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Abstract: Willows are suitable candidates for phytoremediation projects. A pot experiment was
conducted to evaluate the potential of using Salix unrooted cuttings for the phytoremediation of
lead/zinc (Pb/Zn) and copper (Cu) mine tailings. Cuttings of 14 Salix clones were directly rooted into
pots containing mine tailings. The 14 clones showed different levels of tolerance to tailing treatments.
A total of 71.40% and 85.70% of the S. jiangsuensis ‘172’ cuttings either grown in Pb/Zn or Cu tailings
survived, respectively. However, the other clones had lower survival rates, and the values were no
more than 40%. Usually, all clones produce less biomass in an extremely contaminated environment.
Clonal variation in biomass yield was observed in this research. The surviving clones, such as
S. integra ‘WSH’, S. matsudana ‘14’, S. chaenomeloides ‘3’, S. chaenomeloides ‘4’, and S. chaenomeloides ‘5’
(Pb/Zn tailing), S. integra ‘HY’, S. integra ‘WSH’, S. matsudana ‘14’, S. matsudana ‘19’, and S. matsudana
‘34’ (Cu tailing) produced relatively more biomass in this study. In general, all the clones presented
lower bioconcentration factor values for the tailings of heavy metals. In principle, all clones could
easily take up and translocate Zn and Cd from the tailings to aboveground parts, especially S. integra.
All clones exhibited a huge variation in their heavy metal accumulation capacity. As stated above, the
direct utilization of cuttings for phytoremediation is a viable option. S. jiangsuensis ‘172’ had a high
tolerance capacity and would be a recommended candidate for future phytoremediation projects
in soils containing tailings with an extremely high concentration of heavy metals. These results
provide crucial information about willow growth and metal accumulation capacity in extremely
adverse environments.
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1. Introduction

Metals are widely utilized in various aspects of life and play a crucial role in human
activities and societal progress. However, during the process of mining operations and
smelting, potentially hazardous trace elements are generated [1]. Consequently, surround-
ing soils become contaminated with heavy metals [2–4]. Moreover, the practice of tailings
revegetation becomes challenging due to a limited water retention capacity, nutrient defi-
ciency, and elevated metal concentrations [5]. The presence of high concentrations of heavy
metals exerts detrimental effects on both plants and soil microorganisms, as has been well
established in the scientific literature [6,7]. Furthermore, heavy metals can pose potential
risks to both humans and animals through the food chain [8–10]. Therefore, there is an
urgent need for ecological remediation of mine tailings [11].

Phytoremediation represents a green and low-cost technology for ecological restora-
tion in mining areas [3,12,13]. Using phytoremediation is becoming more widely recognized
as a potential technique for soil remediation [4]. The careful selection of plant species is
a critical factor contributing to the success of revegetation efforts [10,14]. Fast-growing
plants that produce high amounts of biomass—characterized by deep rooting systems, high
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transpiration rates, strong resilience to barren conditions, and tolerance to excess metal con-
centrations, and which possess the ability to accumulate high levels of metals in harvestable
portions—are the optimal plant species for successful phytoremediation [15–17]. Numerous
studies have suggested that fast-growing species, such as poplar and willow, are commonly
employed in phytoremediation [17–21], owing to their high biomass productivity and
adaptability to adverse conditions [22]. Many investigations have suggested that Salix
spp. can normally grow on moderately contaminated soils [23,24], even in mine tailings
with exceptionally high concentrations of heavy metals [25,26]. Furthermore, numerous
willow species/clones have demonstrated their phytoremediation potential in both field
and greenhouse experiments [27–31]. Therefore, these studies have provided insights into
the potential and variability of willow for heavy metal accumulation. Nevertheless, the
phytoremediation potential of willow in highly contaminated areas, like mine tailings, has
not received much attention [26,32], and crucial information regarding the physiology of
willow in such harsh environments is still lacking.

The extensive genetic variability observed in numerous species and hybrids of Salix
spp. [27] offers a plethora of resources for selective breeding aimed at augmenting the
phytoremediation capacity. Numerous studies have reported that the phytoremediation ca-
pacity varies significantly depends on the willow species or clones [33–36]. The Salix genus
in China has been identified to comprise approximately 275 species [37]. However, limited
research has been conducted on numerous Chinese species and clones for phytoremedia-
tion purposes in recent decades [29,38–42]. Furthermore, using willow original cuttings for
direct phytoremediation is a more practical way to clean up polluted soil. However, there
is limited research on the use of unrooted cuttings from different willow species/clones to
thoroughly assess their potential for phytoremediation in contaminated soils [43], including
mine tailings. As such, the focus of this study was to investigate the feasibility of utilizing
unrooted cuttings in tailings with extremely high concentrations of heavy metals. The
willow species Salix jiangsuensis ‘172’, S. integra, S. matsudana, and S. chaenomeloides, which
are indigenous to China, have been extensively cultivated throughout the country. S. nigra,
native to the United States, has been demonstrated to have a specific capacity for heavy
metal accumulation [34]. Therefore, the cuttings of these tree species were planted in two
severely polluted mining tailings in this study. The survival ratio, growth performance,
and metal uptake of these species were evaluated. The additional objective of this study
was to elucidate the variation in the heavy metal tolerance and accumulation capacity
among the selected willow clones for growth on mine tailings, as well as their potential
utilization in phytoremediation of mine tailings in China. These results will be extremely
helpful in selecting appropriate Salix species or clones for phytoremediation initiatives on
mine tailings.

2. Materials and Methods
2.1. Site Description and Tailing Materials

To better replicate field conditions, we collected samples of Pb/Zn mine tailings from
Fuyang, Hangzhou, China (30◦07′38′′ N, 119◦50′39′′ E) and Shaoxing, China (29◦53′90′′

N, 120◦37′12′′ E). Additionally, river sands were obtained from Fuyang, Hangzhou, China
(30◦03′43′′ N, 119◦57′12′′ E). The physicochemical properties of the mine tailings and river
sand were analyzed (Table 1), revealing that the concentrations of heavy metals in the
mine tailings exceeded the risk screening values for soil contamination of agricultural
land in China (GB 15618-2018) [44]. The single pollution index method is a dimensionless
indicator used to assess the extent of soil contamination that can effectively reflect the
excessive levels of multiple pollutants and the severity of pollution. The Nemerow index
is a widely used comprehensive pollution index method that assesses the extent of heavy
metal contamination in soils across an entire region. Detailed information can be found
in the Supplementary Materials (Methods S1 and S2). The single pollution index (Pi)
indicated a severe level of pollution for Cd, Pb, and Zn in the Pb/Zn tailings, as their Pi
values significantly exceed 3 (Table S1). The Pi value of the Cu tailing was within the range
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of 1–2, thus suggesting mild pollution. In the case of the Cu tailings, serious pollution is
indicated by Pi values > 3 for Cu and Cd, while moderate pollution is indicated by a Pi value
ranging from 2–3 for Zn. Furthermore, the Pi value for Pb was less than 1. Additionally, the
Nemerow index (PN) was calculated, revealing a significant co-pollution between Pb/Zn
and Cu tailings (Table S1). The PN value for the Pb/Zn tailings was measured at 259.52,
greatly surpassing the heavy pollution reference threshold of 3.

Table 1. Characteristics of three types of medium.

River Sand Pb/Zn Tailing Cu Tailing

Pb (mg kg−1) 238 5850 108
Zn (mg kg−1) 370 9980 1440
Cu (mg kg−1) 11 186 1450
CD (mg kg−1) 0.85 51.2 6.2
Hydrolysable N (mg kg−1) 2 1 6
Available P(mg kg−1) 17.4 11.1 10.9
Rapidly available K (mg kg−1) 34.9 36.4 52.1
Organic matter (g kg−1) 0.15 4.29 1.38
pH 8.12 7.59 7.92

2.2. Plant Materials

In this study, a total of fourteen Salix clones were selected, including the S. jiangsuensis
‘172’, which is a hybrid of (S. matsudana × S. chosenia arbutifolia) × S. matsudana (Table 2).
The capacity of these clones to produce a sizable amount of biomass during the two-year
field experiment was the primary criterion in this specific selection.

Table 2. The Salix clones studied in the experiment.

Clone ID Species/Hybrid Abbreviation Origin

172 Salix jiangsuensis SJ172 Jiangsu provinces
72 Salix nigra SN72 United States
HY Salix integra SIHY Shandong provinces
CT Salix integra SICT Shandong provinces
WSH Salix integra SIWSH Shandong provinces
YZB Salix integra SIYZB Shandong provinces
1 Salix matsudana SM1 Zhejiang provinces
14 Salix matsudana SM14 Zhejiang provinces
19 Salix matsudana SM19 Zhejiang provinces
34 Salix matsudana SM34 Zhejiang provinces
2 Salix chaenomeloides SC2 Zhejiang provinces
3 Salix chaenomeloides SC3 Zhejiang provinces
4 Salix chaenomeloides SC4 Zhejiang provinces
5 Salix chaenomeloides SC5 Zhejiang provinces

2.3. Experiment Methods

The experiment was conducted in a greenhouse of the Research Institute of Subtropical
Forestry, Chinese Academy of Forestry, Hangzhou, China. In August 2019, healthy clone
stem cuttings of uniform length (8 cm) and diameter (0.8 cm) were collected and rooted in
black cylindrical plastic pots with dimensions of 30 cm in diameter and 18 cm in height.
Each pot contained 7 cuttings of each clone, with the clones grown in river sand (Control,
T0), Pb/Zn tailings (T1), and Cu tailings (T2), resulting in a total of 42 treatment units.
These 42 treatment units were considered as one experimental block, and a total of four ex-
perimental blocks were arranged using a randomized block design. During a fifteen-month
period, the cuttings were cultivated under natural lighting conditions, with day/night
temperatures ranging from 25 to 35 ◦C and relative humidity levels maintained between
70% and 85%. Tensiometer measurements were used to regulate irrigation scheduling
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throughout the growth phase to keep the soil moisture content roughly at field capacity. To
sustain their growth, a weekly application of 0.2% ammonium nitrate was administered
from June to August 2020. Any phytotoxic symptoms related to metal exposure were
documented throughout the entire study period. Upon completion of the experiment,
the survival rate of the cuttings and chlorophyll content in the leaves were quantified.
Subsequently, all cuttings were harvested to assess their biomass, as well as their heavy
metal and nutrient concentrations in the plant tissues.

Survival rate (%) = number of viable cuttings/total number of cuttings × 100%.

2.4. Biomass Measurements

After harvesting, all samples were thoroughly rinsed with distilled water. Subse-
quently, the aboveground (leaf and stem) and belowground (cutting and root) portions
were excised and separated. The belowground parts were immersed in 20 mmol/L Na2–
EDTA (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) for 15 min to remove
metals. Following drying at 80 ◦C for 72 h, the dry biomass of the samples was measured
using electronic scales (ME1002E, Mettler Toledo Instruments Ltd., Shanghai, China).

2.5. Estimation of Chlorophyll Content

The chlorophyll content of mature leaves (third–fourth leaf from the apex) in all
treatments was estimated non-destructively using the Opti-Sciences CCM-200 chlorophyll
content meter (Opti-Sciences Inc., Hudson, NH, USA), and the chlorophyll concentration
index (CCI) was recorded.

2.6. Plant Sampling and Chemical Analysis

Following the pulverization of dried plant samples into a fine powder, 0.2 g of each
sample was digested using a solution of 4 mL HNO3 and 1 mL HClO4 (Sinopharm Chemical
Reagent Co., Ltd., Shanghai, China). The concentrations of Pb, Zn, Cu, and Cd in the dried
plant samples were determined using inductively coupled plasma–mass spectrometry
(ICP-MS, NexION300D, PerkinElmer Inc., Shelton, CT, USA). To ensure the precision
of analyses, certified reference materials, namely mixed shrub shoots from Pb/Zn mine
tailings (GBW 07602, National Research Center for Certified Reference Materials, Beijing,
China), were employed. Good agreement was found between the certified values and our
technique (Table S2). Bioconcentration factor (BCF) values at the end of the experiment
were calculated using BCF = Atissues/Asoil [45], where Atissues (mg kg−1) represents the total
accumulation of heavy metals in tissues, and Asoil (mg kg−1) denotes the concentration
of heavy metals in the tailings. Translocation factor (TF) values were calculated using
TF = Aa/Ab [45], where Aa (mg kg−1) indicates the total accumulation of heavy metals
in the aboveground parts, and Ab (mg kg−1) represents the total accumulation of heavy
metals in the belowground parts.

2.7. Tailing Property Measurements

After air-drying, the tailing samples were sieved through a <2 mm mesh size to achieve
a homogenous mixture. Subsequently, the samples underwent extraction with 5 mL of
combined acids (65% HNO3 and 70% HClO4), followed by analysis of the total metals
(Pb, Zn, Cd, and Cu) using ICP-MS. The dichromate heating oxidation method was used
to measure the organic matter in the soil [46]. Using the alkaline diffusion approach, soil
hydrolytic N was determined [46]. A colorimetry technique was employed to measure the
soil available P after NaHCO3 extraction (Sinopharm Chemical Reagent Co., Ltd., Shanghai,
China) [46]. Flame photometry detection (AAS, ICE3500, Thermo Scientific, Waltham,
MA, USA) was conducted to determine soil available K following the extraction with 1 M
NH4OAc (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) [46]. The pH was
determined using an FE32 pH meter (Mettler Toledo Instruments Ltd., Shanghai, China)
with a 1:2.5 ratio (m:v) of tailings to distilled water.
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2.8. Statistical Analysis

Two comprehensive evaluation methods were applied to assess the phytoremediation
of willow clones for the two mining tailings. The TOPSIS (technique for order preference by
similarity to ideal solution) method is a method of ranking a limited number of evaluation
objects according to their proximity to the idealized target, which is to evaluate the relative
advantages and disadvantages of the existing objects. The comprehensive bioaccumulation
index (CBAI) was proposed as an integrated evaluation approach, combining plant biomass
and heavy metal concentrations [47]. Further details can be found in the Supplementary
Materials (Methods S3 and S4).

The statistical analyses were conducted using R 4.3.2. Two-way analysis of variance
was performed for all variables, with treatment and clones/species as the different factors.
The least significant difference test was used to compare the means post hoc at a significance
level of 0.05. Shapiro’s test and Levene’s test were used to evaluate the homoscedasticity
and normal distribution assumptions prior to the significance tests, respectively. In cases
where these assumptions were violated, logarithmic transformations were applied to ensure
a normal distribution. The results were standardized and subsequently analyzed using
OriginPro 2022 for principal component analysis (PCA). Data are presented as mean ±
standard error, with at least three replicates.

3. Results
3.1. Cutting Survival

The survival rate of the cuttings in the control group was 100% for all clones, whereas
for cuttings grown in tailings, it was significantly lower than the former (p < 0.05). Although
the different tailing treatments did not have a significant effect on the survival of cuttings
in this study, individual cuttings grown in the Pb/Zn tailings exhibited an average survival
rate of 28.93%, while those grown in Cu tailings demonstrated a slightly higher survival
rate of 31.98%. In addition, there was a significant difference in survival rates among the
clones (p < 0.05, Table S3). S. jiangsuensis ‘172’ exhibited the highest survival rate, with
71.40% and 85.70% of the cuttings surviving in the Pb/Zn and Cu tailings, respectively.
However, S. chaenomeloides ‘5’ had the lowest survival rates, with only 14.30% in both
the Pb/Zn and Cu tailings (Figure 1). Overall, S. chaenomeloides demonstrated the lowest
survival rates in both types of tailings, with only 19.07% and 22.64% survival observed for
the Pb/Zn and Cu tailings, respectively.
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3.2. Biomass

Following the experiment, it was found that both the treatment and the clone had a
considerable impact on the biomass of plants (Table S3). Compared to clones produced in
river sand, those grown in tailings typically had a lower aboveground biomass (Figure 2).
The aboveground biomass of clones growing in the Pb/Zn and Cu tailings was 15.9%
and 12.9% lower than that of the control group, respectively. However, the aboveground
biomass of S. matsudana ‘1’ and ‘14’, as well as S. chaenomeloides ‘3’ and ‘4’, exhibited a
biomass increase in the Pb/Zn tailings, while a similar trend was observed for S. integra
‘HY’ and S. matsudana ‘14’ and ‘19’ in the Cu tailings (Figure 2 and Table S4). Meanwhile,
the cuttings grown in the tailings showed varying aboveground biomass yields. S. nigra
‘72’, S. integra (except ‘CT’), S. matsudana ‘19’ and ‘34’, and S. chaenomeloides ‘2’ in particular
showed increased aboveground biomass production in the Cu tailings compared to the
Pb/Zn tailings (Figure 2 and Table S4). As a group, S. chaenomeloides showed a greater
sensitivity to the Cu tailings, while S. nigra and S. integra were more susceptible to the
Pb/Zn tailings. The aboveground biomass within the same tailings showed statistically
significant differences among the clones (p < 0.05). The highest aboveground biomass
was observed in S. chaenomeloides ‘4’ (Pb/Zn tailings) and S. matsudana ‘19’ (Cu tailings).
Overall, S. chaenomeloides exhibited the highest aboveground biomass in the control and
Pb/Zn tailings groups, whereas S. matsudana showed the greatest aboveground biomass in
the Cu tailings.
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The results indicated that the mean belowground biomass of the cuttings in the
control group was 0.71 g tree−1 (Figure 2). A significant increase in the belowground
biomass was observed when the cuttings were cultivated in the Cu tailings compared to
the control (p < 0.05), while a slight reduction was noted in the Pb/Zn tailings (Figure 2).
Between the two tailings, the cuttings’ biomass production differed noticeably. Particularly,
when growing in the Cu tailings, as opposed to the Pb/Zn tailings, S. jiangsuensis ‘172’,
S. nigra ‘72’, S. integra (except ‘CT’), S. matsudana, and S. chaenomeloides ‘2’ produced greater
belowground biomass (Figure 2 and Table S4). Furthermore, a significant variation was
observed among the clones within the same tailings (p < 0.05). Typically, S. chaenomeloides
exhibited a higher belowground biomass than the other species in the Pb/Zn tailings, with
S. chaenomeloides ‘4’ exhibiting the highest belowground biomass (Table S4). In the Cu
tailings, S. integra demonstrated a higher belowground biomass than the other species,
with S. integra ‘HY’ producing significantly greater amounts of belowground biomass
(1.88 g tree−1) than its counterparts (Table S4).

A significant difference was seen among treatments based on the belowground/
aboveground ratio results (p < 0.05, Table S3). The mean values of the belowground/
aboveground ratio ranged from 0.35 to 0.99 (control), from 0.37 to 1.03 (Pb/Zn tailings),
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and from 0.48 to 1.11 (Cu tailings). Compared with the control, the mean values for the
belowground/aboveground ratio increased significantly in the tailing treatments, especially
in the Cu tailings (0.85). Statistically significant differences were observed among the clones
in terms of belowground/aboveground ratio values within the same tailings.

3.3. Chlorophyll Concentration Index

The CCI values ranged from 16.13 to 23.93 (control), from 8.90 to 20.16 (Pb/Zn tailings),
and from 11.84 to 20.08 (Cu tailings) (Figure 3). Statistically significant differences were
also observed between the treatments and clones in terms of CCI values (p < 0.05, Table S3).
However, no statistically significant differences were found among all treatments for
S. jiangsuensis ‘172’, S. integra ‘HY’ and ‘CT’, S. matsudana ‘1’ and ‘19’, and S. chaenomeloides
‘2’ (Table S5). Compared to other species, S. chaenomeloides generally showed a higher CCI
value in the Pb/Zn and control tailings, while S. jiangsuensis ‘172’ displayed the greatest
value in the Cu tailings. S. nigra ‘72’, on the other hand, consistently exhibited lower CCI
values in all treatments. These findings imply that S. nigra ‘72’ responded poorly to the
environmental changes and was less robust than the native species.
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3.4. Accumulation and Translocation of Metals in the Cuttings

In principle, the concentrations of all the heavy metals were found to be higher in
the belowground parts compared to the aboveground parts of the cuttings cultivated in
the tailing treatments (Figure 4). Zn was found at higher quantities in the tissues of the
cuttings growing in the tailings than Pb, Cu, and Cd. The heavy metal concentrations in
the belowground parts were Zn > Pb > Cu > Cd (Pb/Zn tailings) and Zn > Cu > Pb > Cd
(Cu tailings) in that order (Figure 4). However, for the aboveground parts, the order was
Zn > Cu > Pb > Cd (Pb/Zn tailings) and Zn > Cu > Cd > Pb (Cu tailings) (Figure 4).
Additionally, the results showed that the four metals concentrations in all the cuttings’
tissues varied significantly depending on the treatments and clones (p < 0.05, Table S3).
The concentrations of Pb, Zn, and Cd in the clones cultivated in the Pb/Zn tailings were
generally higher compared to those cultivated in the Cu tailings (Figure 4).
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Figure 4. Heavy metal concentrations (mg kg−1) in aboveground and belowground parts of 14 Salix
clones following different treatments after 15 months.

Pb concentrations in the aboveground parts ranged from 5.3 to 30.0 mg kg−1 (Pb/Zn
tailings) and 2.0 to 4.7 mg kg−1 (Cu tailings) across the 14 clones. As shown in Figure 4, the
maximum mean Pb concentrations were observed in S. integra ‘YZB’ (30.0 mg kg−1, Pb/Zn
tailings) and S. matsudana ‘14’ (4.7 mg kg−1, Cu tailings). In contrast, the belowground
parts exhibited a range of Pb concentrations from 161.7 to 506.7 mg kg−1 (Pb/Zn tailings)
and from 9.3 to 37.3 mg kg−1 (Cu tailings). In the belowground parts, S. matsudana ‘1’ and
S. nigra ‘72’ exhibited a greater ability for Pb accumulation in the Pb/Zn and Cu tailings,
respectively. Generally, S. chaenomeloides ‘4’ grown in the Pb/Zn tailings showed the lowest
amounts of Pb in both the above- and belowground parts.

Figure 4 shows that the concentrations of Zn in the samples ranged from 205 to
1048 mg kg−1 (Pb/Zn tailings) and from 163 to 914 mg kg−1 (Cu tailings). Generally,
S. integra could accumulate much more Zn in their tissues in both types of tailings, except
for the belowground parts in the Cu tailings. Notably, the highest concentration in the
belowground parts was recorded in S. chaenomeloides ‘2’ in the Pb/Zn tailings and S. nigra
‘72’ in the Cu tailings.

The average Cu concentrations ranged from 12.6 to 33.7 mg kg−1 (aboveground, Pb/Zn
tailings), from 18.9 to 36.8 mg kg−1 (aboveground, Cu tailings), from 38.6 to 114.9 mg kg−1

(belowground, Pb/Zn tailings), and from 161.7 to 539.3 mg kg−1 (belowground, Cu tailings)
(Figure 4). S. jiangsuensis ‘172’ and S. matsudana ‘34’ exhibited a relatively low capacity for
Cu accumulation in their tissues, while S. integra ‘HY’ (Pb/Zn tailings) and S. chaenomeloides
‘2’ (Cu tailings) demonstrated higher levels of Cu concentrations in their aboveground
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parts; the highest Cu concentrations in the belowground parts were noted in S. matsudana
‘1’ (Pb/Zn tailings) and S. nigra ‘72’ (Cu tailings).

The average concentrations of Cd in the aboveground parts were 12.7 mg kg−1 and
3.5 mg kg−1 for all clones grown in the Pb/Zn and Cu tailings, respectively (Figure 4).
Based on the results, the lowest Cd concentrations in the aboveground parts were found in
S. matsudana ‘34’ (5.7 mg kg−1, Pb/Zn tailing) and S. chaenomeloides ‘5’ (0.23 mg kg−1, Cu
tailings). Meanwhile, the lowest Cd concentrations in the belowground parts were observed
in S. matsudana ‘34’ (15.2 mg kg−1, Pb/Zn tailings) and S. matsudana ‘19’ (3.1 mg kg−1,
Cu tailings). Generally, S. matsudana had the least efficient accumulation of Cd in the
Cu tailings. In the Cu tailing, S. chaenomeloides ‘2’ concentrated most Cd in its tissues.
Moreover, S. nigra ‘72’ and S. chaenomeloides ‘5’ exhibited the highest Cd concentrations
in their aboveground and belowground parts, with an average concentration of 24.9 and
52.0 mg kg−1, respectively, in the Pb/Zn tailing.

The BCF values for the samples are presented in Figure 5. The results indicated
that all four metals’ BCF values were less than 1, and the clones had a greater affinity
for Cd enrichment but a lower affinity for Pb enrichment. The findings show that these
values are significantly impacted by the type of treatment (p < 0.05, Table S3). The average
heavy metal BCF values in the Cu tailings were higher than those in the Pb/Zn tailings,
with the exception of Cu. The BCF values of the cuttings grown in the same tailing
were significantly influenced by the clones as well. Specifically, S. chaenomeloides ‘2’ and
S. integra ‘CT’ exhibited a higher accumulation of heavy metals in their organs within the
Pb/Zn tailing; while S. matsudana ‘34’ demonstrated lower efficiency in metal accumulation.
Among all the clones, except for Cd, S. nigra ‘72’ had the greatest BCF values for metals
when grown in the Cu tailings, while S. matsudana ‘19’ and S. matsudana ‘34’ showed lower
accumulation of heavy metals in their organs.
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Generally, the average TF values for Pb in the cuttings were below 0.2, especially in
the Pb/Zn tailings, where they were only 0.05. However, the cuttings exhibited relatively
higher TF values for Zn and Cd, especially in the Cu tailings (Figure 5). Furthermore, with
the exception of Cu, the TF values observed in cuttings grown in the Cu tailings were
higher than those found in the Pb/Zn tailings. Significant variations were noted among the
14 clones regarding their TF values for all metals present within a given type of tailing. The
lowest TF values for Pb, Zn, and Cu were observed in S. nigra ‘72’ grown in the Cu tailings.
Meanwhile, it was found that S. chaenomeloides ‘5’ exhibited poor translocation ability for
Zn and Cd from the belowground parts to the aboveground part in both tailings. As an
exception, S. integra ‘CT’ exhibited TF values greater than 1.0 and demonstrated the highest
TF values for Zn (1.232) and Cd (1.035) among the clones grown in the Cu tailing. S. integra
‘HY’ and S. integra ‘WSH’ also displayed higher Zn translocate efficiencies, with mean TF
values of 1.097 (‘HY’) and 1.106 (‘WSH’) in the Pb/Zn and Cu tailings, respectively.

3.5. PCA Analysis and Evaluation of Phytoremediation Potential

The total variance can be explained by three principal components, accounting for
85.33% of the variance. The first component, representing 47.65% of the total variance, ex-
hibited a positive correlation with the concentrations of Pb, Zn, and Cd and was negatively
associated with survival rate. PC2 accounted for 21.46% of the total variance and was posi-
tively associated with biomass and negatively linked with the aboveground concentration
of Cu (Figure 6). These results suggested that the survival rate and biomass of the plants
was reduced with an increase in the Zn, Pb, Cd, and Cu concentrations in the tissues under
the tailing conditions. The principal components clearly highlight the clones treated with
different tailings. The growth and heavy metal accumulation data for the Pb/Zn tailings
exhibit greater variability compared to those for the Cu tailings.
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Figure 6. Principal component analysis of growth and heavy metal concentration under different
tailing treatments. Bs: Biomass of aboveground; Br: Biomass of belowground; B: Biomass of all plant;
Pbs: Pb concentration of aboveground; Zns: Zn concentration of aboveground; Cus: Cu concentration
of aboveground; Cds: Cd concentration of aboveground; Pbr: Pb concentration of belowground; Znr:
Zn concentration of belowground; Cur: Cu concentration of belowground; Cdr: Cd concentration
of belowground.

S. integra ‘WSH’ had the highest values (0.862) in the Pb/Zn tailings of any family,
according to the CBAI index, while S. chaenomeloides ‘4’ and ‘5’ also showed somewhat
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higher values than the other families. In the Cu tailings, S. integra ‘HY’ had the highest
CBAI values (Table 3). According to the TOPSIS method, S. jiangsuensis ‘172’ had the largest
Ci (the degree of proximity) values in both tailings. Additionally, S. integra ‘WSH’, S. integra
‘CT’, and S. matsudana ‘1’ also had large Ci values that ranged from 0.443 to 0.496 in the
Pb/Zn tailings. Similarly, the Ci values of S. integra ‘HY’ were high in the Cu tailings
(Table 3).

Table 3. Evaluation of the phytoremediation potential of different clones.

Clones

TOPSIS CBAI

Pb/Zn Mine Tailing Cu Mine Tailing Pb/Zn Mine Tailing Cu Mine Tailing

Score Rank Score Rank Score Rank Score Rank

Salix jiangsuensis 172 0.4399 3 0.5004 1 0.2460 9 0.1034 12
Salix nigra 72 0.2896 13 0.4054 4 0.0866 11 0.3947 2
Salix integra HY 0.3113 11 0.4518 2 0.0121 14 1.0000 1
Salix integra CT 0.4638 2 0.3009 10 0.5356 5 0.0000 14
Salix integra WSH 0.4173 4 0.3541 5 0.8622 1 0.3721 3
Salix integra YZB 0.3854 6 0.3027 9 0.0805 13 0.2180 8
Salix matsudana 1 0.4725 1 0.2634 12 0.5310 6 0.2458 6
Salix matsudana 14 0.3677 7 0.3518 6 0.5535 4 0.2978 4
Salix matsudana 19 0.3023 12 0.3461 7 0.2163 10 0.2667 5
Salix matsudana 34 0.1806 14 0.3070 8 0.0859 12 0.0791 13
Salix chaenomeloides 2 0.3394 10 0.4254 3 0.3796 8 0.2435 7
Salix chaenomeloides 3 0.3463 9 0.2808 11 0.4915 7 0.1811 9
Salix chaenomeloides 4 0.4017 5 0.1904 14 0.7794 2 0.1758 10
Salix chaenomeloides 5 0.3625 8 0.2321 13 0.7832 3 0.1719 11

4. Discussion
4.1. Variation in the Survival Rate and Biomass Production

Numerous studies have consistently demonstrated that phytoremediation is not suit-
able for highly contaminated sites, such as mining areas, due to the higher concentrations
of heavy metals that can influence the survival rates and biomass yield [43]. Unsurprisingly,
cuttings cultivated in the tailings had significantly lower survival rates, with most clones
failing to exceed 40%. These findings demonstrate a discrepancy compared to field experi-
ment results [43]. A possible reason for this phenomenon could be that the concentrations of
heavy metals in our study’s mine tailings were significantly higher than those in their exper-
iment. Furthermore, the growth and tolerance capacity of the plants may also be influenced
by the diameter of the initial cuttings [48]. In our experiment, the presence of fine cuttings
with a diameter less than 1 cm could potentially impact the survival rates of the cuttings
in both tailings. However, surprisingly, the survival rates of S. jiangsuensis ‘172’ exceeded
70%, aligning with our initial predictions due to its manifestation of indigenous traits and
substantial heterotic effects, where hybrids typically outperform their parents, particularly
in terms of growth potential and yield [36]. This may also facilitate the initiation of plant
tolerance mechanisms by enhancing plant antioxidant activity [49]. Many studies have
also reported that S. jiangsuensis ‘172’ was resistant to the presence of pollutants in a pot
experiment [41]. Castiglione et al. [50] suggested that in heavily contaminated soil, when
the average plant survival rate reaches approximately 30%, it can be deemed promising
for accomplishing the actual objective. In brief, these findings suggest that S. jiangsuensis
‘172’ has a high tolerance capacity and would be a recommended candidate for future
phytoremediation projects in tailings with extremely high concentrations of heavy metals.
The other clones could be considered candidates for phytoremediation purposes in lower
and moderately contaminated environments.

In general, plant biomass serves as a reliable indicator for assessing the growth per-
formance of plants subjected to heavy metal stress [33]. In this study, the cuttings could
grow in the tailing treatments; however, a reduction in biomass was observed, except for
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belowground biomass in the Cu tailings. These symptoms are in line with other research
studies [26,36,51]. In this experiment, the heavy metal concentrations in both the tailings
exceeded the toxic threshold concentration for plants in soil [52]. Moreover, the concen-
trations of heavy metals in the cuttings significantly surpassed the phytotoxic threshold
concentrations for plants [53]. In our research, the aboveground part concentrations of
Pb (Pearson r = −0.338, p < 0.05, N = 42), Zn (Pearson r = −0.356, p < 0.05, N = 42), Cu
(Pearson r = −0.473, p < 0.01, N = 42), and Cd (Pearson r = −0.356, p < 0.05, N = 42) showed
a strong negative correlation with the biomass of the aboveground part. The biomass of the
belowground part also showed a significantly negative correlation with the concentration
of Pb in the aboveground part (Pearson r = −0.373, p < 0.05, N = 42). These findings could
potentially explain the reduced biomass production in the mine tailings. However, some
clones produced more biomass when grown in the tailings compared to in the control
group, suggesting that the surviving cuttings have efficient mechanisms to tolerate heavy
metals under the present experimental conditions. For example, most of the tested cuttings
allocated more resources to the belowground parts under stress conditions in this study,
and this modification served as a tolerance mechanism when grown in the tailings. On the
other hand, the 100% survival rate led to high plant density in the control group, resulting
in biomass production that was relatively smaller for some clones.

The current study demonstrated large variations in the biomass performances among
the species and clones, which corroborates with most previous findings on Salix clones
cultivated in contaminated environments [18,36,38,54]. In this study, the highest above-
ground biomass (2.34 g tree−1) and belowground biomass (1.99 g tree−1) in the Pb/Zn
tailings were produced by S. chaenomeloides ‘4’; these were approximately seven and four
times higher than the lowest aboveground and belowground biomass found in S. integra
‘HY’, respectively. However, S. chaenomeloides ‘4’ only exhibited 50% biomass production
in the Cu tailings compared to the Pb/Zn tailings, whereas the biomass of S. integra ‘HY’
significantly surpassed that of the other clones. The observed phenomenon may be due to
considerable heterogeneity in genotypic sensitivity to various heavy metals and tolerance to
excessive heavy metals, which is also influenced by environmental factors. In general, most
clones exhibited higher biomass production in the Cu tailings, which could be attributed
to the comparatively lower pollution levels and higher nitrogen content of the Cu tailings
compared to the Pb/Zn tailings. However, S. chaenomeloides ‘3’, ‘4’, and ‘5’ demonstrated
significantly smaller biomass in the Cu tailings than in the Pb/Zn tailings, suggesting their
heightened sensitivity towards Cu. Notably, S. jiangsuensis ‘172’ was unable to generate a
significant amount of biomass across the clones despite having very high survival rates.
Weih [55] highlighted that selecting plants based solely on biomass is an insufficient crite-
rion for phytoremediation projects, as it may be associated with inadequate resistance to
contaminants. Thus, S. jiangsuensis ‘172’ should be recommended for phytoremediation in
the southern regions of China.

4.2. Heavy Metals Accumulation in Willow Tissues

Numerous research studies have reported that willow clones possess high heavy
metal accumulation potentials [21,26,56–58]. In comparison with data from previous
studies, the concentrations of heavy metals in most of the tested cuttings were either
similar to or higher than those reported for other willow species [25,43,58]. One plausible
explanation for this is the extremely high contamination in our test mine tailings. Many
authors have emphasized that the data regarding the concentrations of heavy metals in
plant tissues found in different studies are hard to compare because of the different plant
species used, growth stages recorded, experimental conditions, and exposure durations,
all of which have a significant impact on the uptake and accumulation of heavy metals in
plant tissues [27,39]. Consequently, it is not unexpected that the concentrations of heavy
metals in the current study were comparatively lower than those reported in previous
hydroponic studies [38,40,59]. Despite the higher concentrations of heavy metals in the
tailings compared to the control treatment, the majority of clones in our experiments
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had relatively low BCF and TF values, suggesting that all cuttings in the current study
could only uptake and transport a limited quantity of metals from the tailings to the plant
tissues. The results of this study clearly demonstrate that the pH values in the Pb/Zn
and Cu tailings exceeded 7, indicating alkaline conditions. Previous research studies have
indicated that alkaline conditions may significantly limit the bioavailability of heavy metals
in soil [60]. Mendez and Maier [61] suggested that nutrient deficiencies could also influence
element availability in mining areas. In addition, the organic matter content in the tailings
was found to be significantly higher than that in the control in this study. Research has
demonstrated a negative correlation between the soil’s available heavy metal concentration
and its organic carbon content level [62]. These factors likely contribute to the relatively low
BCF and TF values observed for the Salix cuttings in our study. Furthermore, the alkaline
environment was found to be unsuitable for most plant development. Consequently, the
growth of plant roots was hindered under these adverse conditions, leading to a significant
impediment in the uptake of heavy metals by Salix. Additionally, it has been observed that
metals can interact antagonistically or synergistically [63], resulting in complex interactions
among different elements that can influence the accumulation and translocation of heavy
metals in plants [63]. According to our findings, all clones had lower heavy metal transfer
capabilities in the tailings with extremely high concentrations of heavy metals. This high
retention indicated that most test Salix clones might adopt an excluder strategy for tolerance,
which represents the important tolerance mechanism for phytoremediation processes [64].
The findings of this study also demonstrated that all clones could easily take up and
translocate Zn and Cd from the soil to aboveground parts, while translocating Pb from the
roots to the aboveground parts was limited. This tendency was noted by other researchers
as well [26,65].

Consistent with our findings, previous research has also observed significant variations
in heavy metal accumulation and distribution among Salix species or clones; this can be
attributed to their genetic variability in terms of metal accumulation capacity [34,36].
For example, the concentrations of heavy metals in S. chaenomeloides ‘2’ from the Pb/Zn
tailings was significantly higher compared to that of S. chaenomeloides ‘3’. These findings
revealed that genetic variables controlled the features of heavy metal accumulation in
willow plants. Additionally, we also found that the concentration of heavy metals in
the same clone varied significantly between the tailings. For instance, when cultivated
with the Cu tailings, S. nigra ‘72’ showed increased Zn accumulation in the roots. The
aforementioned results indicated that environmental factors affected the concentrations of
heavy metals in willow tissues.

4.3. Potential for Phytoremediation

The fact that Salix spp. is not a hyperaccumulator is widely acknowledged, making it
best suited for use in mildly or moderately contaminated soils and rarely in highly contam-
inated sites. The BCF and TF values were used to assess a plant’s capacity to accumulate
metals from soils and translocate these metals from the roots to the shoot, respectively.
The study also revealed that the tested willow exhibited low BCF and TF values, thereby
indicating its unsuitability as a phytoremediation candidate for sites with severe pollution.
However, the efficiency of phytoremediation can be influenced by other factors, such as
plant survival rate, biomass production, and heavy metal concentration. Despite being im-
portant indicators of phytoremediation, BCF and TF ignore plant biomass and survival [21].
In this study, two comprehensive evaluation methods combining plant growth and heavy
metal concentration were used to evaluate the phytoremediation potential of willow clones.
According to the TOPSIS method, S. jiangsuensis ‘172’ showed a higher Ci value (the de-
gree of proximity), while its CBAI value was relatively low, indicating that it had a high
survival rate and a relatively low capacity to accumulate heavy metals in its tissues in both
tailings. Therefore, it is recommended that this species is considered as a viable option
for mine tailing afforestation and ecological restoration. The future application of this
clone could involve increasing biomass per unit area through dense planting to facilitate
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the accumulation of heavy metals. Additionally, a short-cycle rotation (2 years) could
be implemented to gradually remove heavy metals from the soil. In our pot experiment,
S. integra accumulated relatively high concentrations of Zn and Cd in their aboveground
parts. Meanwhile, the surviving cuttings of some clones could produce more biomass, such
as S. integra ‘WSH’ (both tailings) and ‘HY’ (Cu tailing). However, lower survival rates
were observed in this species. Considering the Ci and CBAI values, S. integra ‘WSH’ and
‘HY’ demonstrated their potential for phytoextraction in severely contaminated Pb/Zn and
Cu tailings, respectively. This was consistent with what we found earlier [66]. The other
clones should not be recommended for phytoremediation projects in highly contaminated
areas, at least not until further research has been conducted to assess their suitability.

Compared to findings from previous studies [26,65], the average contents of heavy
metals in all the clones were generally lower, particularly in the aboveground parts due to
their limited biomass production. For instance, the average contents of aboveground parts
in the Pb/Zn tailings were from 0.005 to 0.029 mg tree−1 Pb, from 0.20 to 0.94 mg tree−1

Zn, from 0.012 to 0.036 mg tree−1 Cu, and from 0.006 to 0.022 mg tree−1 Cd; the average
contents in belowground parts were higher than those in the aboveground parts, except
for Zn in some clones (Tables S6 and S7). In the current research, biomass production
was reduced due to an imbalance of the nutrient elements, nutrient deficiency, and metal
toxicity. At the later stages of the experiment, several symptoms of toxicity were alleviated
through weekly applications of 0.2% ammonium nitrate spray. The diameter of the cuttings
used in this study, which is less than 1 cm, may potentially account for the limited biomass
observed in the tested plants. Previous research has indicated that thick cuttings (>1 cm
diameter) exhibit a greater biomass yield compared to fine cuttings (<1 cm diameter), and
there is a higher concentration of heavy metals in the aboveground section. Furthermore,
thick cuttings show improved phytoextraction and rhizofiltration efficiency [48]. Therefore,
it is recommended that thick cuttings (>1 cm diameter) should be used in future phy-
toremediation protocols for extremely high concentrations of heavy metals in the tailings.
Additionally, regular spraying with 0.2% ammonium nitrate should be considered. Mleczek
et al. [22] reported that S. alba could produce 17 t of fresh and 7 t of dry matter per ha
annually, with a density of 0.25 plant per m2. However, in heavily contaminated areas, the
survival rate and biomass production of willow would be lower than those in a normal
environment. Consequently, based on findings from this study and others, increasing
the willow plant density to up to 30,000 cuttings per ha could ensure optimal biomass
production. If the aboveground and belowground biomasses could reach approximately 25
and 10 g tree−1, respectively, in the first growing season while maintaining constant heavy
metal concentrations in their organs as described in this study, the heavy metal removal in
the aboveground part would comprise 10.5 g Pb per ha, 300 g Zn per ha, 15 g Cu per ha,
and 7.5 g Cd per ha in the Pb/Zn tailing. Simultaneously, 75 g Pb per ha, 210 g Zn per ha,
24 g Cu per ha, and 9 g Cd per ha were stored in the belowground part. In the Cu tailings,
the amounts of extracted heavy metals were 1.9 g Pb per ha, 225 g Zn per ha, 18 g Cu per
ha, and 2.6 g Cd per ha in the aboveground part, while they were 4.5 g Pb per ha, 150 g Zn
per ha, 75 g Cu per ha, and 1.8 g Cd per ha in the belowground part. Punshon and Dickin-
son [67] suggested that if Salix spp. has enough genetic variability, the metal resistance can
be regulated through acclimation. However, Beauchamp et al. [43] indicated that cuttings
from contaminated areas did not benefit from this advantage when used in contaminated
soil compared with cuttings collected from non-contaminated soils. Nevertheless, cuttings
from contaminated areas should be recommended for future phytoremediation projects to
increase their growth and survival.

5. Conclusions

In this study, all clones exhibited a large variation in heavy metal tolerance and
accumulation capacity. In the current research, S. jiangsuensis ‘172’ had a high survival rate
and a relatively low capacity to concentrate heavy metals in their tissues in both tailings.
Hence, this clone might have the potential to be used for phytostabilization programs
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in heavily Pb/Zn- and Cu-polluted tailings in southern China. This study also found
that the surviving cuttings of some clones could produce more biomass, such as S. integra
‘WSH’ (Pb/Zn tailing), S. integra ‘HY’, and ‘WSH’ (Cu tailing). However, these clones had
a low survival rate in mine tailings with extremely high concentrations of heavy metals.
Therefore, these clones could only fulfill the purpose of phytoremediation in moderate
Pb/Zn or Cu tailings. In principle, all clones could easily take up and translocate Zn and
Cd from the tailings to the aboveground parts, especially S. integra, while translocating Pb
from the roots to the aboveground parts was limited. As stated above, these results could
provide more complete information for phytoremediation potential and growth response
using the stem cuttings of different clones cultivated directly in Pb/Zn and Cu tailings with
extremely adverse environments. This study could also help in conducting simpler and
low-cost phytoremediation methods for highly contaminated environments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f15020257/s1, Table S1. Comprehensive pollution index of heavy
metals in mining tailings; Table S2. The recovery data for elemental analysis using inductively
coupled plasma mass spectrometry; Table S3. Two-ANOVA of biomass, survival rate, CCI, and
heavy metal concentration with treatment and clones; Table S4. Cutting biomass (g tree−1) and ratio
of belowground/aboveground of 14 Salix clones in different treatments after 15 months; Table S5.
Chlorophyll concentration index (CCI) of leaves of 14 Salix clones in different treatments after
15 months; Table S6 Average heavy metal contents in aboveground parts of 14 Salix clones exposed to
Pb/Zn tailings and Cu tailings (mg tree−1); Table S7 Average heavy metal contents in belowground
parts of 14 Salix clones exposed to Pb/Zn tailings and Cu tailings (mg tree−1).
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