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Abstract: In the context of global warming, the frequent occurrence of drought has become one of
the main reasons affecting the loss of gross primary productivity (GPP) of terrestrial ecosystems.
Under the influence of human activities, the vegetation greening trend of the Loess Plateau increased
significantly. Therefore, it is of great significance to study the response of GPP to drought in the
Loess Plateau under the greening trend. Here, we comprehensively assessed the ability of vegetation
indices (VIs) and solar-induced chlorophyll fluorescence (SIF) to capture GPP changes at different
seasonal scales and during drought. Specifically, we utilized three vegetation indices: normalized
difference vegetation index (NDVI), near-infrared reflectance of vegetation (NIRV), and kernel NDVI
index (kNDVI), and determined the drought period of the Loess Plateau in 2001 based on the
standardized precipitation evapotranspiration index (SPEI) and the standardized soil moisture index
(SSMI). Moreover, the anomalies of VIs and SIF during the drought period and the relationship with
GPP anomalies were compared. The results showed that both SIF and VIs were able to capture
changes during the drought period as well as in normal years. Overall, SIF captured drought changes
better due to water and heat stress as well as GPP changes compared to VIs. Across different
time scales, SIF showed the strongest relationship with GPP (meanR2 = 0.85), followed by NIRV

(meanR2 = 0.84), NDVI (meanR2 = 0.76), and kNDVI (meanR2 = 0.74), suggesting that SIF is more
sensitive to physiological changes in vegetation. Notably, kNDVI performed best in sparse vegetation
(meanR2 = 0.85). In capture during drought, NIRV and kNDVI performed better in less productive
land classes; SIF showed superior capture as land use class productivity increased. In addition, GPP
anomalies correlated better with kNDVI anomalies (meanR2 = 0.50) than with other index anomalies.
In the future, efforts to integrate the respective strengths of SIF, NIRV, and kNDVI will improve our
understanding of GPP changes.

Keywords: GPP; VIs; SIF; greening; drought; spatial and temporal variability; capture; Loess Plateau

1. Introduction

Gross primary productivity (GPP) is the amount of organic carbon fixed by plants
via photosynthesis per unit time [1], and is the largest and most uncertain component of
the global carbon cycle [2]. As the basis of human production and life, changes in GPP
are related to human welfare. Understanding how photosynthesis responds to global
environmental change is particularly important because small perturbations in terrestrial
productivity have implications for global biodiversity, agriculture, and climate change [3,4].

Long-term satellite data show a significant greening trend in global vegetation area
since the 1980s, driven by human land use management (e.g., revegetation in China),
climate change, and CO2 fertilization [5,6]. Continued greening has led to an increase
in vegetation productivity. According to recent studies, the global terrestrial carbon sink
increased from (−0.2 ± 0.9) Pg C yr−1 (1 Pg = 1015 g) in the 1960s to (1.9 ± 1.1) Pg C yr−1

in the 21st decade [7]. Changes in evapotranspiration (ET) due to vegetation greening
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can also have an impact on local/regional climate. In general, an increase in ET due to
the greening of vegetation enhances the local water vapor cycle, leading to an increase
in precipitation in downwind areas and a weak but significant downward trend in near-
surface air temperatures [8]. There is increasing evidence that the greater atmospheric water
demand with rising temperatures (i.e., radiative effects of CO2) may lead to an increased
intensity and frequency of drought, which could notably affect vegetation growth and
crop yields [9–11]. Drought is a persistent and abnormal shortage of rainfall. The World
Meteorological Organization (WMO) classified drought according to the affected domain
as meteorological, agricultural, hydrological, and socioeconomic [12]. Drought is one of
the most prevalent natural disasters in the world and has the most severe and widespread
impacts on terrestrial ecosystem GPP. Droughts have tremendous impacts on ecosystem
composition, structure, and functioning, largely affecting GPP accumulation and weakening
the carbon sink function of terrestrial ecosystems [13–15]. In addition to this, drought events
are often associated with complex emergencies involving multiple and compound hazards
(e.g., food shortages, economic crises, or human/livestock/crop diseases). The interaction
between a number of such factors can affect exposure, vulnerability, and capacity to cope
with the crisis. Therefore, it is important to study the response of GPP to drought under
the greening trend for future agricultural security and ecological protection.

Changes in gross primary productivity (GPP) profoundly affect food security and the
stability of the carbon cycle. Among the methods of ground-based observation of GPP, the
inventory method estimates changes in carbon stocks in terrestrial ecosystems based on
comparisons of inventory data from different periods. The lack of long-term continuous
inventory data and the uncertainty of the conversion process from sample points to regional
scales have led to a large bias in the results at the regional scales [16]. The eddy covariance
(EC) technique is considered to be the most stable and accurate method for estimating
GPP at the ecosystem scale [17]. It is based on the principle of micrometeorology and
directly measures the net CO2 exchange between land ecosystems and the atmosphere over
a fixed coverage area. Nevertheless, the number of EC stations is sparse and unevenly
distributed, making it challenging to study aspects of GPP at the regional scale [18]. The
remote sensing technique is more effective than the ground-based observation method.
Remote sensing techniques are well suited to monitor changes in ecosystem GPP at broad
spatial scales compared to ground-based observation methods. Over the past 40 years, a
series of time-continuous and spatially consistent GPP products have been generated based
on satellite remote sensing, providing directly observed data for ecosystem research and
management [19]. Thus, in this paper, Moderate-resolution Imaging Spectroradiometer
(MODIS) GPP products were used to analyze the study area.

Vegetation indices (VIs) based on remotely sensed reflectance, which have been widely
used to monitor changes in vegetation growth, can help us to better understand the changes
in GPP in areas during periods of drought [20]. Previous studies have shown that the
normalized difference vegetation index (NDVI) can indicate the greenness of vegetation
and can be used to monitor vegetation growth [21]. Two recently developed indices,
near-infrared reflectance of vegetation (NIRV) and kernel NDVI (kNDVI), both of which
solve the background contamination problem well, are stronger than NDVI in linking
with GPP [22,23]. NIRV only needs to input two parameters when estimating GPP, which
drastically reduces the complexity of GPP estimation. It has been shown that NIRV can
replace SIF to study the photosynthesis of vegetation [24]. The coupling between the
components of canopy structure that influence NIR reflectance and stress-constrained
canopy photosynthetic capacity remains strong at drought stress events, making NIRV
and GPP maintain a strong coupling during drought events [24]. kNDVI computes all
higher-order relationships for NDVI and resolves the nonlinear relationship with GPP.
kNDVI is more highly correlated with GPP and less problematic in terms of noise and
instability than products such as NDVI and NIRV [23].

Solar-induced chlorophyll fluorescence (SIF) is a promising index for satellite monitor-
ing of vegetative photosynthesis. It is fundamentally different from VIs. SIF is a product



Forests 2024, 15, 339 3 of 21

of vegetative photosynthesis, which can reflect the intensity of vegetative photosynthesis
and has a very close physiological and metabolic connection with GPP [25–30]. It is well
known that an arid environment will weaken the photosynthesis ability and metabolic
function of plants, which in turn will weaken the signal release of SIF. VIs are only sensitive
to changes in the canopy structure and chlorophyll concentration of vegetation and are not
directly related to the photosynthesis of plants. Hence, when drought occurs, the greenness
of vegetation does not decrease immediately, resulting in a certain lag effect of vegetation
indexes on drought [31–33]. Compared with VIs, SIF has a more sensitive response to
drought and is more suitable for monitoring changes in GPP during drought.

China has one of the widest distribution of ecologically fragile areas in the world,
accounting for 22% of the national territory, with diverse types of fragility and severe
vulnerability [34]. The Loess Plateau in China has experienced severe vegetation loss,
soil erosion, and land degradation [35]. In view of this, China has carried out a series of
ecological restoration measures, the most successful of which was the Grain for Green
Project in 1999 [36]. This project aims to prevent soil erosion, alleviate flooding, and
store carbon by increasing forest and grassland cover on previously cropped hillslopes,
as well as converting cropland, barren hills, and wasteland into forested areas [37].
Using the ecological restoration measures, the Loess Plateau has shown a clear trend of
“greening” [38–40]. However, the region is still vulnerable to disturbance and damage,
and ecological restoration is difficult, with low carrying capacity, which is an obstacle
to carbon reduction and sequestration. Drought will make the fragile ecosystem of the
Loess Plateau more unstable and cause irreversible impacts on the ecosystem. The rising
greening trend and unstable climate change in the Loess Plateau bring great challenges
to GPP’s accounting. Therefore, it is important to study the response of GPP to drought
under the greening trend of the Loess Plateau.

In this paper, the Loess Plateau was selected as the study area, and land cover types
were reclassified. The spatial and temporal characteristics of GPP, drought, and greening of
different land cover types on the Loess Plateau were investigated, as well as the relationship
between GPP and VIs and SIF in different time scales and drought periods, which are of
great significance for the sustainable development of the Loess Plateau. The objectives
of this paper are: (1) to analyze the drought changes in the Loess Plateau from 2001 to
2020 and identify drought events; (2) to analyze the spatial and temporal changes of VIs
(NDVI, NIRV, and kNDVI), SIF and GPP from 2001 to 2020, and identify the trends of the
greening and the GPP; (3) analyze the correlations of VIs and SIF with GPP at different
time scales; (4) to reveal the performance of VIs and SIF in capturing GPP changes under
drought events. For (3) and (4), we hypothesize that SIFs perform better than VIs based on
previous studies. The main contribution of this paper is to analyze the relationship between
VIs and SIF with GPP at different time scales in terms of different land types on the Loess
Plateau, as well as compare the ability of the two to capture GPP changes during drought.

2. Materials and Methods

Taking drought stress caused by climate change and vegetation greening caused by
human action as perspectives, drought indices (SPEI and SSMI) and MODIS products were
selected to analyze the spatial and temporal characteristics of drought, GPP, and greening
as well as the relationships among them in the study area. Specifically, this paper first
analyzed the spatial and temporal characteristics of drought, GPP, and greening under
different land cover types in the Loess Plateau from 2001 to 2020. Secondly, the relationships
between VIs and SIF with GPP at different time scales, such as spring, summer, autumn,
and growing seasons, were analyzed. Finally, the performance of VIs and SIF in capturing
GPP changes under drought periods was compared based on the differential changes of
VIs, SIF, and GPP during drought, and the correlation of GPP anomalies with VIs and SIF
anomalies was analyzed (Figure 1).



Forests 2024, 15, 339 4 of 21Forests 2024, 15, x FOR PEER REVIEW 4 of 22 
 

 

 

Figure 1. Technical flow chart. 

2.1. Study Area 

The Loess Plateau is located in the north-central part of China, between 100°54′–

114°33′ E and 33°43′–41°16′ N, with an east–west length of about 1300 km, a north–south 

width of about 800 km, and a total area of roughly 6.4 × 105 km2 [41]. The average annual 

temperature ranges from 3.6 °C to 14.3 °C, decreasing from southeast to northwest; the 

annual precipitation ranges from 150 mm to 750 mm, decreasing from southeast to north-

west; the average annual evaporation ranges from 1400 mm to 2000 mm, decreasing from 

northwest to southeast, and the overall dryness is relatively high. Precipitation is concen-

trated in summer and autumn, winter and spring drought and little rain; the terrain is 

high in the west and low in the east, belonging to the typical semi-arid continental mon-

soon climate [42]. The ecology of the Loess Plateau has been very fragile for a long time 

due to intense human activities. In order to improve the regional environment, since 1999, 

the Loess Plateau has implemented a large-scale Grain for Green Project, and vegetation 

and ecology have been significantly restored [43]. However, the region is still sensitive to 

climate change, and frequent droughts seriously jeopardize regional environmental secu-

rity and agricultural production. Most of the Loess Plateau is in semi-arid areas, and water 

availability is a major limiting factor for vegetation health and growth [35]. The planting 

of large-scale plantation forests in recent years may exacerbate water scarcity [44]. 

In this paper, we reclassify the land use types of the Loess Plateau using the annual 

global land cover dataset (Climate change initiative-landcover, CCI-LC). We categorized 

the land use cover types of the Loess Plateau into sparse vegetation, grassland, cropland, 

forest-shrub-grass vegetation mosaic belt, deciduous forest, evergreen forest, and others 

[45], of which sparse vegetation, grassland, cropland, forest-shrub-grass vegetation mo-

saic belt, deciduous forest, and evergreen forest accounted for 0.3%, 41.4%, 41.3%, 2.0%, 

7.8%, and 3.0% of the Loess Plateau, respectively (Figure 2). 

Figure 1. Technical flow chart.

2.1. Study Area

The Loess Plateau is located in the north-central part of China, between 100◦54′–114◦33′ E
and 33◦43′–41◦16′ N, with an east–west length of about 1300 km, a north–south width of about
800 km, and a total area of roughly 6.4 × 105 km2 [41]. The average annual temperature
ranges from 3.6 ◦C to 14.3 ◦C, decreasing from southeast to northwest; the annual precipitation
ranges from 150 mm to 750 mm, decreasing from southeast to northwest; the average annual
evaporation ranges from 1400 mm to 2000 mm, decreasing from northwest to southeast, and the
overall dryness is relatively high. Precipitation is concentrated in summer and autumn, winter
and spring drought and little rain; the terrain is high in the west and low in the east, belonging
to the typical semi-arid continental monsoon climate [42]. The ecology of the Loess Plateau
has been very fragile for a long time due to intense human activities. In order to improve the
regional environment, since 1999, the Loess Plateau has implemented a large-scale Grain for
Green Project, and vegetation and ecology have been significantly restored [43]. However, the
region is still sensitive to climate change, and frequent droughts seriously jeopardize regional
environmental security and agricultural production. Most of the Loess Plateau is in semi-arid
areas, and water availability is a major limiting factor for vegetation health and growth [35].
The planting of large-scale plantation forests in recent years may exacerbate water scarcity [44].

In this paper, we reclassify the land use types of the Loess Plateau using the annual
global land cover dataset (Climate change initiative-landcover, CCI-LC). We categorized the
land use cover types of the Loess Plateau into sparse vegetation, grassland, cropland, forest-
shrub-grass vegetation mosaic belt, deciduous forest, evergreen forest, and others [45], of
which sparse vegetation, grassland, cropland, forest-shrub-grass vegetation mosaic belt,
deciduous forest, and evergreen forest accounted for 0.3%, 41.4%, 41.3%, 2.0%, 7.8%, and
3.0% of the Loess Plateau, respectively (Figure 2).
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2.2. Data
2.2.1. Solar-Induced Chlorophyll Fluorescence (SIF) Data

In this paper, a global dataset of solar-induced chlorophyll fluorescence (GOSIF) data
were utilized for the study. The GOSIF dataset was developed by Li and Xiao (2019)
(https://globalecology.unh.edu/data.html, accessed on 30 October 2023) [28]. It is based
on discrete SIF data from the Orbiting Carbon Observatory-2 (OCO-2SIF), MODIS data, and
meteorological data and are obtained using machine learning methods [30]. The dataset
has a high spatial and temporal resolution (0.05◦, 8 days) and a correlation of 0.73 with
the data from 91 global flux sites. Monthly scale data from 2001–2020 have been used in
this paper.

2.2.2. MODIS Product Data

The vegetation indices used in this paper are NDVI, NIRV, and kNDVI. We obtained
MODIS-derived NDVI (MCD43A4_006_NDVI) from Google Earth Engine for the years
2001 to 2020. In addition, the computed NIRV and kNDVI were calculated for MCD43A4
Nadir BRDF-Adjusted Reflectance Daily 500 m product hosted on Google Earth Engine.
The NIRV computation consists of two steps, first obtaining the median values of the red
(620–670 nm) and NIR (841–876 nm) bands for each image-month scale in the study area
and then calculating the NDVI from Equation (1), the NIRV was calculated from Equation
(2). Before calculating the NIRV, 0.08 was subtracted from all NDVI values to account for
the NDVI of partially bare soil. kNDVI was calculated from Equation (3).

NDVI =
NIR − Red
NIR + Red

(1)

NIRV = (NDVI − 0.08)× NIR (2)

kNDVI = tanh((
NIR − Red

2σ
)

2
) (3)

where σ is an adjustable length scale parameter, here set to 0.5 (NIR + Red), thus simplifying
the equation to kNDVI = tanh((NDVI)2).

GPP was obtained via Google Earth Engine using a 500 m resolution, 8-day cumulative
synthetic product (MOD17A2H). In order to be consistent with the spatial and temporal
resolution of the acquired SIF data, we computed all of GPP, NDVI, NIRV, and kNDVI as
monthly scale data and resampled to 0.05◦.

2.2.3. Drought Index and Meteorological Data

The Standardized Precipitation Evapotranspiration Index (SPEI) was first proposed by
Vicent Serrano et al. in 2010 [46], which in turn takes into account the evapotranspiration

https://globalecology.unh.edu/data.html
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demand (potential evapotranspiration) compared to the Standardized Precipitation Index
(SPI) and is able to better respond to different drought types and their impacts in the
context of global warming. In this paper, a high-resolution SPEI dataset (SPEI_RF) is used,
with highly consistent spatial and temporal distribution characteristics with the currently
widely recognized SPEIbase v. 2.6 (developed by Vicente Serrano) dataset. Compared to the
SPEIbase v. 2.6 dataset, the SPEI_RF dataset has the advantage of higher spatial resolution
and more accurate identification of localized small-scale droughts [47].

The drought index is a convenient tool for assessing drought, and relying on meteoro-
logical factors to assess drought allows for long-term analysis but ignores the influence of
surface factors on drought [48]. It is increasingly recognized that more diverse represen-
tations of water demand and supply by different land surface processes should be used
to assess the extent of drought [49,50]. Accordingly, in this paper, we add soil moisture
(SM) data and transform it into a standardized soil moisture index (SSMI), which, together
with SPEI, indicates drought [51]. We use the Global 1 km resolution surface soil moisture
dataset (2000–2020) [52]. This dataset is based on the secondary development of ESA-CCI
active-passive fusion product, which integrates the ERA5 reanalysis data and utilizes multi-
source remote sensing data to construct a machine learning algorithm to generate a global
spatio-temporal continuous 1 km resolution surface soil moisture dataset for the years
2000–2020. Validated by 2346 ground observation stations worldwide, the results show
that the product has good accuracy (correlation coefficient is 0.89, and the unbiased root
mean square error is 0.045 m3/m3). SSMI calculation formula:

SSMI =
SM − SM

SMσ
(4)

where SM is the value of soil moisture at moment t, SM is the mean value of soil moisture
from 2001 to 2020, and SMσ is the standard deviation of SM from 2001 to 2020. SPEI and
SSMI drought classifications are shown in Table 1 (SPEI is classified according to fB/T
24081-2017 of China Meteorological Administration [53], and SSMI is classified according
to Zhou et al. [51]). To be consistent with the SIF data, the SPEI data and SM data were
resampled at 0.05◦.

Table 1. SPEI and SSMI drought classification.

SPEI SSMI Class

>−0.5 >0 No drought
−1.0–−0.5 −1.0–0 Mild drought
−1.5–−1.0 −1.5–−1 Moderate drought
−2.0–−1.5 −2.0–−1.5 Severe drought

≤−2 ≤−2 Extreme drought

In addition to this, precipitation (UCSB-CHG/CHIRPS/DAILY) and temperature
(ECMWF/ERA5/DAILY) data were obtained from Google Earth Engine, and both were
converted to monthly scale data.

2.3. Methodology
2.3.1. Trend Analysis and Significance Tests

To analyze the interannual spatial and temporal trends of drought, greening, and
GPP, we used the Theil-Sen Median trend analysis and the Mann–Kendall (M-K) trend
test. Where SPEI was calculated using SPEI_12 for December. SSMI was calculated by
synthesizing the monthly scale SM data into annual-scale SM data according to the method
of averaging before performing the trend calculation and then calculating it as SSMI by
using the formula. The combination of Sen trend analysis and M-K test has been applied in
many studies and is a well-established method in time series analysis. Sen trend analysis
is a very robust nonparametric trend calculation method, compared with ordinary linear
regression analysis, is insensitive to measurement error and outlier data and can reduce
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the impact of outliers [54,55]. The M-K test is a non-parametric statistical test based on
rank [56]. It does not require the data to conform to a particular distributional state and is
not affected by outliers.

2.3.2. Correlation of GPP with VIs and SIF

To monitor vegetation productivity, we analyzed the correlation of GPP with VIs and
SIF at different time scales. Pearson correlation utilizes statistical theories and methods
to quantify the degree of correlation between two variables and has been widely used in
ecological and earth science research [57]. Here, we used the coefficient of determination
(square of the correlation coefficient, R2) to quantify the correlation.

We combine SPEI_01 and SSMI, both of which reach the drought level at the same
time (SPEI ≤ −0.5, SSMI ≤ 0) and last for three months to be considered as a drought event
(the year in which it occurs is a drought year) [58]. To analyze the ability of VIs and SIF
to capture GPP losses during a drought event, we compared the changes in SIF, VIs, and
GPP, expressed as the ratio of the difference (drought year-reference year) to the reference
year (average value from 2001 to 2020). Finally, the standardized anomalies of VIs and SIF
during drought events in the Loess Plateau were calculated, and the correlation analysis of
GPP anomalies with VIs and SIF anomalies was done. The anomaly calculation was similar
to the SSMI formula, and the anomalies were categorized into five classes (Table 2) [59].

Table 2. Classes of anomalies.

Anomaly Class

>2 Strong positive anomaly
1–2 Moderate positive anomaly
−1–1 No anomaly
−1–−2 Moderate negative anomaly

<−2 Strong negative anomaly

3. Results
3.1. Drought Characteristics of the Loess Plateau
3.1.1. Spatial and Temporal Variability of Drought

Spatial and temporal variations of SPEI and SSMI from 2001 to 2020 were analyzed
to determine the interannual wet and dry conditions on the Loess Plateau. The monthly,
seasonal, semi-annual, and annual trends of SPEI are presented in Figure 3. SPEI fluctuates
greatly on short time scales (monthly and seasonal scales) and then slows down with
increasing time scales. SPEI_01 has the most frequent wet and dry variations, with a total
of 62 drought months occurring from 2001 to 2020, of which there were 39 months of mild
droughts, 19 months of moderate droughts, and 4 months of severe droughts, with no
extreme droughts. The longest drought period was from May to July 2001. Compared
with the monthly scale, the seasonal scale of SPEI_03 shows relatively stable wet and
dry changes, with a total of 52 drought months, 41 of which were mild droughts, 8 were
moderate droughts, 3 were severe droughts, and there were no extreme droughts. The
longest drought period was from May to August 2001. SPEI_06 was significantly slower
than the previous two short time scales, with a total of 29 drought months, 26 of which were
mild droughts, 3 were moderate droughts, and no severe or extreme droughts. SPEI_12 was
the most stable, with only 5 mild drought months. SM data were used and converted to
SSMI to reflect the wet and dry status of the soil. During the period 2001–2020, 133 drought
months were identified, accounting for more than half of the entire study period, and were
dominated by mild drought, with 128 months of mild drought, 5 months of moderate
drought, and no severe or extreme drought.
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K test (Figure 4a,b). SPEI showed an increasing trend in all land cover types. However, the
percentage of areas with significant increase was small, with sparse vegetation, grassland,
cropland, forest-shrub-grass vegetation mosaic belt, deciduous forest, and evergreen forest
with significant increase accounting for 2.01%, 7.19%, 6.87%, 3.01%, 3.74%, and 3.56% of
their respective areas, respectively. The SSMI was in an upward trend in sparse vegetation,
grassland, cropland, forest-shrub-grass vegetation mosaic belt, and in a downward trend
in deciduous and evergreen forests. Among them, grassland and cropland had the most
significant increase, accounting for 54.97% and 43.11% of their respective regions, while
cropland, deciduous forest, and evergreen forest had significant decreases, accounting for
11.37%, 58.33%, and 20.34% of their respective regions, and in particular, the area with
highly significant decreases in deciduous forest reached 34.24%. From the viewpoint of the
entire Loess Plateau, the trend of drought is decreasing, and drought has weakened.

3.1.2. Characteristics of the 2001 Drought

As shown in Figure 5, precipitation dropped sharply in March and May 2001 and
did not reach a return to normal levels until September. The average temperature for the
May–July period was also higher than the multi-year average. The values of the SPEI for
May–July were −1.407, −0.742, and −0.534, respectively, and the values of the SSMI were
−1.149, −1.083, and −0.915, reaching almost all three months the moderate drought level.
Therefore, May–July 2001 was identified as the drought event studied in this paper, and
2001 was designated as a drought year.

Figure 6 shows the spatial distribution of SPEI_01 and SSMI during the 2001 drought
in the Loess Plateau. The study area suffered from low precipitation and high temperatures
from May to July 2001, resulting in a basic drought condition in the region. The SPEI shows
that 6.14% of the area was in severe drought, 26.15% in moderate drought, and 57.30% in
mild drought. The severe drought region is mainly concentrated in the junction of Inner
Mongolia, Shaanxi, and Shanxi, which is an interlace zone of grassland and cropland.
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The moderate drought area is an extension of the severe drought area, occupying the
northeastern part of the study area as well as part of the central part. The western and
southern parts of the study area are relatively less arid. The SSMI shows a higher degree
of aridity, with 8.54% extreme drought, 15.90% severe drought, 29.72% moderate drought,
and 39.61% mild drought. The areas of extreme drought continue to be concentrated near
the junction of Inner Mongolia, Shaanxi, and Shanxi. Severe and moderate droughts are
widely distributed in each province. The spatial drought characteristics of SPEI and SSMI
are similar, but the drought degree of SSMI is more severe. This should make us realize the
importance of combining meteorological drought with land surface drought processes.

Forests 2024, 15, x FOR PEER REVIEW 9 of 22 
 

 

 

Figure 4. Trend changes in aridity indices, GPP, VIs, and SIF from 2001-2020; significance distribu-

tions of SPEI, SSMI, GPP, NDVI, NIRV, kNDVI, and SIF, respectively, from (a–g). 

3.1.2. Characteristics of the 2001 Drought 

As shown in Figure 5, precipitation dropped sharply in March and May 2001 and did 

not reach a return to normal levels until September. The average temperature for the May–

July period was also higher than the multi-year average. The values of the SPEI for May–

July were −1.407, −0.742, and −0.534, respectively, and the values of the SSMI were −1.149, 

−1.083, and −0.915, reaching almost all three months the moderate drought level. There-

fore, May–July 2001 was identified as the drought event studied in this paper, and 2001 

was designated as a drought year. 

 

Figure 5. Trends in precipitation and temperature on the Loess Plateau in 2001 and the reference year. 

Figure 6 shows the spatial distribution of SPEI_01 and SSMI during the 2001 drought 

in the Loess Plateau. The study area suffered from low precipitation and high tempera-

tures from May to July 2001, resulting in a basic drought condition in the region. The SPEI 

shows that 6.14% of the area was in severe drought, 26.15% in moderate drought, and 

57.30% in mild drought. The severe drought region is mainly concentrated in the junction 

Figure 4. Trend changes in aridity indices, GPP, VIs, and SIF from 2001–2020; significance distributions
of SPEI, SSMI, GPP, NDVI, NIRV, kNDVI, and SIF, respectively, from (a–g).

Forests 2024, 15, x FOR PEER REVIEW 9 of 22 
 

 

 

Figure 4. Trend changes in aridity indices, GPP, VIs, and SIF from 2001-2020; significance distribu-

tions of SPEI, SSMI, GPP, NDVI, NIRV, kNDVI, and SIF, respectively, from (a–g). 

3.1.2. Characteristics of the 2001 Drought 

As shown in Figure 5, precipitation dropped sharply in March and May 2001 and did 

not reach a return to normal levels until September. The average temperature for the May–

July period was also higher than the multi-year average. The values of the SPEI for May–

July were −1.407, −0.742, and −0.534, respectively, and the values of the SSMI were −1.149, 

−1.083, and −0.915, reaching almost all three months the moderate drought level. There-

fore, May–July 2001 was identified as the drought event studied in this paper, and 2001 

was designated as a drought year. 

 

Figure 5. Trends in precipitation and temperature on the Loess Plateau in 2001 and the reference year. 

Figure 6 shows the spatial distribution of SPEI_01 and SSMI during the 2001 drought 

in the Loess Plateau. The study area suffered from low precipitation and high tempera-

tures from May to July 2001, resulting in a basic drought condition in the region. The SPEI 

shows that 6.14% of the area was in severe drought, 26.15% in moderate drought, and 

57.30% in mild drought. The severe drought region is mainly concentrated in the junction 

Figure 5. Trends in precipitation and temperature on the Loess Plateau in 2001 and the reference year.



Forests 2024, 15, 339 10 of 21

Forests 2024, 15, x FOR PEER REVIEW 10 of 22 
 

 

of Inner Mongolia, Shaanxi, and Shanxi, which is an interlace zone of grassland and 

cropland. The moderate drought area is an extension of the severe drought area, occupy-

ing the northeastern part of the study area as well as part of the central part. The western 

and southern parts of the study area are relatively less arid. The SSMI shows a higher 

degree of aridity, with 8.54% extreme drought, 15.90% severe drought, 29.72% moderate 

drought, and 39.61% mild drought. The areas of extreme drought continue to be concen-

trated near the junction of Inner Mongolia, Shaanxi, and Shanxi. Severe and moderate 

droughts are widely distributed in each province. The spatial drought characteristics of 

SPEI and SSMI are similar, but the drought degree of SSMI is more severe. This should 

make us realize the importance of combining meteorological drought with land surface 

drought processes. 

 

Figure 6. Spatial distribution of SPEI (a) and SSMI (b) during the drought of 2001. 

3.2. Greening Characteristics of the Loess Plateau 

Each index showed an increasing trend in all land cover types (Figure 7), indicating 

that the Grain for Green Project played a significant role in greening the vegetation and 

sequestering carbon in the Loess Plateau. However, only SIF and NIRV reflected the phe-

nomenon that the GPP of deciduous forests was higher than that of evergreen forests. The 

spatial trends of VIs, SIF, and GPP were analyzed using Sen trend estimation and M-K 

test (Figure 4c–g). VIs, SIF, and GPP showed stable significant and highly significant in-

creasing trends in most regions. This coincided with the temporal trends of annual-scale 

VIs and SIF (Figure 7). In western Inner Mongolia and northern Ningxia VIs, SIF and GPP 

showed insignificant increasing trends. Each index of forest land in Shaanxi and Shanxi 

showed a certain downward trend, which corresponded to the trend of SSMI forest land. 

In addition to cropland (which is supposed to be the reason for artificial intervention), the 

proportion of very significant increase areas increased with the increase in the productiv-

ity of land types (from low to high: sparse vegetation, grassland, forest-shrub-grass vege-

tation mosaic belt, and forest land). 
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3.2. Greening Characteristics of the Loess Plateau

Each index showed an increasing trend in all land cover types (Figure 7), indicating
that the Grain for Green Project played a significant role in greening the vegetation and
sequestering carbon in the Loess Plateau. However, only SIF and NIRV reflected the
phenomenon that the GPP of deciduous forests was higher than that of evergreen forests.
The spatial trends of VIs, SIF, and GPP were analyzed using Sen trend estimation and
M-K test (Figure 4c–g). VIs, SIF, and GPP showed stable significant and highly significant
increasing trends in most regions. This coincided with the temporal trends of annual-scale
VIs and SIF (Figure 7). In western Inner Mongolia and northern Ningxia VIs, SIF and GPP
showed insignificant increasing trends. Each index of forest land in Shaanxi and Shanxi
showed a certain downward trend, which corresponded to the trend of SSMI forest land.
In addition to cropland (which is supposed to be the reason for artificial intervention), the
proportion of very significant increase areas increased with the increase in the productivity
of land types (from low to high: sparse vegetation, grassland, forest-shrub-grass vegetation
mosaic belt, and forest land).
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3.3. Relationship of GPP with VIs and SIF, 2001–2020

To analyze the correlation of GPP with VIs and SIF during the study period, we
performed correlation analyses for spring, summer, autumn, non-growing season, growing
season, removal of winter (removing the value of winter), and the entire study period (all
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months) from 2001 to 2020 (Figure 8). Looking at the different time scales, the correlation in
the non-growing season was relatively low compared to the other time scales, which may
be due to the weak photosynthesis in the non-growing season when the vegetation grows
slowly or does not grow. In both deciduous and evergreen forests, summer correlations
were also much lower compared to other seasonal scales.
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Figure 8. The correlation between VIs, SIF, and GPP. Sp, Su, Au, Ngs, Gs, Rw, and Am are spring,
summer, autumn, non-growing season, growing season, removal of winter, and the entire study
period, respectively.

3.3.1. Correlation of GPP with VIs

The kNDVI-GPP relationship (meanR2 = 0.74) was the lowest among the three VIs.
Specifically, the kNDVI-GPP relationship was significantly lower in grassland, forest-shrub-
grass vegetation mosaic belt, deciduous forest, and evergreen forest than in NDVI and
NIRV. Compared to sparse vegetation and cropland, the kNDVI-GPP relationship for
grassland, forest-shrub-grass vegetation mosaic belt, deciduous forest, and evergreen forest
declined the most in spring, summer, and autumn. In particular, the R2 of kNDVI-GPP
for forest-shrub-grass vegetation mosaic belt, deciduous forest, and evergreen forest in
summer was only 0.34, 0.23, and 0.14. It is noteworthy that kNDVI performed best in sparse
vegetation (meanR2 = 0.85). Although the NDVI-GPP relationship was lowest during the
growing season, removal of winter, and entire study period (excluding the growing season
in deciduous forests) in each of the land classes, the NDVI-GPP relationship (meanR2 = 0.76)
remained slightly higher than kNDVI.

The NIRV-GPP relationship (meanR2 = 0.84) was much improved across vegetation
types compared to NDVI and kNDVI. The correlation with GPP was much higher than
that of NDVI and kNDVI in all land types except in sparse vegetation and cropland,
where it was slightly lower than kNDVI. NIRV performed best in the non-growing season
(meanR2 = 0.61) and even outperformed SIF in sparse vegetation, grassland, and forest-
shrub-grass vegetation mosaic belt.

3.3.2. Correlation between GPP and SIF

The SIF-GPP relationship (meanR2 = 0.85) improved compared to VIs. Moreover, SIF
performs worse than VIs in some land classes and on certain time scales, which denied



Forests 2024, 15, 339 12 of 21

the original hypothesis that SIF performed best. Specifically, in sparse vegetation, it was
lower than at least one of the indices in the VIs at other time scales except summer and
autumn and was especially lowest in the non-growing season (R2 = 0.13). In addition, it was
lower than NIRV in the non-growing season in grassland and forest-shrub-grass vegetation
mosaic belts and lower than NDVI in summer in deciduous and evergreen forests.

3.4. Capture of GPP by VIs and SIF in Dry Years
3.4.1. SIF Responds Better Than VIs to Drought

The drought event started in May 2001 and ended in July 2001. These three months
were characterized by a severe drop in precipitation compared to the reference year and
higher temperatures than the reference year, resulting in a severe lack of soil moisture,
which affected the growth of vegetation (Figure 4).

The SPEI drought index indicated that the SPEI for both sparse vegetation and grass-
land was less than the reference year value from May to July, and drought conditions
recovered in August (Figure 9). The cropland, forest-shrub-grass vegetation mosaic belt,
deciduous forest, and evergreen forest were all smaller than the multi-year average from
May to August before drought conditions subsided in September. The SSMI drought
index indicated that sparse vegetation was smaller than the multi-year average from the
beginning of the year for SSMI values, and other land classes were less than the multi-
annual average from March. Sparse vegetation, grassland, and cropland showed relief in
September; forest-shrub-grass vegetation mosaic belts, deciduous forests, and evergreen
forests showed relief in August. Both SPEI and SSMI had their lowest values in May, with
the largest differences occurring almost simultaneously (Figure 9).
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Figure 9. Trends in drought index for 2001 and reference year. Where mean-SSMI and mean-SPEI are
monthly averages of SSMI and SPEI from 2000 to 2020; 2001-SSMI and 2001-SPEI are monthly values
of SSMI and SPEI for 2001; SSMI and SPEI are the difference between the monthly values of SSMI
and SPEI for 2001 and the multi-year average.
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The response of VIs and SIF to drought is reflected by the difference between the VIs
and SIF drought year and the reference year. Both VIs and SIF were essentially lower than
multi-year averages in 2001, which differed from the drought index performance. During
the drought event, the maximum difference between VIs and SIF for sparse vegetation
and grassland occurred in May; the maximum difference for forest-shrub-grass vegetation
mosaic belt, deciduous and evergreen forests occurred in June (Figure 10), one month
after the maximum difference in the drought index. The drought event was caused by a
sharp drop in precipitation in March and May 2001. At this time, only SIF showed a clear
downward trend, while the change in VIs was much less significant than SIF (Figure 10). In
this drought event, both VIs and SIF were subjected to drought stress at the stage of the
year when vegetation growth was at its peak, but SIF captured the drought signals and
drought initiation stage more accurately.
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3.4.2. Capture of GPP Changes by VIs and SIF

To further analyze the ability of both to capture GPP loss during drought events, we
examined the trends, expressed as a ratio of difference to mean (Figure 10). In sparse
vegetation, GPP decreased by 16.19% in May while SIF decreased by more than ten times
the multi-year mean, GPP decreased by 53.72% in June while SIF decreased by 179.19%, and
GPP decreased by 47.39% in July while SIF decreased by 95.74%. In grassland, SIF changes
were not as strong as in sparse vegetation, but SIF still showed the worst performance
(except in June when it outperformed NDVI and NIRV). In cropland, probably due to
anthropogenic influence, SIF started to capture GPP loss slightly better than NDVI. As the
productivity of the land type increased, SIF gradually outperformed VIs. For example,
in deciduous forests, the trend of SIF change in June and July was significantly closer to
the trend of GPP change, followed by NIRV. It can be seen that SIF does not perform as
well as kNDVI and NIRV in areas with low productivity and low vegetation cover during
drought events.
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We evaluated the magnitude and spatial distribution of the anomalies of VIs and SIF
from May to July 2001 (Figure 11). From the spatial distribution of anomalies, VIs, and SIF
were basically in moderate negative anomalies. Negative anomalies appeared in May, and
strong negative anomalies of the three VIs were mainly distributed in cropland in Shaanxi
and Shanxi. The SIF shows strong negative anomalies not only in the cropland but also
in the grassland northwest of the Loess Plateau. In June, the negative anomalies are more
extensive and strong, with strong negative anomalies in most areas of the Loess Plateau. In
July, the negative anomalies are slightly reduced, with strong negative anomalies mainly
in Inner Mongolia, Shaanxi, and Shanxi. Compared with the VIs, the negative anomalies
of SIF are more serious, especially in June when SIF reaches strong negative anomalies in
the forest-shrub-grass vegetation mosaic belt, deciduous forests, and evergreen forests. In
general, the anomalies in the east were more severe than those in the west. A large part of
the Gansu territory remained normal in these three months.
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To further understand the capture of anomalies by VIs and SIF, the relationship be-
tween anomalies of VIs and SIF and GPP anomalies was also explored (Figure 12). The cap-
ture of anomalies was best for kNDVI (meanR2 = 0.50), followed by NIRV (meanR2 = 0.37),
NDVI (meanR2 = 0.35), and SIF (meanR2 = 0.26), which was the poorest performer among
the four indices. Specifically, kNDVI was the best performer in all land classes except in
sparse vegetation, where NIRV and NDVI outperformed kNDVI. Even though the other
indices were very low in both deciduous and evergreen forests, kNDVI still had a high
correlation NIRV (meanR2 = 0.35 and 0.42). We found this to be a significant departure
from the initial hypothesis (that SIF would perform better).
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Figure 12. Correlation of GPP anomalies with VIs and SIF anomalies. Sv, Gl, Cl, Fsg, Df, and Ef
are sparse vegetation, grassland, cultivated land, forest shrub, deciduous forest, and evergreen
forest, respectively.

4. Discussion
4.1. Changing Trends in the Loess Plateau

In this paper, we used drought index, VIs (NDVI, NIRV, and kNDVI), SIF, and GPP
data to analyze the trends of drought, greening, and GPP in the Loess Plateau from 2001 to
2020. The results found that the drought on the Loess Plateau from 2001 to 2020 showed
a decreasing trend, similar to the past studies on the spatial and temporal variations of
drought on the Loess Plateau. Su et al. (2023) [60] investigated the characteristics of
drought changes on the Loess Plateau and its influencing factors from 2001 to 2020 by
using the Crop Water Stress Index (CWSI) and found that the drought on the Loess Plateau
showed a downward trend. Hou et al. (2021) [61] used the SPEI and found that it showed a
decreasing trend from 1986 to 2019, and the drought characteristics after 2001 were similar
to this paper. Zhu et al. (2023) [62] found that the arid and semi-arid zones in China have
shown a wetting trend over the past 50 years. However, in this paper, it was found that
SSMI showed an increasing trend of drought in deciduous and evergreen forests, which
may be due to the increase in forested land area under the Grain for Green Project, the high
water demand for forest trees and the high transpiration, which consumed a large amount
of soil moisture. Therefore, when implementing the ecological restoration policy, it should
be adapted to the local conditions so as to make forests and grasses suitable for forests and
grasses. Blindly planting forests and grasses will make the ecosystem more unstable and
reduce its self-regulation ability. The greening trend of the entire Loess Plateau is consistent
with previous studies [38–40]. Since 2000, the greening of the Loess Plateau has been on an
upward trend.

Among the VIs, SIF, and GPP trends, we found that only SIF and NIRV reflected the
phenomenon that GPP was higher in deciduous forests than in evergreen forests. In the
Loess Plateau, almost all of the deciduous forests are broadleaf forests; in the evergreen
forests, coniferous forests are dominant. GPP represents the CO2 fixed by plants, SIF
represents the strength of photosynthesis, and NIRV represents the potential of harvesting
light in response to the greenness of the vegetation. Thus, this phenomenon reflects that
the photosynthetic fixation capacity, as well as the potential to harvest light, is higher in
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deciduous broadleaf forests than in evergreen coniferous forests. This provides evidence
for the hypothesis that leaves are constructed and displayed in a manner that matches
energy absorption and photosynthetic capacity [24,63]. This result also provides evidence
that NIRV can be used instead of SIF to study photosynthesis in vegetation.

4.2. Response of VIs and SIF to Drought

This drought event occurred in the peak growing season of 2001, and both VIs and SIF
were subjected to drought stress, but SIF captured the drought signal more precisely. This is
because SIF not only responds to the greenness of vegetation but also contains information
related to photosynthesis, such as photosynthetically active radiation and environmental
factors. This is similar to Zhang et al.’s (2022) [55] study in the eastern foothills of the
Taihang Mountains and Qiu et al.’s (2023) [30] crop study in the Midwestern United States.
The VIs and SIF were largely lower than the multi-year averages in all months of 2001,
which differed from those exhibited using the drought index. This is due to the ecological
restoration policies on the Loess Plateau, where vegetation continues to green up, resulting
in higher multi-year averages than the 2001 values. This study also found that the response
of different land types to drought varied in time, with a lag in the response of vegetation
types to drought and taller shrubs showing greater resilience to drought.

In this paper, we find that SPEI fluctuates greatly on short time scales (SPEI_01 and
SPEI_03) and slows down with increasing time scales. This is similar to the study of
Stefanidis et al. (2023) [64] in Mediterranean oak forests, who found that at shorter time
scales (SPEI_03 and SPEI_06), it was more effective in identifying short-term drought events,
while longer time scales (SPEI_12 and SPEI_24) were more effective in identifying drought
events of lower frequency but longer duration. The SPEI and SSMI differed in April 2001,
with the SPEI recovering to near the multi-year average in April, while the SSMI remained
well below the multi-year average (Figure 9). This is probably due to higher precipitation in
April. SPEI is a meteorological drought index, and precipitation has a strong influence on
its value. Although there was more precipitation in April than in normal years, the plants
started to wake up and needed water for growth, resulting in low soil moisture content.
Therefore, the SSMI is still in a drought condition in April.

4.3. GPP with VIs and SIF
4.3.1. Correlation at Different Time Scales

On the whole, SIF was superior to other proxies in tracking seasonal GPP, with NIRV
second. This is similar to the study by Wang et al. (2022) [20] in the western US ecological
sub-regions. However, the hypothesis that SIF is stronger than VIs is not entirely correct.
The correlation between SIF and GPP in sparse vegetation was not as good as that of VIs
in other time scales except summer and autumn (Figure 8). The reason may be that the
vegetation cover of sparse vegetation is low, and the real SIF signals received by the satellite
are weak, which are seriously affected by the noise signals, resulting in a low signal-to-noise
ratio [65,66]. NIRV and kNDVI solve the background contamination problem and better
reflect the vegetation signal [22,23]. Furthermore, SIF performance was also lower than
VIs in the non-growing season of forest-shrub-grass vegetation mosaic belt and sparse
vegetation and in the summer of deciduous and evergreen forests (Figure 8). The reasons
for forest-shrub-grass vegetation mosaic belt and sparse vegetation may be (1) weaker SIF
signals and (2) low VIs, SIF, and GPP due to the fact that vegetation basically stops growing
in the non-growing season, resulting in a low correlation of GPP with VIs and SIF. The
reason for the phenomenon that summer SIF performance in deciduous and evergreen
forests is lower than VIs may be due to the dense vegetation canopy in the summer. SIF
signal is hampered by the high-density canopy obstruction, resulting in impaired radiative
transfer (low escape ratio) [67–69], and the information from SIF is not fully transmitted to
the satellite. The correlation between summer VIs and GPP was also low for forest land
compared to other seasonal scales. The reason for this is that GPP in forest land that is in the
summer continues to increase to a large extent, with GPP increasing by more than 10 gcm−2
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in July compared to June in most years. Vegetation greenness does not change much in the
summer, resulting in VIs not responding well to changes in GPP in summer. R2 has a slight
increase in the entire study time scale compared to the removal of winter. In winter, VIs,
SIF, and GPP are all low, and if GPP were fitted in winter alone as a correlation with VIs
and SIF, the correlation would be very low. However, in the entire study time scale fitting,
the winter value made up for the vacancy of low value, and the correlation increased.

4.3.2. Capture during Droughts

The original hypothesis that SIF is superior to VIs was also denied in the capture of
GPP changes by VIs and SIF during drought events. In sparse vegetation and grasslands,
SIFs were significantly less able to capture GPP changes than VIs. This is similar to the
study by Wang et al. (2022) [20] in the Western U.S. ecological sub-regions, where NIRV
consistently outperforms SIF in capturing seasonal changes in GPP at low-productivity sites
such as sparse herbaceous and sparse shrubby sites. In sparse vegetation and grasslands,
we also found that SIF decreased very much during drought events, which could be
attributed to low productivity land classes in the first place. Another reason is that GPP
increases faster than SIF from spring to summer due to the increase in temperature [70].
This, plus the drought, makes the value of SIF even smaller.

In the capture of GPP anomalies by VIs and SIF during drought events, we find
that kNDVI performs best, NIRV and NDVI followed, and SIF worst. This is at variance
with Qiu et al.’s (2023) [30] study of crop productivity in the Midwestern U.S., where
they found that GOSIF could better capture yield anomalies of corn and soybean during
drought compared with EVI and NIRV. The reason may be that the vegetation cover in
the Loess Plateau is relatively sparse, and SIF is more affected by the noise signal in the
low vegetation cover area. Moreover, this drought event occurred during the peak season
of vegetation growth, and the escape ratio of the SIF signal in tall shrubs was low, which
ultimately led toSIF’s weaker ability to capture anomalies than VIs. We also found that
the anomalies correlation showed a significant decrease in the land use types, which were
forest-shrub-grass vegetation mosaic belt, deciduous forest, and evergreen forest. This
may be due to the relatively large spatial variation in the production of GPP by shrubby
vegetation types. kNDVI was initially designed to solve the nonlinearity problem between
NDVI and GPP. In anomaly capture, the spatial heterogeneity is strong, and the nonlinearity
problem is prominent.

All in all, SIF outperforms VIs most of the time and in most regions, probably because
it contains information related to photosynthesis. However, there are still times and
regions that SIF does not solve well. Until SIF is able to solve these problems well, it
is still necessary to combine VIs to solve multiple problems. SIF should especially pay
attention to the integration with NIRV and kNDVI. NIRV performs better in the low
vegetation cover and low productivity land classes, and kNDVI solves the problem of
spatial heterogeneity better. This is very important for improving satellite monitoring of
GPP changes, which will be very helpful for future agricultural production, vegetation
greening, and carbon neutralization.

5. Conclusions

In this paper, we analyzed the trends of drought, vegetation greening, and GPP in the
Loess Plateau from 2001 to 2020 using SPEI, SM, VIs, SIF, and GPP data, and we analyzed
the relationship between the two types of indices (VIs and SIF) and GPP in different time
scales and during drought. The main conclusions are as follows:

(1) Based on the spatial and temporal changes of SPEI and SSMI from 2001 to 2020, it
was found that the overall drought in the Loess Plateau showed a decreasing trend.
However, in the forest, SSMI showed an increasing drought trend. May–July 2001
was identified as a drought event.
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(2) The trends of changes in VIs, SIF, and GPP from 2001 to 2020 are basically the same,
and all of them show an upward trend. However, only SIF and NIRV reflected the phe-
nomenon that the GPP of deciduous forests was higher than that of evergreen forests.

(3) Both VIs and SIF were subjected to drought stress during the peak vegetation growth
season during drought events, but SIF more accurately captured drought signals and
the initial stages of drought.

(4) In the relationship of GPP with VIs and SIF at different time scales, SIF (meanR2 = 0.85)
performed the best, followed in descending order by NIRV (meanR2 = 0.84), NDVI
(meanR2 = 0.76), and kNDVI (meanR2 = 0.74). Notably, it is worth noting that kNDVI
performs best in sparse vegetation (meanR2 = 0.85). NIRV is the most stable of the
three VIs and is closest to SIF.

(5) In the capture of GPP by VIs and SIF during drought, NIRV and kNDVI performed
better in the land classes with low productivity; with the increase in land use classes
productivity, SIF showed better capturing ability. In addition, the capture of GPP
anomalies was best for kNDVI (meanR2 = 0.50), followed by NIRV (meanR2 = 0.37),
NDVI (meanR2 = 0.35), and SIF (meanR2 = 0.26).

Our results suggest that using a single vegetation proxy to characterize the vegetation
dynamics of a region may lead to biased GPP estimates in some areas within the region.
Therefore, this paper suggests that when integrating different proxies as well as methods,
the heterogeneity of vegetation should also be carefully considered in order to respond to
regional vegetation dynamics more accurately.
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