leaves Ash content lac % inorganic mineral content 8.22 ± 0.31

Roots Total Carbon content rtc % energy storage and resource acquisition
of roots 50.67 ± 0.88

Roots Total Nitrogen content rtn g/kg nutrient uptake and plant growth 11.89 ± 0.67

Roots Total Phosphorus content rtp g/kg energy transfer, nutrient uptake, and
root growth 1.14 ± 0.06

Roots Total Potassium content rtk k/kg water and nutrient uptake,
osmoregulation 6.33 ± 0.49

Roots Sulphur content rsc g/kg resistance and mycorrhiza fungi 1.48 ± 0.38

Roots Calcium content rcc g/kg root development 14.23 ± 3.27

Roots Magnesium content rmc mg/kg metabolic processes 1.88 ± 0.33

Roots Gross caloric value rgc KJ/g energy content 21.1 ± 2.04

Roots Ash content rac % inorganic mineral content 6.68 ± 0.17

2.5. Environmental Variables

The physiographic conditions and meteorological information were included in the
environmental variables. Physiographic conditions comprised altitude, slope, south–north
aspect (sn_aspect), west–east aspect (we_aspect), the Topographic Position Index (TPI),
and the Terrain Ruggedness Index (TRI), derived from the 250 m SRTM (Shuttle Radar
Topography Mission) Digital Elevation Model for China [49], and computed using the
R language package “raster” [50]. Moreover, we extracted climatic variables for the
2017–2020 period, including mean annual precipitation (mnp), mean annual tempera-
ture (mnt), January’s minimum temperature (min_JAN), and July’s maximum temperature
(max_JU) from the Monthly Spatial Interpolation Dataset of Meteorological Elements
in China [51]. In this study, the altitude ranges of 400 to 850 m, 850 to 1400 m, and
1400 to 1700 m were categorized as low-altitude, mid-altitude, and high-altitude ranges,
respectively. The 7 plots in low-altitude gradient belong to subtropical VBF(6) and MBF(1),
since VBF can still keep the forest warm and humid in the dry season, and the vegetation
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shows some rainforest characteristics, such as the plate root phenomenon, and the trees are
mainly composed of families Lauraceae, Duyingaceae, and Myrtaceae. The mid-altitude
gradient has 11 plots, categorized as MBF(7) and EMF(4). MBF is mainly distributed in
low hills below 1400 m in Nanling Mountains, where it is occasionally accompanied by
deciduous tree species, and most of them belong to the family Fagaceae. And EMF is
mainly distributed on steep slopes at an altitude of 1000–1500 m, and the common species
are mainly Pinus kwangtungensis, Chamaecyparis hodginsii, and Nothotsuga longibracteata.
Within the high-altitude gradient, six plots are designated under DWF(3), EMF(2), and
MBF(1). DWF is primarily distributed at mountains exceeding 1500 m in altitude, where
the weather is permanently windy and cloudy. Trees in this area are small, usually between
4 and 8 m tall, and the predominant species are rhododendrons (Rhododendron sp.).

2.6. Statistical Analysis

A logarithmic transformation was applied to the forest productivity data prior to data
analysis. In addition, all environmental variables, diversity indices, community-weighted
trait values, and data of forest productivity were standardized. Pearson correlation co-
efficients of environmental and biodiversity indices can be found in the Supplementary
Table S3. Multicollinearity between variables was evaluated based on the Variance Inflation
Factor (VIF), with a threshold set at 3, using the “CAR” R package [52]. Following this pre-
processing process, the final groups of variables were identified: environmental variables
(ENV, e.g., mnp, min_JAN, slope, aspect, TPI, and TRI), taxonomic species diversity (TD,
e.g., DS, J, and S), phylogenetic diversity (PD, e.g., pd, mpd, and mntd), functional diversity
(FD, e.g., FEve, FDiv, and FDis), CWM of specific traits (as CWM.stc, CWM.stk, CWM.sm,
CWM.sgc, CWM.ltc, CWM.ltn, CWM.lgc, CWM.rtn, CWM.rtp, CWM.rtk, CWM.rgc), and
forest biomass productivity data (ABP, BBP, TP). The effects of each variable on forest
biomass productivity were investigated using general linear regression analysis. The
“glmm.hp” R package was used to rank the explanatory power of various groups on
productivity [53].

A structural equation modeling (SEM) approach was used to analyze how environmen-
tal and biodiversity variables affected ABP, BBP, and TP. We set up two theoretical models
that differ in the order in which productivity affects the aboveground and belowground
components. Model A assumes that the aboveground productivity affects the belowground
productivity first, while model B assumes that the belowground productivity influences the
aboveground productivity first. The structural equation modeling was implemented using
the “lavvan” R package [54]. The statistical analyses were all carried out using R 4.2.3 [55].

3. Results
3.1. Relationship between Predictive Variables and Forest Productivity

When examining the relationships between functional aspects and forest productivity,
marked differences were found in the associations with aboveground and belowground
productivity (Table 2). Specifically, CWM.rtn explained the majority of the variance in ABP
(coefficient = 0.14, R2 = 0.31, p < 0.01), while FD exhibited a significant negative correlation
with ABP (coefficient = −0.13, R2 = 0.26, p < 0.05). Notably, a negative relationship between
BBP and mntd (coefficient = −0.17, R2 = 0.45, p < 0.001) was found, but positive correlations
were found between BBP and CWM.ltn and CWM.rtn (coefficients: −0.12, R2 = 0.23,
p < 0.05; −0.15, R2 = 0.38, p < 0.001). Only TPI displayed a statistically significant positive
correlation with TP (coefficient = 0.25, R2 = 0.99, p < 0.01).

Regarding the analysis of effects on productivity based on grouped multiple linear
regression, environmental factors were the best explainers of TP (51.52%, p = 0.08), while
biodiversity variables demonstrated significant explanatory power over both ABP and BBP.
Interestingly, the highest explanatory power for ABP (45.01%, p < 0.05) and BBP (79.3%,
p < 0.001) was found to be attributed to taxonomic species diversity. Additionally, compared
to separate ABP and BBP, the CWM values of individual functional traits had a slightly
higher explanatory power for TP (Table 3).



Forests 2024, 15, 410 7 of 16

Table 2. Bivariate relationships between productivity (log-transformed) and environment factors,
biodiversity, and community-weighted means of each trait.

Variables
ABP BBP TP

Coefficient R2 p-Val. Coefficient R2 p-Val. Coefficient R2 p-Val.

ENV

mnp 0.29 0.08 0.16 0.2 0.04 0.33 0.29 0.09 0.17
min_JAN 0.27 0.07 0.21 0.18 0.03 0.41 0.26 0.07 0.21

slope 0.11 0.01 0.6 0.07 0.005 0.75 0.11 0.01 0.6
sn_aspect −0.11 0.01 0.63 −0.08 0.007 0.7 −0.11 0.01 0.62
we_aspect −0.21 0.04 0.33 −0.23 0.05 0.27 −0.22 0.04 0.31

TPI −0.1 0.1 0.63 −0.13 0.02 0.54 −0.11 0.01 0.61
TRI 0.11 0.01 0.61 0.21 0.05 0.32 0.13 0.02 0.55

TD
DS 0.29 0.08 0.17 0.54 0.29 0.01 * 0.34 0.11 0.11
J 0.28 0.08 0.18 0.56 0.31 0.004 0.33 0.11 0.11
S 0.21 0.04 0.33 0.41 0.17 0.05 0.24 0.06 0.25

PD
pd 0.01 0.001 0.9 0.17 0.03 0.43 0.14 0.01 0.9

mpd −0.26 0.07 0.21 −0.14 0.02 0.5 −0.26 0.07 0.22
mntd −0.32 0.1 0.13 −0.63 0.39 0.001 ** −0.37 0.14 0.07

FD

FEve −0.11 0.01 0.61 0.04 0.001 0.85 0.09 0.001 0.66
FDiv −0.002 0.001 0.9 −0.23 0.06 0.26 −0.03 0.001 0.89

FDis −0.45 0.21 0.03 * −0.63 0.4 <0.001
*** −0.5 0.25 0.01 *

CWM

CWM.stn 0.42 0.18 0.04 * 0.67 0.45 0.001 ** 0.47 0.22 0.02 *
CWM.stp −0.003 0.001 0.9 −0.27 0.08 0.2 −0.04 0.002 0.9
CWM.stk 0.1 0.01 0.65 0.31 0.1 0.15 0.13 0.02 0.54
CWM.sgc 0.04 0.001 0.9 −0.01 0.001 0.9 0.03 0.001 0.9
CWM.ltc −0.04 0.002 0.84 −0.22 0.05 0.29 −0.07 0.01 0.74
CWM.ltn 0.28 0.08 0.17 0.51 0.26 0.01 * 0.33 0.11 0.11
CWM.rtc −0.16 0.02 0.46 −0.27 0.07 0.2 −0.18 0.03 0.4

CWM.rtn 0.5 0.25 0.01 * 0.63 0.4 <0.001
*** 0.54 0.29 0.01 *

CWM.rtp 0.17 0.03 0.43 −0.02 0.001 0.9 0.15 0.02 0.5
CWM.rgc 0.17 0.03 0.42 0.18 0.03 0.4 0.18 0.03 0.4

* indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001.

Table 3. Summary of regression model for the effects of environment factors, taxonomic diver-
sity, phylogenetic diversity, functional diversity, and community-weighted means of each trait on
productivity in Nanling Mountain forests.

Variable VIF
ABP BBP TP

Coefficient Individual
Effect (%) p-Value Coefficient Individual

Effect (%) p-Value Coefficient Individual
Effect (%) p-Value

ENV 1.31 0.002 0.18 0.90 −0.01 2.59 0.48 0.03 51.52 0.08
TD 2.27 0.06 45.01 0.06 0.09 79.3 0.001 *** 0.03 11.43 0.40
PD 1.28 −0.09 26.8 0.04 * −0.14 26.1 0.001 *** −0.05 9.27 0.30
FD 1.32 −0.11 18.73 0.04 * −0.11 0.81 0.01 ** 0.003 7.39 0.96

CWM 2.44 −0.002 0.35 0.86 −0.01 1.43 0.60 0.006 2 0.72
R2 0.27 0.46 0.22

* indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001.

3.2. The Relative Importance of Environmental Factors and Diversity in Determining Forest
Community Productivity

All the predictor variables, including ENV and biodiversity, collectively explained 22%
of TP, 58% of ABP, and 52% of BBP, according to the structural equation model A (Figure 2a).
TD exhibited a significant positive effect on BBP, while both PD and FD exhibited significant
negative effects on BBP. The BBP had a noteworthy positive impact on ABP. Furthermore,
TP was significantly positively impacted by ENV.
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Figure 2. Structural equation models that link ENV, TD, PD, FD, and CWM to ABP, BBP, and TP.
The coefficients are standardized prediction coefficients for each causal path. (a) theoretical model A;
(b) theoretical model B. Solid lines represent significant paths (p ≤ 0.05) and dashed lines indicate
non-significant paths (p > 0.05). Line color denotes the positive (red) or negative (blue) coefficient
values. The thickness of the solid arrows reflects the significance level of the standardized prediction
coefficients. R2 represents the proportion of variance explained. Abbreviations: TD, taxonomic
species diversity; PD, phylogenetic diversity; FD, functional diversity; ENV, environmental factors;
CWM, community-weighted means of specific traits; ABP, aboveground biomass productivity; BBP,
belowground biomass productivity; TP, total biomass productivity; CFI, comparative fit index; GFI,
goodness-of-fit index; RMSEA, root mean square error of approximation.

For structural equation model B, 22% of TP, 32% of ABP, and 71% of BBP were ex-
plained (Figure 2b). Notably, PD showed a significant negative effect on ABP in this



Forests 2024, 15, 410 9 of 16

alternative model, and its negative effect on CWM became significant. FD displayed a
significant negative effect on ABP, but its negative effect on BBP was not significant. TD
exhibited a significant positive effect on ABP.

3.3. Relationship between Diversity and Forest Productivity across Altitude and Vegetation Classes

Variations in woody plant productivity were noted in the aboveground, belowground
and total productivity across altitude gradients and vegetation types (Figure 3). Specifically,
ABP and TP were highest in the low-elevation areas and lowest in the high-elevation sites.
Conversely, BBP in mid-elevation forests exceeded that in both low- and high-elevation
areas. When comparing productivity among different forest types, we found that MBF
exhibited the highest ABP, BBP, and TP, followed by VBF, while tree productivity in DMF
was the lowest.
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Figure 3. Variations in aboveground, belowground, and total productivity across diverse alti-
tudes and vegetation types. Abbreviations: ABP, aboveground biomass productivity; BBP, be-
lowground biomass productivity; TP, total biomass productivity; VBF, valley evergreen broad-leaved
forest; MBF, mountain evergreen broad-leaved forest; MBF, mountain evergreen broad-leaved forest;
EMF, evergreen coniferous broad-leaved mixed forest; DWF, evergreen broad-leaved dwarf forest.
* indicates the significance of difference between the different altitudes or vegetation types (p < 0.05).

Vegetation types and altitude classes had varied effects on the relationship between
species richness and productivity (Figure 4). In particular, there is a negative correlation
at low altitude and a positive correlation at mid-to-high altitude gradients between ABP
and species richness. Along the three altitude classes, BBP and species richness have a
positive correlation. At low altitude, there is a similar negative association between TP and
species richness, but at both mid and high altitude, there are positive correlations. There
is a negative association found in VBF between ABP, TP, and species richness, contrary to
the other forest community types. In contrast, productivity and species richness show a
positive association in MBF, EMF, and DMF.



Forests 2024, 15, 410 10 of 16Forests 2024, 15, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 4. Relationship between species richness and aboveground, belowground, and total produc-
tivity across diverse altitudes and vegetation types. Abbreviations: ABP, aboveground biomass 
productivity; BBP, belowground biomass productivity; TP, total biomass productivity; VBF, valley 
evergreen broad-leaved forest; MBF, mountain evergreen broad-leaved forest; MBF, mountain ev-
ergreen broad-leaved forest; EMF, evergreen coniferous broad-leaved mixed forest; DWF, evergreen 
broad-leaved dwarf forest. 

4. Discussion 
4.1. The Effects of Biodiversity on Forest Productivity in Nanling Mountains 

In the current study, we estimated the biomass productivity of Nanling Mountains 
subtropical forests and analyzed its relationship with several taxonomic, phylogenetic, 
and functional diversity metrics, as well as with a set of functional traits metrics and en-
vironmental factors, such as altitude. Overall, our results showed that productivity in-
creases with higher species richness in the subtropical forests of Nanling Mountains, despite 
the influence of environmental factors and forest types on forest productivity. This is con-
sistent with previous studies finding that forest diversity and biomass productivity have 
positive a relationship [7,19,56]. Previous research also suggests that the relationship be-
tween biodiversity and productivity varied with the spatial scale of investigation [19,57,58]. 
Our results, showing a positive richness–productivity relationship, were observed at a plot 
scale of 0.16 hectares, which is consistent with the research of Chisholm et al. [59]. At small 
scales (e.g., 0.04 hectares), biodiversity and productivity exhibit a positive relationship, but 
neutral or negative relationships become more common at larger scales (e.g., 0.25 or 1 hec-
tare) [19,59]. Nevertheless, figuring out the specific scale at which biodiversity and produc-
tivity become less correlated is a worthy aim to pursue in the future [56]. 

TD indices displayed positive correlations with biomass productivity. As biodiver-
sity increases, the possibility of complementarity in resource utilization and ecological 
functions among species rises [60]. Furthermore, the probability of the presence of high-
productivity species also increases, contributing to the overall productivity through selec-
tion and complementarity effects [61]. However, there are specific phylogenetic diversity 

Figure 4. Relationship between species richness and aboveground, belowground, and total pro-
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4. Discussion
4.1. The Effects of Biodiversity on Forest Productivity in Nanling Mountains

In the current study, we estimated the biomass productivity of Nanling Mountains
subtropical forests and analyzed its relationship with several taxonomic, phylogenetic, and
functional diversity metrics, as well as with a set of functional traits metrics and environ-
mental factors, such as altitude. Overall, our results showed that productivity increases
with higher species richness in the subtropical forests of Nanling Mountains, despite the
influence of environmental factors and forest types on forest productivity. This is consistent
with previous studies finding that forest diversity and biomass productivity have positive a re-
lationship [7,19,56]. Previous research also suggests that the relationship between biodiversity
and productivity varied with the spatial scale of investigation [19,57,58]. Our results, showing
a positive richness–productivity relationship, were observed at a plot scale of 0.16 hectares,
which is consistent with the research of Chisholm et al. [59]. At small scales (e.g., 0.04 hectares),
biodiversity and productivity exhibit a positive relationship, but neutral or negative relation-
ships become more common at larger scales (e.g., 0.25 or 1 hectare) [19,59]. Nevertheless,
figuring out the specific scale at which biodiversity and productivity become less correlated is
a worthy aim to pursue in the future [56].

TD indices displayed positive correlations with biomass productivity. As biodiversity
increases, the possibility of complementarity in resource utilization and ecological functions
among species rises [60]. Furthermore, the probability of the presence of high-productivity
species also increases, contributing to the overall productivity through selection and com-
plementarity effects [61]. However, there are specific phylogenetic diversity and functional
diversity indices that exhibit negative relationships with productivity. Specifically, mpd and
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mntd show negative correlations with both ABP and BBP. FDis shows significant negative
correlations with both ABP and BBP. These patterns suggest significant evolutionary and
trait differences between species, which lead to functional overlapping or redundancy and
have negative impacts on productivity [34]. It is suggested that dominant functional groups
exist within the Nanling forest community, with species clustering towards these groups
contributing to higher productivity. Communities with greater evolutionary and functional
trait dissimilarity may have negative effects on productivity, that can be explained by
the Biomass-Ratio hypothesis [62]. Environmental factors exert the highest explanatory
proportion (51.52%) of TP. TPI displays a significant positive influence on TP, suggesting
that environmental factors might indirectly influence community productivity through
shaping biodiversity and species composition [63].

4.2. Altitudinal and Vegetation Effects on Forest Productivity

Our results demonstrated that there were differences in the ABP, BBP, and TP of
woody plants at various altitude gradients, underscoring the important impacts of climate
and environmental gradients associated with varying altitudes on forest productivity [64].
Specifically, our results are consistent with previous studies finding that ABP and TP tend
to be the highest in low-altitude areas and lowest in high-altitude sites [65]. Warmer tem-
peratures and low altitude probably provide favorable conditions for plants, which leads
to increases in aboveground and total productivity [66]. Conversely, lower temperatures
and precipitation in high-altitude areas might limit plant growth and productivity [67].
Mid-altitude areas might create more suitable environmental conditions and fewer distur-
bances, leading to relatively higher productivity. Productivity can also be influenced by the
species composition and vegetation structure of various forest types. Mountain evergreen
broad-leaved forests are richer in plant species than the other forest types, possibly con-
tributing to higher biodiversity and productivity. In contrast, mountain evergreen dwarf
forests, inhabiting higher altitudes and worse environmental conditions, might have fewer
species and shorter vegetation, resulting in comparatively lower tree productivity.

The relationship between ABP, TP, and species richness is negative in low altitudes,
which is potentially due to strong competition pressure or other ecological interactions [68].
This suggests that an increase in species richness in low-altitude areas could impose limita-
tions on overall productivity due to intensified competition for resources [30]. Conversely,
a higher species richness in mid- to high-altitude regions may have a beneficial impact
on aboveground productivity, maybe as a result of complementarity effects or a greater
diversity in resource utilization [61]. High species richness might enhance ecosystem
stability, consequently enhancing total productivity [69].

Across different forest community types, our findings demonstrate that a negative
correlation exists between productivity and species richness in VBF, while MBF, EMF, and
DWF exhibit positive correlations between productivity and species richness. This could
be related to the particular functional characteristics and species compositions of each
of the forest types. Although VBFs might have a higher biodiversity, their relative poor
productivity may be caused by issues including competition and human disturbances [70].

4.3. The Relative Influence of Productivity Explained by Different Groups of Predictors

The environmental factors had the highest importance for predicting total tree pro-
ductivity. This could be due to the indirect influence of environmental factors on plant
growth and resource utilization conditions impacting tree productivity [71]. TD contributes
to 11.43% of the total impact on forest productivity. The influence of species diversity
might involve factors such as species interactions and resource competition that impact
overall tree productivity. The impact of community-weighted mean trait values on total
tree productivity was the lowest. This suggests that the overall functional characteristics of
the community have a minor influence on total tree productivity, and the productivity of
the community as a whole could be more susceptible to the functional traits of dominant
species [62]. PD exerted a similar impact on ABP and BBP. PD refers to the diversity of
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species on an evolutionary tree, affecting species survival strategies and the expression of
functional traits, and subsequently influencing the anatomic and physiological characteris-
tics of the aboveground and belowground components of trees [72]. FD has the highest
impact on ABP, constituting 18.73%. Functional diversity measures the variety of functional
traits in the studied species, directly determining their resource utilization strategies [73].
According to this, interactions between trees in forest communities mostly take place in
their aboveground parts, which promotes functional complementarity among them [74].

The structural equation model A reveals that all predictive variables, including envi-
ronmental factors and biodiversity, collectively explain 22% of TP, 58% of ABP, and 52%
of BBP. Conversely, the structural equation model B explains 22% of TP, 32% of ABP, and
71% of BBP. This underscores the significant explanatory power of these predictor vari-
ables, wherein environmental factors and biodiversity prominently influence aboveground
and belowground productivity. Among the predictor variables, the group of taxonomic
diversity indices demonstrate significant positive effects on both components of forest
productivity. A community’s likelihood of having high-productivity species is correlated
with its biodiversity [75]. The production of the entire community is positively impacted
by this, a phenomenon that can be explained by complementarity effects and selection
mechanisms [61,62]. Conversely, the negative relationship observed between PD, FD,
and productivity in these forests suggests that there is a considerable degree of species
compositional heterogeneity, which in turn reflects a greater degree of divergence in the
expression of evolutionary and functional traits among tree species. Productivity is neg-
atively impacted when fewer species congregate around dominant ecological niches or
functional groups [76]. Additionally, by altering the species composition, environmental
factors may also have influence on community productivity. These findings suggest that
the selection effects, complementarity effects, and the biomass-ratio hypothesis all affect
tree productivity in the forest communities of the Nanling Mountains [61,62,77].

5. Conclusions

In this study, we investigated the factors that influence forest productivity in the
subtropical forests of the Nanling Mountains, southern China. The environmental factors
and a variety of diversity indices both play pivotal roles in explaining biomass productivity.
The total productivity of forest trees is mostly influenced by environmental conditions;
however, the effects of distinct forms of biodiversity on the different productivity compo-
nents (aboveground and belowground) varied significantly. Forest production appears
to be positively impacted by taxonomic biodiversity indices, whereas phylogenetic and
functional diversity have the reverse effect. Moreover, these relationships seem also to
vary depending on different altitudes. In low altitudes, negative effects of diversity on
ABP and TP were found. Our primary findings in Nanling subtropical forests suggest that
the excessive competition limits productivity, particularly in low-altitude regions. This
implies that the existing diversity in low-altitude areas does not match the hypothesis of
niche complementarity (i.e., it does not contribute to increased productivity). We claim that
these results offer important new information for understanding the dynamics and func-
tioning of southern China’s forest ecosystems. However, there is still a significant degree of
uncertainty surrounding these explanatory theories, especially in light of the inconsistent
outcomes across research techniques, the choice of functional features, and the productivity
estimation methodologies. Future research should further explore and validate the impacts
of these factors on productivity, to gain a deeper comprehensive understanding of the
intricacies of diversity–productivity relationships in forest ecosystems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f15030410/s1, Table S1 Basic location information of plots in the
Nanling National Nature Reserve, southern China. Table S2 Allometric growth equation of different
plants in Nanling. Table S3 Pearson correlation coefficients of environmental and biodiversity indices.
Figure S1 Phylogenetic tree of the 201 species in this study.
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