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Abstract: Jujube (Ziziphus jujuba Mill.) stands as a pivotal fruit tree with significant economic,
ecological, and social value. Recent years have witnessed remarkable strides in multi-omics-based
biological research on jujube. This review began by summarizing advancements in jujube genomics.
Subsequently, we provided a comprehensive overview of the integrated application of genomics,
transcriptomics, and metabolomics to explore pivotal genes governing jujube domestication traits,
quality attributes (including sugar synthesis, terpenoids, and flavonoids), and responses to abiotic
stress and discussed the transcriptional regulatory mechanisms underlying these traits. Furthermore,
challenges in multi-omics research on jujube biological traits were outlined, and we proposed
the integration of resources such as pan-genomics and sRNAome to unearth key molecules and
regulatory networks influencing diverse biological traits. Incorporating these molecules into practical
breeding strategies, including gene editing, transgenic approaches, and progressive breeding, holds
the potential for achieving molecular-design breeding and efficient genetic enhancement of jujube.

Keywords: Ziziphus jujuba Mill.; fruit; genome; transcript factor; transcriptome

1. Introduction

Jujube (Ziziphus jujuba Mill.), commonly known as Chinese date, is a member of the
Rhamnaceae family, comprising 170 species and 12 varieties within the Ziziphus genus
globally [1]. Originating from wild jujube in the middle and lower reaches of the Yellow
River in China [2], cultivated jujube has been a staple for over 4000 years [3]. Presently,
jujube trees are cultivated in 47 countries, spanning tropical and subtropical regions in
Europe, Asia, along the Silk Road (India, Iran, Russia, and the Middle East), and even the
United States [4]. This fruit tree holds immense economic, ecological, and social significance.
In China alone, the cultivation area for jujube exceeds three million hectares, yielding over
seven million tons [5]. This has translated into an annual output value of approximately
USD 6 to 10 billion, based on a field-picking price ranging from USD 0.8 to 1.3 per kilogram
over the past five years.

Cultivated jujube trees, derived from the wild Ziziphus jujuba var. spinosa (2n = 2x = 24)
through prolonged selection [6,7], exhibit distinctive characteristics. These plants reach
heights of 3 to 10 m, featuring elliptical or ovate leaves (2 to 4 cm wide and 2.5 to 5.5 cm
long) and yellow-green flowers with five petals, sepals, and anthers, respectively [8].
Jujube demonstrates robust adaptability to various soil environments, particularly thriving
under drought and salt-alkali stress [9]. Rich in nutrients such as polysaccharides, amino
acids, ascorbic acid, triterpene acids, flavonoids, phenolic acids, and minerals across its
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roots, stems, leaves, flowers, and fruits [10], this plant’s active molecules hold therapeutic
potential for diverse ailments. For instance, triterpene acids exhibit antioxidant, anti-
inflammatory, antibacterial, and anti-cancer properties [11,12]. The appealing crispness,
delightful flavor, and high nutritional value of jujube fruits have captured the interest
of both consumers and breeders [13]; ongoing research delves into understanding the
formation of key traits and the metabolic synthesis of active molecules.

The intricate process involved in shaping jujube biological traits and accumulating
active molecules encompasses numerous complexities. Flower bud differentiation, for
instance, relies on a dynamic balance of environmental factors, internal nutrients, and
various endogenous hormones, resulting in swift and multi-state differentiation [14,15].
Jujube fruit growth and development is divided into four stages, young fruit, expansion,
hard core, and maturity, influencing shape, size, peel color, and intrinsic qualities (nutrients,
flavor, and soluble solids) [16]. The formation of intrinsic quality correlates with the
synthesis of numerous primary and secondary metabolites. In jujube genetic transformation
development, modified engineering breeding of jujube will be an important direction. Thus,
studying the mechanisms governing the molecular and chemical aspects of these key traits
presents an opportunity for innovative and advanced methodologies.

In recent years, the advent of next-generation sequencing has revolutionized plant
biology research, offering a cost-effective solution, even in non-model systems [17]. Second-
generation sequencing data correlation analysis, particularly, has successfully unraveled
molecular mechanisms governing the formation of multiple crop traits and the synthesis of
biological components [18–20]. These methodologies have found widespread application in
jujube studies. The analysis of key genes associated with biological traits and their regula-
tory networks lays a foundational groundwork for a comprehensive understanding of the
molecular mechanisms driving jujube’s biological traits and the pathways of active substance
synthesis. This research also contributes novel biomarkers for breeding initiatives.

To the best of our knowledge, a systematic and comprehensive review focusing
on the transcriptional regulatory mechanisms of jujube biological traits based on multi-
omics remains limited. Our objective is to provide an overview of recent advancements in
understanding the key genes that regulate jujube domestication traits, quality traits (such as
sugar, terpenoid, and flavonoid synthesis), and responses to abiotic stress. Leveraging data
from the genome, transcriptome, and metabolome, we explore the molecular regulatory
mechanisms governing these traits. Furthermore, we discuss the challenges associated
with multi-omics research in deciphering the formation of biological traits in jujube and
highlight the potential applications of identified key genes in breeding programming.

2. Progress in Genome Sequencing and Assembly of Jujube Genomes

Recent years have witnessed intensive research on jujube plant genomics, driven by
the advancement of second-generation sequencing technology and plant genomics. In 2014,
Liu et al. [21] achieved a milestone by completing the whole genome map of the fresh food
cultivar “Dongzao”. Utilizing whole-genome shotgun and BAC sequencing methods along
with a de novo genome assembly strategy, they unveiled a genome of 437.65 Mb, hosting
32,808 annotated coding genes, with 23,996 genes distributed across 12 chromosomes. In
addition, 410 rRNA, 1209 tRNA, 286 snRNA, and 272 miRNAs were annotated, as well
as 204.91 Mb of repeated sequences, accounting for 46.82% of the “Dongzao” genome,
among which Transposon (Tn) sequences account for the vast majority of these repeats.
Transcriptome analysis of 15 jujube tissues elucidated specific properties and molecular
mechanisms, providing valuable genetic information for molecular breeding of jujube and
genetic improvement in Rhamnaceae fruit trees (Table 1). Similarly, in 2016, Huang et al. [22]
employed whole-genome shotgun sequencing and a de novo genome assembly strategy
to analyze the genome (351.1 Mb) of the highly heterozygous dry jujube cultivar “Junzao”
(voucher number: NWA-FU-Junzao001). They annotated 27,443 coding genes, with 91.2%
distributed across 12 chromosomes. Repeated sequences (136.2 Mb) accounted for 38.8%
of the genome size, predominantly represented by Gypsy and Copia retrotransposons
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(Table 1). Further analysis, combined with population structure assessment, revealed a
complex genetic structure due to extensive hybridization between jujube and its wild
species. The study also identified key genes subject to human domestication selection,
regulating organic acid and sugar content in jujube fruits, offering insights into jujube
genome evolution, population structure, and domestication. In 2021, Shen et al. [23,24]
analyzed the genome of sour jujube as wild ancestor species of Chinese jujube (Z. jujuba
Mill. var. spinosa), revealing a genome of 406 Mb containing 25,089 predicted genes,
150 rRNA, 1181 tRNA, and 420 non-coding RNAs (ncRNAs). Repeated sequences totaled
204.91 Mb (Table 1), providing a valuable gene pool for jujube stress response and fruit
flavor improvement. In 2023, Yang et al. utilized PacBio HiFi, ONT ultra-long, and Hi-C
sequencing technologies to re-upgrade the previously published “Dongzao” genome [25].
This upgrade achieved a telomere-to-telomere gapless assembly of 12 chromosomes, with
an assembled genome size of 393 Mb. All 12 chromosomes contained complete telomeric
sequences, and centromeres are jointly identified via long tandem repeats (more than 100 bp)
and Hi-C interactions. The improved genome assembly enhances our understanding of
jujube genomes, particularly in the context of jujube evolution. These comprehensive jujube
plant genome maps not only contribute to fundamental research in jujube breeding and
improvement but also expand the scope and depth of molecular breeding investigations.

Table 1. Summary of the genome sequences of Chinese jujube cultivars and sour jujube.

Infomation Dongzao
(Fresh Food Cultivar)

Junzao001
(Dry Jujube Cultivar)

Sour Jujube
(Wild Ancestor Species of

Chinese Jujube)

Dongzao
(Fresh Food Cultivar)

Sequencing platform Illumina Illumina PacBio + Illumina Nanopore + PacBio
Assembly strategy WGS + BAC WGS Hi-C HiFi + ONT + Hi-C

Total length of
scaffolds (bp) 437,645,007 351,115,537 406,163,984 393,332,932

Contig N50 length (bp) 33,948 34,020 2,144,872 32,986,920
Sequences anchored to

chromosomes (%) 73.6% 83.6% 93.7% 100%

BUSCO genes (%) 89.0% 93.2% 95.56% 98.50%
Number of

protein-coding genes 27,443 31,067 25,089 29,633

Transposable
elements (bp) 136.33 204.92 215.93 220.88

3. Genomics Improves the Construction of High-Density Genetic Linkage Maps
of Jujube

With the unveiling of the jujube genome and advancements in sequencing technol-
ogy, high-coverage genetic maps for jujube have been progressively constructed. For
instance, Zhao et al. [26] utilized restriction-site associated DNA RAD Tag sequencing
technology to establish an inter-specific F1 population genetic map for “JMS2” × “Xing 16”.
This map incorporates 2748 RAD markers spanning 913.87 cM, with an average distance
between markers of 0.34 cM. Employing genotyping by sequencing (GBS) technology,
Zhang et al. [27] crafted a “Dongzao” × “Zhongningyuanzao” genetic linkage map, con-
sisting of 2540 SNP marker sites, totaling 1456.73 cM, and displaying an average genetic
distance of 0.88 cM. Zhang et al. [28] employed RAD-seq technology on 99 F1 genera-
tions of “Dongzao” × “Yingshanhong” hybrids, constructing a genetic map encompassing
4669 markers, with a total length of 2643.79 cM and an average genetic distance of 0.57 cM.
The map revealed 117 QTLs controlling growth-related traits, including plant height,
ground diameter, and leaf area. Wang et al. also adopted GBS simplified genome sequenc-
ing for the F1 generation of 103 strains of “Dongzao” × “Jinsi4”, resulting in the creation of a
high-density genetic linkage map named “D-map” [29]. This map encompassed 3792 mark-
ers, spanning 2167.5 cM, with an average genetic distance of 0.358 cM, and identified
27 QTLs for leaf traits and three QTLs for needle length. As resequencing technology pro-
gressed, high-density marker genetic linkage maps became more prevalent. For example,
Yan et al. [20] utilized 140 F1 strains of “JMS2” × “Jiaocheng” as a mapping population,
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constructing a genetic map with 8.684 markers using whole-genome re-sequencing (WGRS)
technology. The total length of the map is 1713.22 cM with an average marker interval of
0.2 cM. This map revealed 31 QTLs related to leaf traits, shedding light on 4, 8, 14, and
5 QTLs contributing to leaf length, leaf width, leaf shape index, and leaf area, respectively.
Further investigation of genes in the QTL region identified that four genes (LOC107418196,
LOC107418241, LOC107417968, and LOC112492570) play roles in cell division and cell wall
integrity. Guo et al. [30] employed 165 F1 strains of “JMS2” × “Xing16”, utilizing WGRS
technology to create a genetic bin map containing 116,312 markers. The total length of this
map is 1074.33 cM with an average genetic distance of 0.45 cM. The map identified 15 QTLs
related to fruit size, unveiling 113 candidate genes linked to fruit size, encompassing roles
in cell division, cell wall metabolism, phytohormone synthesis (ABA, IAA, and auxin), and
the encoding of enzymes and transcription factors. These high-density genetic maps serve
as invaluable tools for future QTL analysis, candidate gene identification, map-based gene
cloning, comparative mapping, and marker-assisted selection (MAS) in jujube.

4. Domestication-Related Genes Identified Based on Jujube Genomics

Based on the analysis of jujube genomics, it has been elucidated that the domes-
tication of jujube involved a progression from sour jujube, transitioning from wild to
semi-wild, and ultimately to cultivated forms. The origin center of this domestication
is Xi’an, China, spreading from the west to the southeast [30]. Throughout this evolu-
tionary process, various traits of jujube underwent selective domestication, encompass-
ing aspects such as environmental adaptation [23], fruit shape [23], kernel shape [31],
bearing-shoot length [31], sweetness/sourness of fruits [22,30], number of leaves per bear-
ing shoot [31], presence of prickles on bearing shoots [31], seed-setting rate [31], fruit
weight, and postharvest shelf life of fleshy fruits [23]. Some functional genes associated
with these domestication traits have been identified. For instance, Huang et al. [22] con-
ducted a population genome analysis, revealing 1372 genes within the selective sweep
regions of the jujube genome. Among these, four genes played pivotal roles in organic
acid metabolism, NADP-dependent malic enzyme (NADP-ME, Zj.jz006119090), pyruvate
kinase (PK, Zj.jz006429010), isocitrate dehydrogenase (IDH, Zj.jz003285012), and aconi-
tate hydratase (ACO, Zj.jz013123003). Sixteen genes related to sugar metabolism were
also uncovered, including sucrose synthase (SUSY, Zj.jz031941019)), phosphoglucomutase
(Zj.jz021807003), 6-phosphofructokinase (Zj.jz010621015), and thirteen sugar transporters
(Zj.jz034227050, Zj.jz042571026, Zj.jz036789032 et al.). Expression profile analysis indi-
cated that the encoding genes NADP-ME and PK exhibited higher expression levels in the
wild compared to cultivated jujube fruits, while a sugar transporter (SUT, Zj.jz042571026)
showed lowered expression in the wild compared to cultivated jujubes, suggesting their
potential roles in regulating sweetness/sourness during jujube domestication (Table 2).

Shen et al. [23] conducted a comparative analysis of the jujube genome, revealing
multiple selection signals, including 421 genes in the wild group and 415 in the semi-wild
group, many of which are implicated in environmental adaptation. Notably, histidine ki-
nase 4 (Zijuj10G0113500) exhibited selection signals associated with responses to salt stress,
water deprivation, cold, abscisic acid, sucrose stimulus, phosphate starvation, and toxic sub-
stances, with a distinct peak on chromosome 10 (Table 2). Guo et al. (2020) [31] performed
a genome-wide association study (GWAS) and selective sweep analysis on 350 materials,
identifying candidate genes potentially regulating various domestication traits in jujube.
Examples include fruit shape- and kernel shape-related genes (ZjFS3, Zj.jz044531027),
genes governing the number of leaves per bearing shoot (NLBS, Zj.jz003639032), genes
related to prickles on bearing shoots (ZjHDG2, Zj.jz044447010; ZjOVA4, Zj.jz006119092;
and ZjRAD51D, Zj.jz001293012), and genes associated with the postharvest shelf life of
fleshy fruits (ZjPG, Zj.jz044553003). Guo et al. (2021) [30] employed genomic analysis of
different jujube wild and cultivated germplasms to identify the ZjPOD1 (Zj.jz015743041)
gene related to the seed-setting rate, the “Early flowering 3” (Zj.jz044531027) gene related
to flowering time, and pinpointed a fruit weight gene ZjDA3 (Zj.jz038707057) and a fruit
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size gene FW2.2/CNR1 (Zj.jz029849045) (Table 2). Notably, ZjDA3 exhibited a negative
correlation with fruit weight through expression analysis and transgene verification in
tomatoes. These identifications of genes related to jujube domestication traits contribute
rich genomic resources not only for jujube but also for other horticultural plants.

Table 2. Summary of candidate genes for domesticated jujube traits.

Domesticated Traits Candidate Gene Name Candidate Gene Name ID Validated Method Reference

Sugar- and acid-related
metabolism

NADP-dependent malic enzym Zj.jz006119090

Expression profiling [22]

6-phosphofructokinase Zj.jz010621015
Phosphoglucomutase Zj.jz021807003

Sugar transporters

Zj.jz042571026
Zj.jz036789032
Zj.jz034227050
Zj.jz002249011
Zj.jz002249010

Pyruvate kinase Zj.jz006429010

ERD6-like Sugar transporter

Zj.jz001627070
Zj.jz007429007
Zj.jz007429005
Zj.jz007429006

sucrose synthase Zj.jz031941019
Pyruvate kinase Zj.jz006429010

Fruit shape and kernel shape FS3 Zj.jz044531027 GWAS, qPCR, and
Transgenic

[31]

Bearing shoots NLBS Zj.jz003639032 GWAS

Prickles on bearing shoots HDG2 Zj.jz044447010
GWASBLT1 Zj.jz040945037

Seed-setting rate
OVA4 Zj.jz006119092

GWASMIK1 Zj.jz007373151
RAD51D Zj.jz001293012

Fruit softening Polygalacturonase Zj.jz044553003 NO
Flowering time Early flowering 3 Zj.jz000799141 NO

[30]Seed-setting rate POD1 Zj.jz015743041 GWAS, qPCR

Fruit weight DA3/UBP14 Zj.jz038707057 GWAS, qPCR and
Transgenic

Fruit size FW2.2/CNR1 Zj.jz029849045 NO
Environmental adaptation Histidine kinase 4 Zijuj10G0113500 NO [23]

5. Molecular Regulation Identification of Jujube Biology Traits Based on Multi-Omics

In recent years, the swift advancement of omics technology has emerged as a potent
tool for the precise genetic breeding of fruit trees [32,33]. The genomics of jujube has
established a robust foundation for comprehending the intricate biological traits of this
fruit. The integration of multi-omics technology has further yielded valuable insights
into various aspects of jujube, including fruit quality-related traits such as sugar/acid
accumulation and metabolism, the synthesis of functional components in jujube fruits
(triterpenoids and flavonoids), and abiotic stress responses.

5.1. Sugar and Organic Acid Accumulation and Metabolism

The sugar content in jujube fruits serves as a pivotal indicator influencing fruit qual-
ity, taste, and market value. Extensive studies have revealed that sucrose, glucose, and
fructose constitute the primary sugars in jujube fruits [34,35], with their accumulation
intricately linked to metabolic and transport processes. Conventionally, sucrose is initially
transported from the sieve element-companion cell complex (SE-CC) to pulp cells through
plasmodesmata (PD) or into the intercellular space via transporters (SUT and SWEET).
Subsequently, a portion of sucrose is transported into the pulp cell cytoplasm through
specific transporters (SUT and SWEET), while the remaining sucrose undergoes enzymatic
breakdown into fructose and glucose facilitated by extracellular cell wall invertase (cwINV).
These monosaccharides are then further transported into the cytoplasm through membrane
monosaccharide transporters (MSTs). Within the cytoplasm, sucrose can undergo reversible
conversion into fructose and uridine diphosphate glucose (UDPG) via sucrose synthase
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(SUSY) or be converted into fructose and glucose via neutral/alkaline invertase (nINV).
Further phosphorylation by fructokinase (FK) and hexokinase (HK) results in the formation
of fructose-6-phosphate (F6P) and glucose-6-phosphate (G6P). F6P and UDPG can subse-
quently resynthesize sucrose through the actions of sucrose-phosphate synthase (SPS) and
sucrose–phosphate phosphatase (SPP). Sucrose and monosaccharides synthesized in the
cytoplasm find their way into the vacuole through specific transporters or SWEET proteins
on the tonoplast, where they are stored in the form of fructans [36–39] (Figure 1).

Forests 2024, 15, 395 7 of 17 
 

 

foundation for enhancing jujube quality, further exploration of their transcriptional 
regulatory mechanisms is warranted. 

 
Figure 1. Sucrose metabolic pathway. The marked color enzymes mean that some relative genes 
have been identified; TF in the color frame means the candidate transcript factors are involved in 
sucrose synthesis. Suc: sucrose; Glu: glucose; Fru: fructose; SE/CC: sieve element–companion cell 
complex; PD: plasmodesmata; SUT: sucrose transporter; SWEET: sugars will eventually be exported 
transporter; cwINV: cell wall invertase; STP: sugar transport proteins; pGlc: plasma membrane glucose 
transporters; TMT: tonoplast monosaccharide transporters; vINV: vacuolar invertase; MSTs: membrane 
monosaccharide transporter; UDPG: uridine diphosphate glucose; SUSY: sucrose synthase; nINV: 
neutral/alkaline invertase; FK: fructokinase; HK: hexokinase; F6P: fructose-6-phosphate; G6P: glucose-6-
phosphate; SPS: sucrose–phosphate synthase; SPP: sucrose–phosphate phosphatase. 

Various transcription factors (TFs) play pivotal roles in regulating sugar 
accumulation and fruit ripening by modulating the expression of genes associated with 
sugar metabolism and transport. For instance, FaMYB44.2 exerts a negative regulatory 
effect on soluble sugar content in strawberries by inhibiting the expression of FaSPS3, a 
critical gene for sucrose accumulation. Additionally, the interaction between FaMYB10 
and FaMYB44.2 contributes to sucrose accumulation in mature strawberry fruits [45]. In 
dragon fruit, HpWRKY3 participates in soluble sugar accumulation by transcriptionally 
activating the sugar metabolism genes HpINV2 and HpSuSy1 [46]. Meanwhile, in 
watermelon, ClNAC68 positively mediates sugar accumulation by inhibiting ClINV and 
ClGH3.6 [47]. In citrus, the transcription factor CitZAT5 (ZINC FINGER OF 
ARABIDOPSIS THALIANA) regulates CitSUS5 and CitSWEET6, influencing sucrose 
metabolism and fructose transportation [48]. Furthermore, the oriental melon fruit 
transcription factor CmERFI-2 represses CmMYB44 expression, leading to increased 
sucrose levels [49]. The functional characterization of these transcription factors provides 
a solid foundation for investigating the molecular regulation of sugar accumulation and 
metabolism in jujube fruit. 

Organic acids, important flavor nutrients in jujube fruits, also play a crucial role in 
adjusting the jujube’s taste [50]. Zhao et al. [34,35] identified 13 organic acid components, 

Figure 1. Sucrose metabolic pathway. The marked color enzymes mean that some relative genes
have been identified; TF in the color frame means the candidate transcript factors are involved in
sucrose synthesis. Suc: sucrose; Glu: glucose; Fru: fructose; SE/CC: sieve element–companion cell
complex; PD: plasmodesmata; SUT: sucrose transporter; SWEET: sugars will eventually be exported
transporter; cwINV: cell wall invertase; STP: sugar transport proteins; pGlc: plasma membrane
glucose transporters; TMT: tonoplast monosaccharide transporters; vINV: vacuolar invertase; MSTs:
membrane monosaccharide transporter; UDPG: uridine diphosphate glucose; SUSY: sucrose synthase;
nINV: neutral/alkaline invertase; FK: fructokinase; HK: hexokinase; F6P: fructose-6-phosphate;
G6P: glucose-6-phosphate; SPS: sucrose–phosphate synthase; SPP: sucrose–phosphate phosphatase.

In recent years, some key genes that are involved in sugar accumulation and metabolism
pathways in jujube were identified based on multi-omics. Zhang et al. (2016) [34] identi-
fied 83 sugar transporter genes through whole-genome analysis and demonstrated that
ZjSUC2 (scaffold32501.138) and ZjSWEET2 (scaffold15029.70) play roles in promoting su-
crose accumulation in fruits. Additionally, monosaccharide transporter genes such as
ZjSTP12 (scaffold37921.140), ZjSTP16 (scaffold44531.58), ZjpGlc3 (scaffold4979.175), SWEET15
(scaffold40945.111), ZjSWEET20 (scaffold44739.8), and ZjTMT2 (scaffold39911.7) contribute
significantly to sugar accumulation in fruits. In another study by Zhang et al. (2018) [40],
the presence of numerous plasmodesmata between the SE/CC complex and surrounding
phloem parenchyma cells during the white-ripening stage of cultivated jujube suggested
that “the homogeneous unloading pathway has greater transport capacity than the exo-
plast pathway” [41,42]. This implies that the homogenous unloading pathway through
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plasmodesmata is more conducive to sugar accumulation. Key genes, including ZjSUT2
(scaffold32501.138) and ZjSWEET11 (scaffold15029.70), were also identified as crucial in the
sucrose-accumulation process. The expression levels of three sucrose phosphate synthase
genes (ZjSPS1, scaffold1731.36; ZjSPS2, scaffold19851.46; and ZjSS2, scaffold41823.29) were
found to be positively correlated with sucrose content in fruits [43]. Yang et al. (2023) [44]
identified 19 ZjSWEET genes based on gene family analysis and observed that the ex-
pression levels of 2 genes (ZjSWEET11, LOC107404505 and ZjSWEET18, LOC107417626)
progressively increased during fruit development, peaking at the full red fruit stage. Sev-
eral other ZjSWEET genes were found to play vital roles in abiotic stress conditions. While
the identification of these genes provides a foundation for enhancing jujube quality, further
exploration of their transcriptional regulatory mechanisms is warranted.

Various transcription factors (TFs) play pivotal roles in regulating sugar accumulation
and fruit ripening by modulating the expression of genes associated with sugar metabolism
and transport. For instance, FaMYB44.2 exerts a negative regulatory effect on soluble
sugar content in strawberries by inhibiting the expression of FaSPS3, a critical gene for
sucrose accumulation. Additionally, the interaction between FaMYB10 and FaMYB44.2
contributes to sucrose accumulation in mature strawberry fruits [45]. In dragon fruit,
HpWRKY3 participates in soluble sugar accumulation by transcriptionally activating the
sugar metabolism genes HpINV2 and HpSuSy1 [46]. Meanwhile, in watermelon, ClNAC68
positively mediates sugar accumulation by inhibiting ClINV and ClGH3.6 [47]. In citrus,
the transcription factor CitZAT5 (ZINC FINGER OF ARABIDOPSIS THALIANA) regulates
CitSUS5 and CitSWEET6, influencing sucrose metabolism and fructose transportation [48].
Furthermore, the oriental melon fruit transcription factor CmERFI-2 represses CmMYB44
expression, leading to increased sucrose levels [49]. The functional characterization of these
transcription factors provides a solid foundation for investigating the molecular regulation
of sugar accumulation and metabolism in jujube fruit.

Organic acids, important flavor nutrients in jujube fruits, also play a crucial role in ad-
justing the jujube’s taste [50]. Zhao et al. [34,35] identified 13 organic acid components, in-
cluding malic acid, citric acid, quinic acid, and tartaric acid, in wild jujube, Chinese jujube,
and other types of jujube fruits. Among them, Ziziphus jujuba var. spinosa is characterized by
malic acid and citric acid as primary components, while jujube fruit is dominated by malic
acid and quinic acid. Key enzymes involved in organic acid metabolism include citrate syn-
thase (CS), aconitase (Aco), NAD+-malate dehydrogenase (NAD+-MDH), NAD+-isocitrate
dehydrogenase (NAD+-IDH), NADP+-isocitrate dehydrogenase (NADP+-IDH), NADP+-malic
enzyme (NADP+-ME), malate synthase (MS), fumarase (FUM), phosphoenolpyruvate carboxy-
lase (PEPC), and phosphoenolpyruvate carboxy kinase (PEPCK), among others [51]. Tran-
scriptome analysis of jujube fruits from the low-acid and low-sugar variety “Jing 39” and the
high-acid and low-sugar variety “Heigeda” unveiled potential key genes involved in malic acid
and citric acid metabolism, including ZjPK (LOC107421991), ZjPDC1 (LOC107411322), ZjPDC2
(LOC107430892), ZjCS (LOC107416375), ZjACO (LOC107424464), ZjMDH (LOC107422883), Zj-
NAD-IDH (LOC107424540), ZjNADP-ME (LOC107432838), ZjNAD-MDH (LOC107413281), ZjGS1
(LOC107423244), and ZjGS2 (LOC107435118) [52]. The aluminum-activated malate transferase
(ALMT) ZjALMT4 (Zj.jz000565069) was implicated in malate accumulation, with ZjWRKY7
(Zj.jz007819051) binding to the ZjALMT4 promoter to activate its transcriptional expression and
promote malate accumulation [53]. However, compared with sweet jujube research, lots of
work is still needed to explore the molecular regulation mechanism of acid accumulation or
metabolism in jujube fruits.

5.2. Terpenoid Biosynthesis

Jujube fruits, leaves, roots, and seeds boast a rich content of tetracyclic and pen-
tacyclic triterpenes, including ocyanic acid, floric acid, betulinic acid, oleanolic acid,
ursolic acid, oleanolic acid, and 3-ketoacid [54,55]. Many of these compounds exhibit
sedative and anticancer effects [56]. Terpenoids in plants are synthesized through two
main pathways: the mevalonate pathway (MVA pathway) and the 2-methylerythritol
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4-phosphate pathway (MEP pathway), but jujube primarily utilizes the MVA pathway for
terpenoid synthesis. In the MVA pathway, two acetyl-CoA molecules serve as starting
substrates, forming acetoacetyl-CoA with the aid of acetoacetyl-CoA thiolase (AACT).
Subsequently, hydroxy methyl glutaryl-CoA synthase (HMGS) transforms acetoacetyl-CoA
into 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA). Hydroxy methyl glutaryl-CoA
reductase (HMGR) and NADPH then catalyze the conversion of HMG-CoA into mevalonic
acid (MVA). This MVA undergoes a series of enzymatic reactions, including the action of
mevalonate kinase (MK), forming mevalonate-5-phosphate (MVAP). Then, phosphomeval-
onate kinase (PMK) forms mevalonate-5-diphosphate (MVAPP), and finally, mevalonate
pyrophosphate decarboxylase (MPD) generates isopentenyl pyrophosphate (IPP), which is
generated under the influence of farnesyl pyrophosphate synthase (FPS). IPP, along with
dimethylallyl pyrophosphate (DMAPP), is converted into farnesyl pyrophosphate through
the catalysis of FPS. Squalene synthase (SQS) then transforms FPP into squalene (SQ), and
squalene epoxygenase (SQE) catalyzes the synthesis of 2,3-oxysqualene [57–60]. Cycliza-
tion, hydroxylation, and glycosylation of 2,3-oxysqualene lead to the formation of various
terpenoids, mediated by enzymes such as oxysqualene cyclase (OSC), cytochrome P450
(CYP450), and glycosyltransferase (UGT) [61]. Essential enzymes for triterpene biosynthe-
sis include HMGR, FPS, SQS, SQE, and OSCs, in which SQS and SQE play a crucial role
in synthesizing squalene and 2,3-oxysqualene, key intermediates for various triterpenes.
Furthermore, oxidized squalene cyclases (OSCs) and several cytochrome P450s catalyze
the conversion of 2,3-oxosqualene precursors into diverse triterpenes. In jujube, Wen et al.
(2022) [62] conducted a comprehensive study using metabolite profiling and transcriptomic
data analysis on cultivated jujube, which revealed that terpenoids were mainly concen-
trated in ZjSQS1 (evm.model.Contig42.302), ZjP450/1 (evm.model.Contig66.109), ZjP450/3
(evm.model.Contig5.527), ZjOSC1 (evm.model.Contig63.27), ZjFPS (evm.model.Contig34.195),
and ZjAACT2 (evm.model.Contig37.1.115), representing key candidate genes for terpene
synthesis in various jujube tissues. Specifically, ZjFPS, ZjSQS2 (evm.model.Contig75.307),
and ZjP450/3 emerged as crucial candidate genes for triterpene synthesis. Wen (2023) [63]
further explored the role of ZjWRKY18 (evm.model.Contig24.0.57) in activating ZjHMGR
(evm.model.Contig21.0.64 and evm.model.Contig112.45) and ZjFPS, promoting triterpene accu-
mulation. Wen et al. (2023) [64] analyzed enzymes related to terpenoid synthesis through
transcriptome analysis and identified ZjFPS, ZjSQS, and the corresponding transcription
factors, ZjMYB39 (evm.model.Contig108.375) and ZjMYB4 (evm.model.Contig23.4.315), as key
genes for the biosynthesis of jujube triterpenoids. However, the corresponding transcription
factor of ZjSQE is still unclear (Figure 2).

Many transcription factors (TFs) have been confirmed to have roles in regulating
terpene accumulation by affecting the expression of genes related to terpene synthesis in
other plants, such as WRKY [65,66], bHLH [67–69], AP2/ERF [70–72], MYB [73–77], and
bZIP [78–80]. Notable examples of these regulators include PnbHLH1, which controls
the biosynthesis of triterpene saponins in Panax notoginseng [67,81], ERF189, an ethylene
response factor implicated in the biosynthesis of steroidal glycoalkaloids in potatoes and
tomatoes [81,82], and SmERF1L1, which regulates the biosynthesis of tanshinones in Salvia
miltiorrhiza Bunge [83]. In Medicago truncatula, the bHLH transcription factors TSAR1
and TSAR2 have been identified as key players in the regulation of non-hemolytic and
hemolytic triterpene saponins, respectively [84]. Birch triterpene synthesis is influenced
by BpMYB21 and BpMYB61, acting as essential regulatory factors [85], while bZIP17 and
bZIP60 play regulatory roles in triterpene acid synthesis in alfalfa [78]. The functional
characterization of these transcription factors provides a clue for exploring the molecular
regulation of terpene synthesis in jujube fruit.
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5.3. Flavonoid Biosynthesis

Jujube is renowned for its richness in flavonoids [86], which play pivotal roles in
plant growth, development, and stress resistance. The flavonoid content in jujube fruit is
intricately linked to the tissue development stage of the fruit. Notably, the total flavonoid
content exhibits a continuous decline as the jujube fruit develops and matures, with a rapid
decline as it approaches maturity [87]. Anthocyanins as crucial flavonoid compounds in
jujube fruits undergo biosynthesis primarily through the phenylalanine metabolic pathway,
in which various enzymes play important roles, such as chalcone synthase (CHS), chal-
cone isomerase (CHI), flavanone-3-hydroxylase (F3H), flavonoid-3’-hydroxylase (F3’H),
flavonoid- 3’.5’-hydroxylase, dihydroflavonol-4-reductase (DFR), anthocyanidin synthase
(ANS), and uridine diphosphate glucose-flavonoid glucosyl transferase (UFGT) [57]. To
explore the molecular mechanisms of jujube flavonoids synthesis, a comparative analysis
of total flavonoids and total flavanol contents in the peel and pulp of “Junzao” and “Jis-
hanbanzao” cvs. was conducted, along with identification of two potential key structural
genes, F3H (Zj.jz028857033) and F3’H (Zj.jz032893025), suggesting their crucial roles in
flavonoid synthesis and accumulation. The gene LAR was also implicated as a poten-
tial key regulatory gene in the flavanol pathway [88]. Metabolomic and transcriptomic
analyses of jujube peel at different developmental stages unveiled 158 flavonoids, with
cyanidin-3-O-rutinoside and peonidin-3,5-O-diglucoside as primary anthocyanins; mean-
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while, ZjANS (Zj.jz022481171) and ZjUGT79B1 (Zj.jz027401002) were identified as key
genes in the anthocyanin process, and three transcription factors, ZjMYB5 (Zj.jz005919060),
ZjTT8 (Zj.jz001627021), and ZjWDR3 (Zj.jz043343182), were found to play pivotal roles in
the anthocyanin synthesis in jujube [89]. The varieties “Fengmiguan” (FMG) and “Taili-
hong” (TLH), known for containing three and seven anthocyanins, respectively, exhibit
a regulatory role in fruit coloration. Additionally, the interaction between ZjFAS2 and
ZjSHV3 was found to regulate the color of red jujube fruits [90]. Moreover, a transcriptome
analysis of Ziziphus mauritiana Lam. and Z. jujuba Mill identified four MYB genes (ZjMYB13,
ZjMYB44, ZjMYB50, and ZjMYB56) as candidate key genes in the regulation of flavonoid
biosynthesis. Notably, MYB44 was implicated in the biosynthetic pathways of flavonoids
during fruit coloration in Ziziphus jujuba Mill. [91]. Wang et al. (2023) [92] constructed
a network model comprising 1620 genes highly correlated with proanthocyanidin and
catechin content. They identified 16 hub genes encoding 9 transcription factor families
(MYB, bHLH, ERF, BZIP, NAC, SBP, MIKC, HB, WRKY), providing a foundation for further
research on the molecular regulation of jujube flavonoid synthesis.

5.4. Abiotic Stress Response

Throughout the growth process of jujube trees, they frequently encounter abiotic
stresses such as temperature fluctuations, light variations, salinity, and soil conditions,
which can lead to a decline in both yield and quality of jujubes. Particularly in northern
regions, where winter temperatures often drop significantly, jujube trees are susceptible to
various factors, with severe low temperatures capable of causing the entire plant to perish.
Soil salinization further poses a significant constraint on jujube production in certain areas,
particularly in Xinjiang, where excessive fertilization has led to secondary salinization. To
find the genes responding to abiotic stress in jujube, several genes responding to abiotic
stress in jujube have been identified based on genome-wide analysis. For example, ZjC-
NGC2 (LOC107423657) exhibited significant downregulation, while it was highly induced
under cold, salt, and alkali stress. It was found that the regulation of ZjCNGC2 by cAMP
treatment and microtubule changes, along with its interaction with ZjMAPKK4, plays
a role in the response to cold stress [93]. Four ZjBAM genes, ZjBAM1 (Zj.jz015515046),
ZjBAM2 (Zj.jz044849113), ZjBAM5 (Zj.jz040945107), and ZjBAM6 (Zj.jz220022001), were
significantly upregulated under severe drought conditions, as determined by transcriptome
and expression pattern analysis [94]. ZjCML13 (LOC107424831) played a crucial role in
regulating the difference in cold resistance between “Dongzao” and its autotetraploid [95].
Additionally, ZjWRKY family members, ZjAP2/ERF family members, ZjNAC family mem-
bers, and ZjbZIP family members in jujube were also identified and analyzed to determine
their function. Among these transcript factors, ZjDREB1 (LOC107404402) could enhance
the freezing resistance of jujube via a transgenic experiment verification [96]. ZjWRKY27
(LOC107426111) responded strongly to drought and salt stress, presenting itself as a can-
didate target gene for salt tolerance breeding [97], and ZjWRKY6 (LOC107426870) and
ZjWRKY65 (LOC107435508) in sour jujube were found to enhance plant salt tolerance by
increasing the antioxidant enzyme activity, reducing malondialdehyde accumulation, and
maintaining K+/Na+ homeostasis [98]. Additionally, ZjNAC6 (LOC107409987), ZjNAC35
(LOC107423780), ZjNAC47 (LOC107428022), and ZjNAC55 (LOC107433097) were found
to be involved in responding to ABA, cold, drought, and salt stress. Finally, ZjNAC3
(LOC107416163), ZjNAC32 (LOC107421097), and ZjNAC35 (LOC107423780) were associ-
ated with responses to tissue aging [99]. However, the transcription factors corresponding
to the identified genes that respond to abiotic stress remain unclear. Additionally, the
targets of the identified transcription factors involved in abiotic stress are limited. Resolv-
ing these issues will enhance the exploration of the molecular mechanisms governing the
jujube’s response to abiotic stress.
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6. Conclusions and Perspectives

The intricate genetic background and expansive cultivation regions of jujube pose
significant challenges to the analysis of its genetic mechanisms governing various bio-
logical traits. Advancements in jujube genome research have catalyzed the emergence of
functional genomics, enabling the realization of GWAS and the creation of high-density
genetic maps. Concurrently, the application of multi-omics research methodologies, such
as transcriptomics, proteomics, and metabolomics, facilitates the exploration of potential
target genes and metabolic processes associated with quality traits, including nutrient
accumulation in jujube. This, in turn, provides valuable insights for enhancing the quality
of jujube. To further investigate linked markers or candidate genes linked to complex
agronomic traits, such as the accumulation of vital active ingredients and stress resistance,
there is an anticipation that this research will advance genetic improvements in jujube
(Figure 3). Nevertheless, in comparison to multi-omics studies on other crops, there is a
notable scarcity of such research on jujube and a deficiency in exploring critical agronomic
traits of jujube using pan-genomics, epigenomics, single-cell resequencing, and other omics
approaches.
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At present, the pan-genome method stands out as a revolutionary approach in func-
tional genomics research, offering a more comprehensive alternative to single reference
genomes. This innovation transcends the limitations of relying on a single reference genome
by capturing all genes or genome sequences within a population [100]. The pan-genome
has become a forefront and focal point in plant genomics research, facilitating a deeper
understanding of the diversity and variability inherent in plant genomes. This, in turn,
furnishes functional genomics research with a wealth of genetic information, surpassing
the capabilities of traditional single reference genomes.

While pan-genomes have been established for more than 16 plants, including rice,
corn, and cotton [101–103], the pan-genome of jujube remains unreported. In the future, the
application of pan-genomics to jujube can provide a more accurate depiction and analysis of
its genomic characteristics. By comparing and analyzing genome sequences and variations
across different jujube varieties, germplasm resources, or populations, researchers can delve
into the genes and regulatory elements linked to crucial jujube traits. This comprehensive
exploration establishes a holistic molecular regulatory network, fostering the analysis of
biological traits and contributing to the genetic enhancement of jujube.
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As the study of jujube genomics progresses, an increasing number of jujube cultivar
genomes will be sequenced, enabling a more precise comprehension of the genetic traits of
diverse jujube varieties. This knowledge can be strategically applied to jujube breeding
through selective breeding, presenting innovative methods and ideas for enhancing both
yield and quality. However, realizing these advancements necessitates further enhance-
ments in the sequenced genome information of jujube varieties, the establishment of a
more accurate functional genomics research platform, and the exploration of interaction
mechanisms between genes of different varieties and environmental factors.

Numerous studies have underscored the pivotal role of sRNAomics in various plant
biological processes, encompassing developmental regulation, disease resistance, and en-
vironmental adaptation [104–106]. Investigating sRNAs in the context of jujube holds
substantial promise for gaining profound insights into the molecular mechanisms under-
pinning jujube development, regulatory pathways, chromatin modifications, and stress
responses. This approach bears potential value and application prospects in compre-
hending the biological traits of jujube. Firstly, scrutinizing sRNAs in the jujube genome
facilitates a deep understanding of its development processes and regulatory mechanisms.
By employing sRNA sequencing and analysis, highly expressed sRNAs and their target
genes at different developmental stages of jujube can be identified and studied, unraveling
the functional roles of sRNA in the developmental regulation of jujube. Secondly, the
defensive role of sRNA is of paramount importance to jujube’s disease resistance. sRNA
is instrumental in plant defense responses against viruses and transposons. Analyzing
sRNAs associated with viral infection in jujube plants allows for the identification of the
response mechanisms against viral infections, offering insights that can aid in developing
disease-resistant varieties or enhancing the disease resistance of jujube. Furthermore, sRNA
participates in the regulation of chromatin modifications and gene expression. Studying
sRNAs linked to chromatin modifications enhances our understanding of the regulatory
mechanisms governing chromosome structure and gene expression in jujube plants, shed-
ding light on the role of sRNAs in genome stability and genetic expression. Lastly, sRNA
emerges as a crucial player in the responses of jujube to both biotic and abiotic stresses.
Analysis of sRNAs related to stress responses unveils the regulatory mechanisms employed
by jujube plants against environmental stress. This knowledge provides theoretical support
for research on jujube stress resistance and genetic improvement.

Gene-editing technology represents a significant advancement in the biological do-
main, allowing for precise modifications in plants. Among these technologies, CRISPR/Cas9
stands out as a prominent gene-editing tool [107]. In contrast to traditional transgenic meth-
ods, CRISPR/Cas9 not only enables the knockout of a single gene, leading to functional
loss, but also facilitates the knock-in and modification of a single gene at the epigenetic and
transcriptional levels. The application of CRISPR/Cas9 technology in editing the jujube
genome holds great potential for reshaping various jujube traits. In the future, utilizing
CRISPR/Cas9 technology for jujube genome editing could bring about transformations in
traits such as enhancing yield, improving quality, fortifying disease resistance, increasing
stress tolerance, and boosting the fruiting rate of modern cultivated jujube trees. Targeted
editing of specific genes identified in previous studies offers avenues for regulating and
optimizing the growth and development of jujube plants, thereby enhancing key traits
like drought resistance and salt tolerance. For instance, knocking out genes such as the
pollen-directed defective gene (POD1) [30] and two homologous genes associated with
early flowering 3 (EF3), speculated to regulate the flowering time of jujube trees, signifi-
cantly improves the fruit setting rate, thereby promoting increased fruit yield. Furthermore,
precise editing of functional modules within key genes allows for the optimization of the
nutritional composition of jujube. When coupled with traditional breeding methods, this
approach maximizes advantages, ensuring safety, efficiency, and sustainability in breeding
practices, aligning them more closely with market demands.

In summary, the future of jujube research holds great promise as multi-omics resources,
encompassing transcriptomics, metabolomics, pan-genomics, and epigenomics, and can be
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harnessed and integrated. This comprehensive approach allows for a deeper understanding
of the biological traits of jujube, facilitating the exploration of key molecules and regulatory
networks that govern each trait. Leveraging genome-editing methods, transgenics, and
progressive breeding, researchers can propel the breeding process toward the development
of new jujube varieties characterized by high yield, diverse fruit flavors and quality, and
robust environmental adaptability (Figure 3).
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