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Abstract: The “Forest Fires Prediction and Detection” edition highlights the importance of research
on fires worldwide. In recent years, the increased frequency of fires caused by climate change has
rendered the planet uninhabitable. Several works have been prepared and published in an effort to
raise awareness among civil society and government bodies about the importance of developing new
technologies for monitoring areas prone to mega-fires. This special issue includes nine important
works from various countries. The goal is to better understand the impacts on the world’s most
diverse regions, ecosystems, and forest phytophysiognomies. New geotechnologies and fire models
were used, both of which are important and could be used in the future to improve short- and
long-term planning in firefighting.
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Herein, we present nine published works from different regions across the globe. It is
expected that their main result can help our understanding of the impacts of climate change
and help prevent and control these impacts through patterns found, new technologies
applied, short-term forecast models, and future projections of the occurrence and prevention
of fires worldwide.

In the boreal forests of Alaska and western Canada [1], the authors were able to
simulate, using the FlamMap model, land cover until the year 2054. These are regions
that have two highly flammable species: black spruce (Picea mariana (Mill.) B.S.P.) and
lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.). Monitoring the
growth of these species can help to understand the risks to forest fires for local communities,
in addition to contributing to other work that can use the same idea in other regions and
forest phytophysiognomies.

In China, researchers [2] built a new hybrid machine-learning technique algorithm
based on random forest (RF), gradient-boosting decision tree (GBDT), support vector
machine (SVM), and other machine learning models to improve wildfire forecasting. The
authors highlight the model developed to advance the monitoring and predictability of fires
in this region [2]. In Figure 1, it is possible to see that the regions with a high probability of
forest fires are mainly concentrated in the northeast, southwest, and southeast regions [2].

Other work was also developed in China using data from Himawari-8 for smoke
detection, the implementation of unsupervised domain adaptation (UDA), and the use of
the Recursive Bidirectional Feature Pyramid Network (RBiFPN for short) model for smoke
detection [3–5].

In South America (Brazil) and Europe (Portugal), the authors [6] used images from
the Landsat-8 satellite OLI/TIRS sensors to analyze spectral separability in the detection
of burned areas in Brazil (dry ecosystem) and Portugal (temperate forest). In Figure 2, it
can be seen that in Brazil, the reference burned area reached 8.88 km2, while in Portugal it
exceeded the value of 93 km2 (Figure 2).

In another region of Brazil, the authors developed a new model to assess the risk
of fire for the Atlantic Forest area in the Itatiaia National Park [7]. The authors used
micrometeorological data and remote sensing to build a risk model called Fire Risk Atlantic
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Forest (FIAF). The authors also generated a future simulation starting in 2022 until 2050;
for this, they used the SSP2-4.5 scenario and the Japanese model MRI-ESM2-0 [8].
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Figure 1. Forest fire zoning in China. Adapted from Shao et al. [2]. 
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In the state of Piauí in Brazil, in the Cerrado biome, the authors [9] used data from
the Sea and Land Surface Temperature Radiometer (SLSTR) sensor of the Sentinel-3B
satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) of the Terra
satellite to analyze the thematic accuracy of burned area maps and their sensitivity under
different spectral resolutions. The authors used the methodology of training and the
Support Vector Machine (SVM) classifier and found that the main problems associated with
spectral mixing, registration date, and spatial resolution of 500 m were the main factors
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that led to commission errors ranging between 15% and 72% and omission errors between
51% and 86% for both sensors.

In a large area such as the region known as the Cross-Border Area between China,
North Korea, and Russia, the authors [10], using the logistic regression (LR) model, stan-
dardized coefficients, and Kriging interpolation, found that in these regions, the climate,
topography, and type of vegetation have more influence on fires than human actions. Cli-
matic factors were the most important factors affecting the probability of wildfires, followed
by topography and vegetation factors, and human activity factors had the least influence
(Figure 3).
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Figure 3. Partially standardized logistic regression coefficient size for each variable in the LR model 
adjustment process. Adapted from Quan et al. [10]. 
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