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Abstract: Quambalaria eucalypti is a fungal pathogen that causes leaf spot, shoot blight, and stem
canker on Eucalyptus spp. Early diagnosis of the disease is difficult, although the symptoms are clear
in its advanced phase. To enable a rapid and sensitive screening of asymptomatic or latently infected
plant material for Q. eucalypti, a SYBR green-based real-time PCR assay targeting the partial histone-
H3 region was developed. The assay demonstrated specificity for Q. eucalypti, not showing cross-
reactivity with other Quambalaria species or the other eucalyptus fungal pathogens tested. The primers
developed in this study ensured high analytical sensitivity, allowing the detection of Q. eucalypti DNA
concentrations as low as 10 fg DNA from asymptomatic plants. The robustness and efficacy of the
assay was demonstrated by interlaboratory comparisons with similar results. This newly developed
quantitative PCR assay can be used for more comprehensive epidemiological investigations, testing
the plant material in known Q. eucalypti distribution areas for early management strategies, or
collecting data for resistance breeding programs.

Keywords: Quambalaria eucalypti; Quambalaria shoot blight; qPCR; diagnostics; molecular detection;
Eucalyptus

1. Introduction

The genus Eucalyptus L’Hér., which includes about 900 species in the family Myrtaceae,
is native to Australia and its neighbouring islands [1]. Most eucalypts plants are evergreen
woody perennial shrubs and tall trees that grow rapidly, reaching heights of up to about
90 metres. At present, eucalyptus plantations are the most widely planted broadleaf forests
in the world, with the majority located in tropical and temperate regions. They are also
widely used in afforestation programmes [2]. It is estimated that the total area of eucalyptus
plantations worldwide exceeds 22.57 million hectares, based on a survey conducted in
65 countries with extensive plantations [3]. Eucalyptus plants have been well known since
ancient times due to the numerous uses of their components (wood, fibres, cellulose, dyes,
pulp, rubber, resin, essential oils), which are used in various sectors such as construction,
pharmaceuticals, and plant protection [4].

Among the fungal diseases affecting eucalyptus forestry in various regions of the
world are those caused by species of the genus Quambalaria (Quambalariaceae, Basidiomy-
cota). These species comprise Q. pitereka, Q. pusilla, Q. rugosae, and Q. tasmaniae, which
affect leaves and shoots, and Q. coyrecup, which causes cankers on stems, branches, and
petioles [5]. Of particular relevance is Quambalaria eucalypti (M.J. Wingfield, Crous, & W.J.
Swart) J.A. Simpson [6], which commonly infects eucalyptus plants in nurseries but also
in plantations [7,8]. In particular, this pathogen is known to cause significant productiv-
ity losses in the cuttings of the mini-clonal hedges used for vegetative propagation in
nurseries [9].

This fungal species was originally described as Sporothrix eucalypti, which causes leaf
spots and shoot dieback on a clone of Eucalyptus grandis in South Africa [6]. The same
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fungus was later associated with stem cankers in plantations of Eucalyptus globulus in
Uruguay [10], while in Brazil it was reported to cause stem girdling on seedlings of E.
globulus and leaf and shoot blight on the ministumps of a hybrid of Eucalyptus saligna
× E. maidenii [11]. During the same period, the genus Sporothrix, formerly placed in the
genus Ophiostoma [12], was transferred to the new genus Quambalaria following an updated
systematic revision study [13]. Disease caused by Q. eucalypti has subsequently been
reported from Australia in E. grandis, E. dunnii, E. longirostrata, E. grandis, and E. grandis ×
E. camaldulensis [14]; Portugal in E. globulus [15]; China in E. urophylla × E. grandis [16]; and,
most recently, Indonesia in E. pellita × E. grandis, E. pellita × E. brassiana, and E. pellita × E.
urophylla [8].

Q. eucalypti is currently identified through the isolation of the fungus and species
recognition via a morphological examination and phylogenetic analysis, using both the
ITS and LSU regions of its ribosomal DNA. However, these techniques are laborious,
costly and time-consuming [17]. Quantitative PCR (qPCR) is one of the most widely used
molecular methods, as it does not require post-amplification processing steps (e.g., gel
electrophoresis), which are required in conventional endpoint PCR (cPCR), and it allows
for a specific quantification of the target DNA in the sample [17]. As knowledge of the
life cycle and epidemiology of Q. eucalypti in the host is still limited, the early detection
and quantification of this pathogen is crucial in order to plan an appropriate disease
management strategy.

To date, no studies have been conducted to rapidly detect and quantify Q. eucalypti in
eucalyptus plant tissues using a molecular approach. Therefore, the aim of this study was
to develop and validate a specific and sensitive real-time PCR assay for the early detection
and quantification of Q. eucalypti in eucalyptus plants.

2. Materials and Methods
2.1. Fungal Isolates and Plant Materials

To validate the real-time PCR assay, 30 isolates of Q. eucalypti and 19 isolates of
nontarget species from Eucalyptus spp. from various geographical regions were used
(Table 1). The Q. eucalypti isolates from Brazil were obtained from leaves of E. globulus
seedlings in two nurseries located in the states of Espírito Santo and Rio Grande do Sul
in 2021 and 2022, respectively. Uruguayan isolates were obtained in 2004 from E. globolus
twigs with cankers in a plantation located in the west littoral region. The non-target
isolates included 4 other Quambalaria species and 9 isolates from different species of genera
associated with foliar diseases of Eucalyptus spp. The identifications of the Quambalaria
isolates were confirmed by sequencing their ITS and LSU regions using the primer pairs
ITS1F-ITS4 [18,19] and LR0R-LR5 [20,21], respectively. Isolates from species of other genera
were identified by ITS sequencing using the ITS5-ITS4 primer pair [19], while, for some
of them, the beta-tubulin and elongation factor genes were also sequenced using the
primers Bt2a and Bt2b [22] and EF1-728F [23] and EF2 [24], respectively. The isolates were
maintained as monosporic cultures in tubes containing malt extract agar (MEA) and stored
at 4 ± 1 ◦C.

To confirm the sensitivity of the qPCR assay using infected plant material, three ran-
domly selected Q. eucalypti isolates (i.e., CBS 118844, EGES-5, and UY198) were inoculated
on 3-month-old potted E. globulus plants. For each isolate, five plants were inoculated by
manually spraying a suspension of 1 × 106 mL−1 spores onto a surface that was previously
pricked with a sterile 0.5 mm diameter syringe needle. The spores were obtained from
7-day-old fungal colonies grown on potato dextrose agar (PDA) under near-ultraviolet light.
Five control plants were sprayed with sterilised distilled water instead. Each seedling was
covered for 48 h with a clear plastic bag and kept in a growth chamber at 30 ◦C for 14 days
under a 12 h photoperiod and watered as needed. The material from the inoculated plants
was then collected by sorting the samples into 4 different batches based on disease severity.
An empirical symptom scale from 0 to 3 was assessed visually from the appearance of the
first symptoms such as leaf spot or stem canker (0 = no symptoms, 1 = 1%–25% leaf spot
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or stem canker, 2 = 26%–75% leaf spot or stem canker, 3 = 76%–100% shoot and leaf blight
or clear signs of the pathogen). Symptomatic and non-symptomatic plant material were
kept refrigerated until DNA extraction and then processed either separately or pooled and
combined with healthy stem tissues sampled from a control plant in a 1:10 weight ratio in
order to verify the level of sensitivity of the assay in infected tissues.

Table 1. Fungal isolates examined in this study and results of specificity testing using the qPCR assay.

Species Isolate a Host Origin Cq b Value ± SD c Tm (◦C) d

Quambalaria eucalypti

CBS 118844 e

Eucalyptus grandis South Africa

21.54 ± 0.71 87.2

CBS 119680 f 21.30 ± 0.52 87.0

ITEF/1937 20.48 ± 0.35 86.1

ITEF/1999 20.43 ± 0.14 86.8

EGES-1

Eucalyptus globulus

Brazil

21.14 ± 0.35 86.1

EGES-2 20.87 ± 0.62 87.1

EGES-5 20.91 ± 0.53 87.0

EGES-10 22.07 ± 0.26 86.0

EGES-11 22.09 ± 0.88 86.2

EGES-13 21.30 ± 0.13 87.0

EGES-17 21.58 ± 0.44 86.9

EGES-19 22.43 ± 0.46 86.1

EGES-20 22.46 ± 0.35 86.2

EGES-22 22.45 ± 0.21 87.2

RGS-1 21.41 ± 0.57 86.3

RGS-2 21.35 ± 0.22 87.0

RGS-3 21.47 ± 0.31 87.2

RGS-4 21.29 ± 0.81 86.2

RGS-5 20.93 ± 0.73 87.0

RGS-6 21.02 ± 0,54 86.6

SUL/01

Uruguay

21.27 ± 0.52 86.7

SUL/03 22.05 ± 0.54 86.8

UY198 21.24 ± 0.31 86.3

UY199 21.63 ± 0.61 87.0

MATY 4665 19.98 ± 1.07 86.5

MATY 4751 20.15 ± 0.86 86.5

MATY 4752 21.73 ± 0.24 86.7

MATY 5001 21.65 ± 0.35 86.6

3421-S 19.82 ± 1.13 87.0

3422-T 21.36 ± 0.52 87.1

Quambalaria cyanescens

CBS 876.73

Eucalyptus pauciflora Australia

n/a n/a

IMI 178848 n/a n/a

EU-PA n/a n/a

Quambalaria pitereka

CERC/03/08

Eucalyptus sp. China

n/a n/a

CERC/04/08 n/a n/a

CERC/05/05 n/a n/a
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Table 1. Cont.

Species Isolate a Host Origin Cq b Value ± SD c Tm (◦C) d

Quambalaria simpsonii
CBS 124772 f

Eucalyptus tintinnans Australia
n/a n/a

EU-TI3 n/a n/a

Quambalaria tasmaniae
CBS 145602 a

Eucalyptus sp. Australia
n/a n/a

7608 n/a n/a

Alternaria alternata CYC-60 Eucalyptus grandis Uruguay n/a n/a

Calonectria spathulata CS11340 Eucalyptus grandis Brazil n/a n/a

Colletotrichum boninense MWJ-43 Eucalyptus grandis South Africa n/a n/a

Cryphonectria havanensis GSEG_95 Eucalyptus grandis Brazil n/a n/a

Cylindrocladium candelabrum 11356 Eucalyptus sp. Brazil n/a n/a

Cylindrocladium pteridis IMI 354530 Eucalyptus grandis Brazil n/a n/a

Neopestalotiopsis eucalyptorum 912/88 Eucalyptus globulus Portugal n/a n/a

Phomopsis arnoldiae CR 345-96 Eucalyptus grandis Uruguay n/a n/a

Pseudocercospora eucalyptorum BBR 5689 Eucalyptus globulus Spain n/a n/a
a CBS = cultures from Westerdijk Fungal Biodiversity Institute, Netherlands; b Cq = quantification cycle; c SD = stan-
dard deviation; d melting temperature ± standard deviation; e ex-holotype; f ex-epitype; n/a = no amplification.

2.2. Genomic DNA Extraction and Quantification

DNA extraction of fungal isolates was carried out on mycelium grown on PDA for
9 days at 24 ± 1 ◦C in Petri dishes, and that of eucalyptus plants was carried out on leaf and
stem samples. Both fungal and plant samples were frozen in liquid nitrogen and ground
in a mortar with a pestle. DNA was extracted from 50 mg and 100 mg of each mycelium
and plant tissue sample, respectively, using the Plant/Fungi DNA Isolation Kit (Norgen
Biotek Corp., Thorold, ON, Canada) according to the manufacturer’s instructions. Extract
DNA was quantified using a NanoDrop 2000 spectrophotometer (Thermo Fischer Scientific,
Waltham, MA, USA) and adjusted to a concentration of 10 ng µL−1. Genomic DNA with
an A260/A280 ratio between 1.8 and 2.0 was used for PCR analyses.

2.3. Primer Design and cPCR Amplification

The Primer-Blast program [https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.
cgi (accessed on 4 January 2024)] [25] was used to design the specific primers for the
histone-H3 gene selected as the target locus. The sequences of the primers were searched
against the whole draft genome of Q. eucalypti isolate CBS 118844 (Genbank accession no.
RRYC01000000) [26]. The expected PCR product size parameter was set at 150–400 bp
and the optimal melting temperature at 60 ± 3 ◦C. In silico specificity was verified using
Primer-Blast, while the potential formation of dimers and hairpin structures was checked
using the tool OligoAnalyzer (https://eu.idtdna.com/calc/analyzer, accessed on 4 January
2024). PCR primers were synthesised and supplied by Invitrogen.

The designed primer pair was tested for its ability to amplify the expected product
and to confirm specificity by gradient endpoint cPCR using DNA samples from all the
fungal isolates listed in Table 1. The amplification reactions were performed on an Arktik
thermocycler (Thermo Fischer Scientific, Waltham, MA, USA) in a final volume of 25 µL,
containing 12.5 µL of AccuPower PCR Premix (Bioneer, Alameda, CA, USA), 1 µL of each
primer (10 µM), 1 µL of DNA (10 ng µL−1), and DNase-free water to make up the final
volume. Cycling conditions were as follows: an initial preheat at 95 ◦C for 2 min; followed
by 35 cycles of denaturation at 94 ◦C for 1 min; annealing at 58, 59, 60, 61, or 62 ◦C for
30 s; extension at 72 ◦C for 3 min; and followed by a final extension at 72 ◦C for 7 min.
PCR products were detected on 2% agarose gel containing SYBR safe DNA gel stain (Life
Technologies, Carlsbad, CA, USA) in a Tris-borate-EDTA buffer with lane markers and a

https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi
https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi
https://eu.idtdna.com/calc/analyzer
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100 bp small fragment ladder (Fermentas, Waltham, MA, USA). Amplicons were purified
using ExoSAP-IT (Affymatrix Inc., Santa Clara, CA, USA) and sequenced in both directions
by an external service (Macrogen, Amsterdam, The Netherlands). All the chromatograms
generated were checked for correct base calling using FinchTV v.1.4.0. The sequences were
aligned to the target histone-H3 sequence of Q. eucalypti isolate CBS 118844 using Clustal
2.1 software to confirm the match and to detect possible polymorphic bases.

A duplex PCR assay was also performed to reveal any false negatives that might
have occurred due to PCR inhibition. The primers from this study and those of the cyclin-
dependent kinase (CDK8) gene [27] were used to co-amplify both fungal and plant DNA
in a single reaction, with the CDK8 gene (196 bp) serving as a plant internal control. The
PCR reaction followed the same procedure as the cPCR, but with 1.5 µL of a DNA mixture
from Q. eucalypti isolate CBS 118844 and eucalyptus leaf and stem used as the template.
The DNA mixture was composed of 0.5 µL fungal DNA, 0.5 µL leaf DNA (100 ng µL−1),
and 0.5 µL stem DNA (100 ng µL−1). Five 10-fold dilutions (10−2 to 102) of fungal DNA
(10 ng µL−1) were tested.

2.4. SYBR Green Real-Time PCR Optimization

To optimise the assay, the qPCR reactions were performed in a gradient using an
iCycler iQ Real-Time PCR DetectionSystem (Bio-Rad Laboratories, Inc., Hercules, CA,
USA) in a final volume of 25 µL, which contained 12.5 µL of Platinum SYBR Green qPCR
SuperMix-UDG (Life Technologies, Carlsbad, CA, USA), 1 µL of each primer (8, 10, or
12 µM), 1 µL of DNA (10 ng µL−1) from CBS 118844, and DNase-free water to make up
the final volume. Thermal cycling parameters consisted of an initial preheating step for
5 min at 95 ◦C followed by 40 cycles at 95 ◦C for 30 s, annealing at 59, 60, 60.5, 61, 61.5, 62,
or 62.5 ◦C for 30 s, and extension at 72 ◦C for 30 s for data collection and real-time analysis;
then, the set point temperature was increased after cycle 2 from 72 to 95 ◦C for 30 s in 0.5 ◦C
increments to construct a melting curve and perform data collection and analysis.

2.5. Real-Time PCR Assay’s Specificity and Sensitivity

The qPCR assay’s specificity was tested using DNA samples from the Q. eucalypti
isolates listed in Table 1. The real-time PCR reaction conditions and thermocycling settings
were optimized as follows: initial denaturation at 95 ◦C for 3 min, followed by 40 cycles
of denaturation at 95 ◦C for 30 s, annealing at 60 ◦C, and extension at 72 ◦C for 30 s. The
sensitivity of the qPCR assay was determined by testing six 10-fold dilutions (100 to 10−5)
of DNA (100 pg µL−1) from Q. eucalypti isolate CBS 118844 in sterile water or in DNA
extracted from eucalyptus leaf (10 ng µL−1) or stem (10 ng µL−1). The sensitivity test was
conducted in triplicate for each dilution and three real-time PCR runs were carried out for
each sample using the previously mentioned thermocycle conditions and DNA templates.
Standard curves were generated by graphing the mean cycle quantification (Cq) values on
the y-axis and the concentration of fungal DNA on the x-axis. The efficiency of the PCR
assay was determined using the following equation: E = (101/−S) − 1 [28].

2.6. Interlaboratory Tests

The mean Cq values and standard deviation of the intra- and inter-assay results were
used to calculate the coefficient of variation (CV). The CV for intra-assay repeatability was
assessed by conducting ten technical replicates of the same reaction using four dilutions of
CBS 118844 isolate DNA in water (10, 1, 0.1, and 0.01 pg µL−1). The CV between assays was
determined from the results of three independent blind panel experiments (three technical
replicates of each assay) performed on different real-time PCR machines (i.e., the BioRad
MyCycler, Bio-Rad iCycler iQ5 Multicolor Real Time PCR Detection System, and Applied
Biosystems ProFlex PCR System) using the same reagents as for assay optimisation. The
reproducibility test was performed by three distinct operators using the same series of
dilutions of the DNA as described previously. Additionally, to validate the applicability
of the qPCR assay, the test was also carried out in an external laboratory on a different
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real-time PCR instrument (i.e., StepOnePlus qPCR system, Applied Biosystems, Waltham,
MA, USA) using different set of reagents.

3. Results
3.1. Primer Design and cPCR Amplification

A primer pair was successfully developed for a histone-H3 gene, which was
used as a target locus in the genome of the Q. eucalypti isolate CBS 118844. The de-
signed specific primers (QEH3-F: 5′-CTTAGGACTTCTCGCCTCGG-3′ and QEH3-R:
5′-CTGAGCTCCTCATCCGCAAG-3′) amplify a DNA segment of 237 bp (Figure 1). The
comparative sequence analysis, conducted on nucleotide database from NCBI GenBank,
showed that the designed primers are specific to Q. eucalypti and do not share any identical
or similar sequences with those of other fungi.
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3.2. SYBR Green Real-Time PCR Optimization

The target was successfully amplified using a gradient real-time PCR with the newly
designed primers. At different annealing temperatures (59 to 62.5 ◦C) slight variations in
the Cq values were observed. For further assay development, an annealing temperature of
60 ◦C was selected. At this temperature, the lowest Cq values and detection curves with
high relative fluorescence were obtained. By assaying different primer concentrations (8,
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10, and 12 µM), it was observed that the 8 µM concentration resulted in lower Cq values.
Therefore, a concentration of 8 µM was selected for subsequent assay validation.

3.3. Real-Time PCR Assay Specificity and Sensitivity

Like the cPCR, the new real-time PCR assay detected all 30 Q. eucalypti isolates without
cross-reacting with any of the 19 non-target fungal isolates or plant DNA. The primers
QEH3-F and QEH3-R generated a single absorbance intensity peak for all Q. eucalypti
isolates. The melting curve analysis of the target DNA samples showed melting points
ranging from 86 to 87.2. No rise in absorbance was observed for the non-target fungal
isolates or the negative control (Table 1).

The assay’s analytical sensitivity using a 10-fold serial dilution of Q. eucalypti DNA in
water or in eucalyptus leaf or stem DNA revealed that the assay was capable of detecting
pathogen DNA levels as low as 10 fg. The sensitivity test showed a linear curve response
from 100 pg to 10 fg DNA (Figure 3) with PCR efficiencies of 96 and 97% for pathogen
DNA diluted in water and plant tissue, respectively.
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The pathogen was successfully detected using DNA obtained from Q. eucalypti-
infected leaves and the artificially inoculated stems of eucalyptus seedlings. The Cq
values obtained from the tissues of symptomatic plants were lower than those of asymp-
tomatic plants, decreasing from 27.70 to 24.81 with increasing disease severity. However,
amplification was also observed in asymptomatic samples with an average Cq value of 33,
which was equivalent to about 18 fg of pathogen DNA. No significant differences in Cq
values were observed between the Q. eucalypti isolates assayed (Table 2). The qPCR assay
detected Q. eucalypti even in infected tissues mixed with healthy plant material in a ratio of
1:10. The fungus was not detected in DNA samples from non-inoculated eucalyptus plants.

Table 2. Quantitative PCR detection of Quambalaria eucalypti artificially inoculated in eucalyp-
tus plants.

Isolate Disease Severity Tm (◦C) Cq a Value ± SD b DNA Conc. (fg) ± SD b

CBS 118844

0 87.2 33.10 ± 0.02 16.48 ± 2.40

1 86.9 27.70 ± 0.05 329.66 ± 5.24

2 87.3 26.75 ± 0.03 558.45 ± 11.07

3 87.0 24.89 ± 0.02 1567.40 ± 14.85

EGES-5

0 87.3 32.87 ± 0.18 18.72 ± 0.65

1 86.8 27.43 ± 0.27 382.94 ± 5.18

2 87.1 26.73 ± 0.02 564.69 ± 11.67

3 86.9 24.95 ± 0.03 1516.08 ± 12.36

UY198

0 87.0 32.84 ± 0.26 19.03 ± 0.15

1 87.0 27.53 ± 0.02 362.27 ± 4.73

2 86.9 26.71 ± 0.04 570.99 ± 10.45

3 87.1 24.81 ± 0.06 1638.54 ± 21.74
a Cq = cycle quantification; b SD = standard deviation.

3.4. Interlaboratory Tests

The test repeatability of the qPCR assay resulted in no or minimal Cq value variation.
Furthermore, the intra-assay CV for the four tested dilutions of Q. eucalypti DNA remained
consistently low. The assay’s reproducibility testing showed only a slight difference in Cq
values, with a low inter-assay CV (Table 3). The independent laboratory testing of the assay
further confirmed its reproducibility.

Table 3. The test results for repeatability (intra-assay) and reproducibility (inter-assay) using four
dilutions of DNA in water from Quambalaria eucalypti isolate CBS 118844.

DNA Conc.
(pg)

Cq a Value ± SD b

(Intra-Assay)

Cq a Value ± SD b (Inter-Assay) Coefficient of Variance (%)

Operator 1 Operator 2 Operator 3 Intra-Assay Inter-Assay

10 21.49 ± 0.15 21.40 ± 0.54 20.98 ± 0.66 20.78 ± 0.15 0.3 0.9

1 25.50 ± 0.11 25.18 ± 0.36 25.34 ± 0.12 26.03 ± 0.24 0.4 1.5

0.1 30.01 ± 0.12 29.87 ± 0.21 29.91 ± 0.15 30.05 ± 0.45 0.6 1.3

0.01 34.01 ± 0.13 33.85 ± 0.18 34.13 ± 0.11 33.97 ± 0.21 0.8 2.4
a Cq = cycle quantification; b SD = standard deviation.

4. Discussion

Among the molecular diagnostic techniques available, qPCR is more specific, more
sensitive, and less time-consuming than conventional endpoint PCR [29,30]. This tech-
nique enables the quantification of pathogens and has been used for various fungal plant
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pathogens [31–33], including Q. eucalypti [5]. Duong et al. (2022) developed a qPCR assay
for Q. eucalypti using the multi-copy ITS region, but it has not been tested on infected host
tissue. In this study, a SYBR green real-time PCR assay for the detection and quantifica-
tion of Q. eucalypti in eucalyptus plants was successfully developed. The use of a qPCR
detection method based on single-copy genes allows for a higher accuracy in quantitative
analyses [17], therefore the single-copy histone-H3 gene was selected for the preliminary
endpoint PCR assay. The primers (QEH3-F and QEH3-R) were designed against a portion
of the histone-H3 ORF identified in the draft genome of the Q. eucalypti isolate CBS 118844.
The newly developed assay was shown to be specific for Q. eucalypti by testing a panel of
30 Q. eucalypti isolates and 19 non-target species associated with Eucalyptus spp.

High-sensitivity detection methods depend on the pathogen’s abundance in the plant,
particularly in cases of asymptomatic latent infections. This assay was able to detect the
pathogen in both symptomatic and asymptomatic infected eucalyptus plants. The use of
the histone-H3 region ensured high analytical sensitivity, allowing for the detection of Q.
eucalypti DNA concentrations in symptomatic plants ranging from approximately 0.3 to
1.6 pg, depending on the disease’s severity, while in asymptomatic plants the pathogen
can be detected at levels as low as 10 fg DNA, which is the limit of detection for the assay.
Additionally, the pathogen was also detected when asymptomatic infected eucalyptus leaf
and stem tissues were mixed with healthy plant material in a ratio of 1:10, demonstrating
the high sensitivity of the assay. To enable the simultaneous detection of the pathogen and
plant internal control, the cPCR assay was duplexed with an assay targeting the plant’s
CDK8 gene [27]. Although duplexing or multiplexing can compromise the sensitivity of
pathogen-specific assays [34], the duplexed cPCR assay was able to detect both Q. eucalypti
and the plant internal control in a single reaction without any interference or reduction in
sensitivity. Furthermore, the robustness and effectiveness of the test in other laboratories
was demonstrated by the comparable results obtained in interlaboratory tests.

5. Conclusions

In conclusion, this newly developed real-time PCR assay can be used for conducting
more detailed epidemiological studies and testing plant material in known Q. eucalypti
distribution areas for early management practices. In addition, it can be applied to resis-
tance selection programmes, because a large number of genotypes need to be tested for the
disease in an exhaustive and time-consuming manner. Lastly, this SYBR green-based qPCR
assay also offers cost advantages, as it is less expensive than other diagnostic tools such as
qPCR using fluorescent probe chemistry or real-time lamps [35,36].
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