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Abstract: In this study, we used Spanish National Forest Inventory (SNFI) data, Sentinel-2 imagery
and ancillary data to develop models that estimate forest variables for major commercial timber plan-
tations in northern Spain. We carried out the analysis in two stages. In the first stage, we considered
plots with and without sub-meter geolocation, three pre-processing levels for the Sentinel-2 images
and two machine learning algorithms. In most cases, geometrically, radiometrically, atmospherically
and topographically (L2A-ATC) corrected images and the random forest algorithm provided the
best results, with topographic correction producing a greater gain in model accuracy as the average
slope of the plots increased. Our results did not show any clear impact of the geolocation accuracy of
SNFI plots on results, suggesting that the usual geolocation accuracy of SNFI plots is adequate for
developing forest models with data obtained from passive sensors. In the second stage, we used all
plots together with L2A-ATC-corrected images to select five different groups of predictor variables
in a cumulative process to determine the influence of each group of variables in the final RF model
predictions. Yield variables produced the best fits, with R2 ranging from 0.39 to 0.46 (RMSE% ranged
from 44.6% to 61.9%). Although the Sentinel-2-based estimates obtained in this research are less
precise than those previously obtained with Airborne Laser Scanning (ALS) data for the same species
and region, they are unbiased (Bias% was always below 1%). Therefore, accurate estimates for one
hectare are expected, as they are obtained by averaging the values of 100 pixels (model resolution of
10 m pixel−1) with an expected error compensation. Moreover, the use of these models will overcome
the temporal resolution problem associated with the previous ALS-based models and will enable
annual updates of forest timber resource estimates to be obtained.

Keywords: remote sensing; optical sensor; national forest inventory; machine learning techniques;
volume; biomass

1. Introduction

The role of forest plantations in helping to tackle many of the great challenges of
our time is increasingly recognized, as forests provide goods and services, generate jobs,
sustain incomes and act as a source of food and fuel [1]. Moreover, new value-added
products obtained from these forest resources (e.g., lignocellulosic biofuels, cellulose-based
fibers such as viscose, and the multitude of valuable substances obtained from forest
residues in biorefineries) indicate the increasing importance of forest plantations to society
as alternative renewable sources for producing bioenergy, biochemicals and biomaterials [2].
Northern Spain (which encompasses the regions of Galicia, Asturias, Cantabria and the
Basque Country) is one of the most productive forest areas in Europe and is covered by
extensive plantations of maritime pine, radiata pine and Tasmanian blue gum. Thus, in
the period 2005–2019, the average harvested volume of the three cited species reached
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9,700,505 m3 year−1, which represented 89.9% of the total volume harvested annually
(TVHA) in the four regions and 63.3% of the TVHA in the whole of Spain [3]. These data
highlight the great socioeconomic dimension of the forest plantations, which also provide
other important ecosystem services, including wildlife refuge provision, climate change
mitigation and hydrological regulation. Quantification of forest variables, particularly
current timber stocks (in terms of volume, biomass or carbon), and of their distribution
and temporal variation over the territory, is therefore essential to facilitate planning for
landowners, enterprises, forest managers and researchers.

Evaluation of forest resources has traditionally been based on measurement of the
diameter at breast height and total height of the trees in numerous plots (direct method),
and remains to be the most common method for estimating forest stocks [4]. Although this
method is accurate, it is expensive, time-consuming and presents operational problems as
it can only be applied to small areas [5]. However, the plot-level data can also be used as
“training data” to develop forest models based on variables determined by remote sensing
(indirect method) [6].

The combined use of public databases (e.g., the National Forest Inventory, NFI) and
the semi-automatic capture of state variables by various remote sensing techniques has
enabled these problems to be overcome and forest models to be developed without the need
for fieldwork [7]. In fact, timber stock quantification is currently one of the most common
applications of remote sensing (RS) and thus supports sustainable forest management, as
RS provides reliable data and overcomes the two aforementioned limitations of traditional
methods (data scarcity and operational problems), providing estimates even in areas not
previously sampled [8].

Depending on whether the energy to which the sensors respond is internal or external
to the system, remote sensing can be classified into two groups: (i) active and (ii) passive. In
the first group, the sensor emits energy and then detects and measures the energy reflected
from the target, while in the second, the sensor measures the external solar energy reflected
from the Earth’s surface (surface reflectance or reflectance) [9] using optical multispectral
or hyperspectral sensors. Airborne Laser Scanning (ALS) (also referred to as LiDAR: Light
Detection and Ranging) and, to a lesser extent, RADAR (Radio Detection and Ranging)
are the active sensing methods most commonly used for forestry applications. Active
sensors can penetrate the forest canopy and do not depend on weather, cloud or lighting
conditions [10]. As a result of their greater accuracy and higher spatial resolution, these
types of sensors are frequently used to study the vertical structure of forests [11,12] and
timber volume or biomass (e.g., [13,14]). However, they provide predictions with low
temporal resolution. Since 2008, Spain has had available a national ALS coverage compiled
by the PNOA-LiDAR project of the Instituto Geográfico Nacional (IGN) [15]. Although
this database is very valuable for forestry purposes, it has several drawbacks: (i) low
temporal resolution and (ii) different data acquisition depending on the region. Although
the temporal resolution of the ALS data is officially 5 years, delays often occur, leading
to intervals of up to 8 years in some regions (e.g., Asturias 1st coverage 2012 and 2nd in
2020). With such long intervals, forest stock estimation quickly becomes out of date because
the species used are fast growing and also because of the occurrence of abiotic/biotic
damage, forest fires and forestry management actions (clearcutting or thinning). Different
rates of data acquisition in different regions also generate problems associated with lack of
harmonization when building models for several nearby regions [14].

These two drawbacks of ALS data can be overcome by using passively, remotely
sensed data with very high temporal resolution. Although data from passive sensors
are limited by cloud cover, the short revisit period of satellites increasingly facilitates
production of cloud-free mosaics, even within short periods of time [16].

The free availability of remotely sensed data (e.g., Landsat, MODIS or Sentinel) has
led to a great increase in the use of this type of data in the last decade for estimating several
forest variables such as growing stock volume [4,17], biomass [18,19], forest cover [16,20]
and forest changes [21]. The Sentinel-2A and Sentinel-2B satellites, launched by the Euro-
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pean Space Agency (ESA) through its Copernicus program in 2015 (S2A) and 2017 (S2B),
have a temporal resolution of five days, and the imagery includes 13 spectral bands with
a spatial resolution ranging from 10, 20 and 60 m/pixel depending on the band [22]. The
high levels of temporal and spatial resolution have enabled estimation of forest variables
with sufficient spatial detail for forest inventories and sustainable forest management
purposes [17] and have made these images a popular source of remotely sensed data for
forestry research in recent years [23].

Public databases such as National Forest Inventories (NFIs) include information about
key forest variables (structure, growth and yield) and provide the field data necessary to
construct wall-to-wall spatial models to predict forest variables using remote sensing data
as independent variables. However, the major problems associated with the combined use
of NFI and remotely sensed data are the temporal mismatches and the low positioning
accuracy of the NFI field plots that sometimes occur. The first is not a problem when using
optical data from Sentinel-2, Landsat-8 or MODIS because of the high temporal resolution of
these sensors. However, the second has been recognized to have important effects on forest
variable estimation, mainly when dealing with LiDAR data [24]. This has led researchers
to adopt different approaches in an attempt to mitigate the effects (e.g., [4,14,25]).

Both parametric and nonparametric models have frequently been used to derive forest
stock variables from remotely sensed data (e.g., [18,26]). The main advantages of para-
metric linear models are their simplicity and clarity, while the main drawbacks are the
probability of selecting highly correlated predictors with little physical justification and
the nonfulfilment of the assumptions of normality, homoscedasticity, independence and
linearity [27]. Unlike linear models, machine learning algorithms can learn highly complex
nonlinear relationships, integrate multiple factors and thus obtain better simulation re-
sults [10]. However, the resulting models are usually complex, and the role of the variables
selected from the models may be difficult to understand [28].

In this study, we evaluated the use of multispectral Sentinel-2 imaginary to solve
the problem of low temporality in previous models obtained from ALS data for the same
species in northern Spain. The main objective of this study was to generate, for major
commercial timber plantations in northern Spain, a high-resolution raster database with
information about key forest variables based on Sentinel-2 images. To fulfil the main
objective, the specific objectives were as follows: (i) generation of a high-resolution raster
database including the independent variables considered in this study; (ii) testing the effect
on predictions of implementing different image correction levels and/or plot geolocation
accuracy and by using different categories of independent variables; (iii) selection of the
best empirical model by comparing two well-known nonparametric machine learning
regression techniques; and (iv) use of the best approach to generate a high-resolution raster
database including key forest variables.

2. Materials and Methods
2.1. Study Area

This study was conducted in the four most productive forest regions in Spain (Galicia,
Asturias, Cantabria and the Basque Country), which cover a total area of 52,821.44 km2.
Most of this area is included in the European Atlantic Bio-Geographical Region [29]
(Figure 1), which is characterized by mild temperatures (mean annual temperatures vary-
ing between 11.5 ◦C and 14.5 ◦C) and precipitation that is quite uniformly distributed
throughout the year and is often more than 1000 mm per year [30]. These favorable climatic
conditions make this area very important for forestry in Spain. Forests occupy an area
of 25,158 km2 [31] in the study region, representing 47.6% of the total surface area. The
landscape is complex, and the different combinations of topographic variables and land-
form strongly influence the type and vigor of the vegetation communities. Considering the
area occupied, Eucalyptus globulus is the dominant forest species (22.5%), followed by Pinus
pinaster (20.2%), Quercus robur (15.5%), Quercus pyrenaica (8%), Castanea sativa (8%), Pinus
radiata (7.5%) and Fagus sylvatica (5.7%) [32].
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Figure 1. Overview of (a) location of the study area including the Spanish National Forest Inventory
plots used in this study, (b) Sentinel-2 granules of the study area, and (c) European bio-geographical
regions in northern Spain.

2.2. Data Collection and Pre-Processing

Four different types of data were used to develop the wall-to-wall remote sensed-based
forest models: (i) field data; (ii) remotely sensed data; (iii) terrain data; and (iv) climatic data.

2.2.1. Field Data

The field plot data used in this study were obtained from the Spanish National Forest
Inventory (SNFI) conducted by the Spanish Ministry of Agriculture, Fishing and Food [32].
The SNFI operates on a ten-year cycle, except for more productive forest species in north-
ern Spain, for which a five-year cycle is used. We used the data from the last update
of this inventory (SNFI 4.5), which was conducted in 2018 for the three most produc-
tive forest species in the study region: Tasmanian blue gum (E. globulus), maritime pine
(P. pinaster) and radiata pine (P. radiata). In this inventory, the sampling plots are located at
the intersections of a 1 × 1 km UTM grid comprising four concentric subplots of radius of
5, 10, 15 and 25 m, with a minimum diameter at 1.3 m aboveground level and thresholds of
75, 125, 225 and 425 mm, respectively [33].

Although the SNFI initially did not provide accurate coordinates, new remote sensing
techniques have demonstrated the need for accurate coordinates [34] when using SNFI
data to develop wall-to-wall forest models. The plot positioning of the fourth SNFI has
an expected average theoretical accuracy of approximately 3–5 m [35], although the er-
rors will actually be much greater in practice [14]. This led to the SNFI to capture new
coordinates with errors less than 1 m in 73.36% of the plots in last remeasurement in 2018
(SNFI 4.5), making it easier to combine the field plot data with the information provided
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by remote sensing systems [36]. We therefore had available plots with low and high
geolocation accuracy.

Plots of the three planted species of interest were established in pure stands (basal area
80% of the total basal area within the plot). Following this criterion, a total of 1471 plots
within the study area were available for analysis. Among these plots, 589 were dominated
by E. globulus, 474 by P. pinaster and 408 by P. radiata. Forest state variables such as the num-
ber of stems per hectare (N), basal area (G), dominant height (H0), total over bark volume
(TV) and aboveground biomass (AGB) were calculated from tree variable measurements
and by using appropriate expansion factors. Stand-level species-specific allometric models
developed for the same ecoregion by [37] were used to estimate aboveground biomass
per plot. Table 1 summarizes the descriptive statistics of the stand-related yield variables
considered for the three forest species in the study area.

Table 1. Descriptive statistics of the dependent variables analyzed in this study (number of stems per
hectare, N; basal area, G; dominant height, H0; total over bark volume, TV; and total aboveground
biomass, AGB) extracted from the SNFI-4.5 plots where dominant species basal area was equal to or
greater than 80% of the total basal area.

Species No.
Plots Forest Variable

Descriptive Statistic

Mean Min. Max. Std.

E. globulus 589

N (stems ha−1) 833.83 10.19 2695.02 499.93
G (m2 ha−1) 18.30 0.44 52.25 0.44

H0 (m) 21.43 6.70 43.55 7.26
TV (m3 ha−1) 148.42 0.68 522.67 118.14

AGB (Mg ha−1) 99.44 0.98 371.55 81.68

P. pinaster 474

N (stems ha−1) 574.60 10.19 3176.03 439.15
G (m2 ha−1) 22.60 0.42 55.73 13.70

H0 (m) 16.67 3.40 31.78 6.34
TV (m3 ha−1) 164.05 0.88 460.72 119.37

AGB (Mg ha−1) 92.26 0.80 298.64 68.25

P. radiata 408

N (stems ha−1) 453.66 25.46 1773.48 294.07
G (m2 ha−1) 27.82 0.67 66.62 13.54

H0 (m) 22.55 5.70 39.55 6.28
TV (m3 ha−1) 246.23 2.25 699.31 147.64

AGB (Mg ha−1) 127.43 1.59 356.93 75.38

The distribution of the species under study and classification of vegetation types were
determined using the Spanish Forest Map (Figure 1) (scale 1:25,000, minimum mapping
unit of 1 ha), developed in coordination with SNFI-4.5.

2.2.2. Sentinel-2 Remote Sensing Data

We used freely available multispectral Sentinel-2 satellite (two twin-polar orbiting
satellites) images, downloaded from the Copernicus Open Access Hub (https://dataspace.
copernicus.eu/, accessed on 21 December 2023). These images were subjected to several
corrections, and different spectral bands, indices and texture features were selected as
independent remotely sensed variables for the present study (see Figure 2 for details of
the workflow).

Image Pre-Processing Levels and Spectral Bands

Sentinel-2 data are available in different processed forms. The images we used were
obtained in Level-1C product format (TOA, Top-Of-Atmosphere reflectance in cartographic
geometry) in UTM/WGS84 projection and with less than 10% cloud cover. The Level-1C
processing includes geometric corrections, radiometric processing and mask generation.
After implementing atmospheric and topographic corrections with the Sen2Cor 2.8 tool [38],
the Level-1C images were converted to Level-2A Bottom-Of-Atmosphere (BOA) reflectance

https://dataspace.copernicus.eu/
https://dataspace.copernicus.eu/
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images. To implement the corrections with Sen2Cor 2.8 tool, we used a digital elevation
model (DEM) of 5 m of spatial resolution, developed in Spain by the National Center for
Geographic Information (CNIG). The study area includes mountainous areas with sloping
terrain, and topographic corrections of images may therefore play an important role. In
this case, we used a bidirectional reflectance distribution function (BRDF) correction for
vegetated mountainous with the recommended standard by ESA [39]. This correction
is not available to download in the official ESA repository and must be generated by
users. We therefore considered three pre-processing levels for the Sentinel images: (i) level
L1C, scenes with geometric and radiometric corrections; (ii) level L2A-AC, scenes with
geometric, radiometric and atmospheric corrections; and (iii) level L2A-ATC, scenes with
geometric, radiometric, atmospheric and topographic corrections (for more information
about Sentinel product types, see https://sentinels.copernicus.eu/web/sentinel/technical-
guides/sentinel-2-msi/products-algorithms/, accessed on 21 December 2023, and [40]).
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On the other hand, the Sentinel-2 Level-2A product enables masking different types
of pixels at 20 and 60 m resolution by merging the information obtained from cirrus
cloud detection and cloud shadow detection. For this study, we only used the pix-
els classified as vegetation (scene classification label = 4; more information available
in https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/level-
2a/algorithm-overview/, accessed on 21 December 2023).

The satellite imagery was acquired between 14 June and 27 August 2018 (i.e., the same
year that the field sampling was carried out), with fifteen tiles being necessary to cover
the region of interest in northern Spain. A brief description of the images used is given in
Table 2.

https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/products-algorithms/
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/products-algorithms/
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm-overview/
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm-overview/
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Table 2. Acquisition dates and solar angles of fifteen Sentinel-2 scenes.

Satellite/Granule Acquisition Date Solar Zenith (◦) Solar Azimuth (◦)

S2A/29TMH 11 August 2018 30.86 148.82
S2A/29TNG 19 June 2018 22.94 138.83
S2A/29TNH 11 August 2018 30.42 150.94
S2A/29TNJ 11 August 2018 31.22 151.58
S2A/29TPG 19 June 2018 22.36 141.25
S2B/29TPH 14 June 2018 23.10 143.23
S2B/29TPJ 24 June 2018 23.95 143.16
S2B/29TQH 24 June 2018 22.67 144.43
S2B/29TQJ 24 June 2018 23.41 145.61
S2A/30TUN 5 August 2018 29.46 146.64
S2A/30TUP 5 August 2018 30.25 147.34
S2A/30TVN 5 August 2018 29.00 148.81
S2A/30TVP 5 August 2018 29.80 149.51
S2B/30TWN 27 August 2018 35.52 153.22
S2B/30TWP 27 August 2018 36.34 153.70

All bands with 10 and 20 m spatial resolution were selected for inclusion in the
classification procedure, but the spatial resolution of the 20 m bands was later increased to
10 m by using the nearest neighbor resampling method (Table 3).

Table 3. Description of the ten Sentinel-2 bands used in this study.

Band Symbol Spectral Region Wavelength (µm) Spatial
Resolution (m)

Band 2 B2 Blue 0.46–0.52 10
Band 3 B3 Green 0.54–0.58 10
Band 4 B4 Red 0.65–0.68 10
Band 5 B5 Red-Edge-1 (RE1) 0.70–0.71 20
Band 6 B6 Red-Edge-2 (RE2) 0.73–0.75 20
Band 7 B7 Red-Edge-3 (RE3) 0.76–0.78 20
Band 8 B8 Near-Infrared (NIR) 0.78–0.90 10
Band 8A B8A Narrow NIR (nNIR) 0.85–0.87 20
Band 11 B11 Shortwave infrared (SWIR-1) 1.56–1.65 20
Band 12 B12 Shortwave infrared (SWIR-2) 2.10–2.28 20

Spectral Indices

Spectral indices are simple numerical indicators that reduce multispectral (two or
more spectral bands) data to a single variable for predicting and assessing vegetation
characteristics, which is why they are also known as vegetation indices [41]. The high
spectral resolution of Sentinel-2 imagery enables extraction of different indices from the
spectral bands. Thus, 19 spectral indices were derived from the Sentinel-2 bands and the
resultant quality scene classification band for each Sentinel-2 scene. These spectral indices
are shown in Table 4, and the formulation used can be consulted in Supplementary Material
(Table S1).

Texture Variables

Textural variables are used to try to explain different relationships between object
pixel and neighboring pixels, although the results are influenced by window size and
directions [42]. If the window size is small, the differences within the kernel can often be
exaggerated, increasing the noise content in the texture image. With a larger window size,
the sample size increases, thus smoothing the textural variation and leading to relevant
information about the texture being overlooked [43]. Different authors have tested different
window sizes and directions (e.g., [42,44]). Window sizes of 7 × 7 or less and directions of
90 degrees have been found to be successful, as they enable the differences between the



Forests 2024, 15, 99 8 of 30

pixels occupied by trees and the ground to be captured while minimizing noise [45]. We
used an optimized window size of a kernel 7 × 7 m to calculate 10 textural features derived
from the derived from the Normalized Difference Vegetation Index (NDVI) using the
Grey Level Co-occurrence Matrix (GLCM) texture extraction method [46] in the Sentinels
Application Platform 9.0.0 (SNAP) software, which can be found at https://step.esa.int/
main/download/snap-download/, accessed on 21 December 2023. The use of texture
variables derived from spectral data has yielded satisfactory results in forest variables
estimation (e.g., [44,47,48]).

Table 4. Characteristics considered as candidate independent variables of the forest models.

Group Variable Name

Spectral bands
Band 2—Blue (B2), Band 3—Green (B3), Band 4—Red (B4), Band 5—Vegetation Red-Edge-1 (B5), Band
6—Vegetation Red-Edge-2 (B6), Band 7—Vegetation Red-Edge-3 (B7), Band 8—NIR (B8), Band 8A—Narrow
NIR (B8A), Band 11—SWIR-1 (B11), Band 12—SWIR-2 (B12).

Spectral indices

Anthocyanin Reflectance Index (ARI), Chlorophyll Red-Edge (CRE), Enhanced Vegetation Index (EVI),
Enhanced Vegetation Index 2 (EVI2), Green Normalized Difference Vegetation Index (GNDVI), Modified
Anthocyanin Reflectance Index (MARI), Modified Chlorophyll Absorption in Reflectance Index (MCARI),
Modified Soil Adjusted Vegetation Index (MSAVI), Modified Soil Adjusted Vegetation Index (MSI),
Normalized Burn Ratio (NBR), Normalized Burn Ratio 2 (NBR2), Normalized Difference Moisture Index
(NDMI), Normalized Difference Vegetation Index (NDVI), Pigment-Specific Simple Ratio (PSSR), Soil
Adjusted Vegetation Index (SAVI), Tasseled Cap Angle (TCA), Tasseled Cap Brightness (TCB), Tasseled Cap
Greenness (TCG), Tasseled Cap Wetness (TCW).

Texture
Angular Second Moment (SEC), Contrast (CON), Correlation (COR), Dissimilarity (DIS), Energy (ENE),
Entropy (ENT), Homogeneity (HOM), Max (MAX), Mean (MEN), Standard Deviation (STD).

Terrain
Aspect (ASP), Aspect/Slope Ratio (ASR), Curvature (CU), Elevation (ELV), Heat Load Index (HLI), Plan
Curvature (PLC), Profile curvature (PFC), Slope (SLP), Terrain Shape Index (TSI), Wetness Index (WI).

Climatic
Average Temperature (TM), Maximum Temperature (TMAX), Minimum Temperature (TMIN), Precipitation
(PT), Radiation (RA).

Finally, as result of the Sentinel-2 image information extraction process, we recorded
39 layers (10 spectral bands + 19 spectral indices + 10 texture features) for each Sentinel-2
scene (Table 4). As previously commented, these 39 layers were available at three pre-
processing levels: (i) level L1C (scenes with geometric and radiometric correction); (ii) level
L2A-AC (scenes with geometric, radiometric and atmospheric corrections); and (iii) level
L2A-ATC (scenes with geometric, radiometric, atmospheric and topographic corrections).

2.2.3. Ancillary Data

Two types of auxiliary variables were considered in this study: terrain and climatic variables.

Terrain Variables

To support the terrain analysis, a digital elevation model (DEM) of spatial resolution
5 m, developed by the Spanish National Center for Geographic Information (CNIG), was
obtained. This model is available for free download at http://centrodedescargas.cnig.es/
CentroDescargas/, accessed on 21 December 2023. We derived 10 terrain variables from the
DEM of the CNIG as the average value of pixels inside each sample plot (see Table 4). This
was resampled to 10 m/pixel resolution using the cubic convolution resampling method.
Terrain variables are important and influence trees distribution, growth and yield [49],
which is why we also included these variables with the aim of assessing their contribution
for improving predictions of forest variables. The variables were generated using ArcGIS
10.8 software [50], which was selected on the basis of its wide use in previous studies
(e.g., [18]).

https://step.esa.int/main/download/snap-download/
https://step.esa.int/main/download/snap-download/
http://centrodedescargas.cnig.es/CentroDescargas/
http://centrodedescargas.cnig.es/CentroDescargas/
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Climatic Variables

Five climate variables were obtained for each pixel of 200 m spatial resolution (Table 4)
from the Digital Climatic Atlas of the Iberian Peninsula [51]. This atlas is published on the
internet at https://opengis.grumets.cat/wms/iberia/index.htm, accessed on 21 December
2023. The variables were resampled to 10 m/pixel using the nearest neighbor resampling
method applied here. Solar radiation, temperature and precipitation variables drive plant
growth and water availability in forest ecosystems. It is therefore reasonable to use the
climatic features as independent variables when building the models. Moreover, within the
framework of uncertain global climate change, production of different forest ecosystems
may vary in the coming decades. The inclusion of climatic variables as independent
variables in the models may enable comparison of different estimates obtained in the future.

2.3. Data Analysis, Model Fitting and Evaluation
2.3.1. Data Analysis

As the final result of the “Data collection and pre-processing” stage of this study,
we had available a set of 54 variables (grouped in five groups) as candidate independent
variables to be included in the models for predicting forest variables for three major
commercial timber plantations in northern Spain. Data analysis was accomplished in two
different phases (see Figure 2).

Analysis in Phase 1

This phase consisted of outlier analysis and subsequent selection of the best option
from among the different levels of three qualitative factors: image correction, geolocation
accuracy and algorithm fitting. The first step was the outlier detection caused by various
factors, such as sensor errors, atmospheric interference, cloud cover, shadows, or land
cover changes, and data debugging process, which consisted of the following sub-steps for
each forest species: (i) applying the vegetation classification mask derived from Sentinel-2
Level-2A product; (ii) fitting a multilinear model to the dependent variable (TV) with the
spectral bands as independent variables (10 variables); (iii) use of the stepwise regression
method to eliminate the independent variables (of the 10 considered) that do not contribute
to the model, (iv) fitting a multilinear model to the dependent variable (TV) with the
remaining independent variables, and (v) plotting studentized residuals against leverage
to detect outliers and/or observations with high leverage and extract these outliers to
debug the database. To carry out this process, we used the R library, Tools for Building OLS
Regression Models (olsrr) in R 4.0 statistical software (https://cran.r-project.org/, accessed
on 21 December 2023). We used TV as a dependent variable in phase 1 of the analysis as it
is usually the most important variable from the point of view of estimating forest resources.

After the data debugging process, a database was generated for each forest species
(E. globulus, P. pinaster and P. radiata) considering three different levels of image processing
(L1C, L2A-AC and L2A-ATC), two levels of plot geolocation accuracy (all plots and only
sub-meter geolocation plots). This database was fitted to total over bark volume (TV)
using two different algorithms, Random Forest (RF) and Multivariate Adaptive Regression
Splines (MARS), with the spectral bands as independent variables. We used the total over
bark volume (TV) as a dependent variable (it is currently the most important forest yield
variable) with the sole aim of choosing the best alternative.

Separate one-way analysis of variance (ANOVA) was performed for the TV response
variable, to test the effect of the different factors considered (image correction, plot geoloca-
tion accuracy and fitting algorithm), regardless of the species. Tukey’s honestly significant
difference (HSD) multiple range test was used to determine homogeneous groups according
to the similarity of the root mean square error (RMSE).

Analysis in Phase 2

After selecting the best image correction, geolocation accuracy and fitting techniques,
we proceeded to the second phase of the data analysis (see Figure 2). This consisted of

https://opengis.grumets.cat/wms/iberia/index.htm
https://cran.r-project.org/
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selecting five different groups of predictor variables in a cumulative process to determine
the influence or importance of each group of variables in the final prediction. The following
groups of predictor variables were considered:

1. Spectral bands.
2. Spectral bands + spectral indices.
3. Spectral bands + spectral indices + texture variables.
4. Spectral bands + spectral indices + texture variables + terrain variables.
5. Spectral bands + spectral indices + texture variables + terrain variables + climatic

variables.

We also performed ANOVA for each forest response variable (N, G, H0, TV and AGB)
and forest species, in order to test the contribution of each of the five different groups of
predictors to the response variable. Tukey’s HSD multiple range test was used to determine
homogeneous groups according to the similarity of the RMSE.

2.3.2. Modelling Techniques

In the past, quantitative predictions of most forest variables by means of remote sens-
ing have involved traditional parametric regression techniques (e.g., [52–54]). However,
this may not be suitable for analysis involving a potentially large number of predictors
with complex interactions [55], as when dealing with remote sensing data. In the last few
decades, the popularity of nonparametric methods has increased greatly for several reasons:
(i) the speed and ease of implementation; (ii) the absence of restrictive assumptions; and
(iii) the ability of some methods to include categorical dependent and (or) independent vari-
ables [54]. Among the numerous nonparametric techniques, we selected two widely used
techniques for comparison: Random Forest and Multivariate Adaptive Regression Splines.

Random Forest (RF) regression techniques, first proposed by [56], are nonparametric
techniques consisting of an ensemble of decision trees. This algorithm can be used for classi-
fication and regression and has been widely used in this type of research (e.g., [10,54,57–59]).
In this technique, different independent variables, from the total set, are randomly selected
to developed numerous decision trees. With randomized sampling, the accuracy and
stability are improved relative to a single decision tree approach [60]. When RF is used
in regression, the final value for each sample is given by the weighted average obtained
from the estimates of individual trees [56]. The user can select the number of stems and the
independent variables (predictors) used to configure the algorithm. This nonparametric
approach is not greatly influenced by the number of input data or the multicollinearity of
the data [61].

Multivariate Adaptive Regression Splines (MARS), a well-known nonparametric
technique first proposed by [62], provides very good results for estimating forest variables
from remote sensing data (e.g., [26,63,64]). MARS enables modelling a target variable
based on multiple predictor variables using splines. A spline is a curve than can be fixed
at different points or knots, where the relationship between the target variable and the
independent variables changes. It thus generates piece-wise linear models in the distinct
intervals of the predictor variables. MARS finds the end points of these intervals in
two steps, by first overfitting the model with more knots than required and then removing
the knots that contribute least to the overall model fit. Hence, regression splines are
continuous smooth functions that fit the distribution of the data. However, MARS has
various drawbacks: its functions tend to overfit with input data, and parameter choice is
complicated and may require several iterations to find the best combination [55].

2.3.3. Model Assessment and Evaluation

Repeated 10-fold cross-validation was used to evaluate the models. The data are first
split into k folds (groups) of the same size. One group is then selected as test data and
the k-1 fold is used to adjust the model, and the goodness-of-fit statistics is calculated for
this k-fold. This process was repeated k times using all k-folds as test folds. Finally, when
the k-fold cross-validation was completed, we repeated the whole process 10 times, which
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is why it is named “repeated k-fold cross-validation”. Finally, the overall goodness-of-fit
statistics were calculated as the average test statistics from 100 model runs (i.e., 10-fold
cross-validation repeated 10 times using the training data).

The use of this validation technique is supported by various authors (e.g., [14,65]),
although if the plot dataset is small, the use of this approach can have negative results [66].

Model performance was evaluated with several goodness-of-fit criteria, including the
pseudocoefficient of determination (R2), the bias (Bias), the root mean square error (RMSE)
and the relative values of these (Bias% and RMSE%).

The variable importance measure (VIM) was used to guide selection of predictors
for the final models. To ensure that values of variable importance were expressed on
comparable scales, the VIM values were normalized so that they summed to a unit value
(normalized importance, VIMN = (VIM − VIMmin)/(VIMmax − VIMmin)) and were also
expressed in relative values (relative importance, VIMR = VIM/∑VIM).

R statistical software [67] was used to implement the techniques compared in this
study and to carry out Tukey’s HSD multiple comparison test.

2.4. Deriving Raster Maps

The models finally selected, for each species and forest state variable, were applied
to the surface that each species occupies (areas greater or equal to 80%), according to the
Spanish Forest Map 4.5, to generate spatially continuous maps with a spatial resolution of
10 m/pixel. Finally, applying the best algorithm, we obtained 15 maps, one for each of the
five target variables of each species.

3. Results

As previously commented and shown in Figure 2, the results were obtained in
two separate phases.

3.1. Phase 1: Best Data Configuration and Fitting Technique

Extraction of outliers to debug the database by applying the vegetation classification
mask and using the plots of studentized residues against leverage enabled elimination of
between approximately 5.88 and 13.29% of the plots for each configuration. The P. pinaster
plots of the L1C level were the most refined, with removal of 13.29% as outliers, and the
least refined were P. radiata plots of the L1C and L2A-AC level, with removal of 5.88% as
outliers (Table 5).

Table 5. Number of outliers for each dataset configuration.

Species E. globulus P. pinaster P. radiata

Image Correction L1C L2A-AC L2A-ATC L1C L2A-AC L2A-ATC L1C L2A-AC L2A-ATC

Total plots 589 589 589 474 474 474 408 408 408
Outliers 13 + 32 13 + 32 13 + 32 36 + 27 36 + 26 36 + 23 4 + 20 4 + 20 4 + 23
% Outliers 7.64 7.64 7.64 13.29 13.08 12.44 5.88 5.88 6.61

where outliers = plots removed from the application of vegetation classification mask + detection of influential
observations from residuals vs. leverage plots.

According to the above criteria, from a total of 1471 plots within the study area,
1343 were finally available for analysis after applying the vegetation classification mask
derived from Sentinel-2 Level-2A product and then removing influential observations from
residuals vs. leverage plots (8.7%). Of these plots, 544 were dominated by E. globulus, 415
by P. pinaster and 384 by P. radiata.

After outlier detection and elimination, we had available for analysis a database of
forest species which considered three different images processing levels, two different
levels of plot geolocation accuracy and two model fitting algorithms. At this phase, as we
were not building the final models, and to facilitate presentation of the results, we only
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used the most important yield variable, i.e., total over bark volume (TV), as a dependent
variable to select the best alternative. These data configuration enabled (i) selection of the
best image processing level, (ii) assessment of the effect of the quality of plot geolocation
and (iii) selection of the best-fitting algorithm. The results of this process are shown in
Table 6.

Table 6. Summary of the goodness-of-fit statistics yielded by two regression algorithms (Multivariate
Adaptive Regression Splines, (MARS) and Random Forest (RF)) for total over bark volume model
(TV) and different image corrections and plot geolocation accuracy levels. All values represent the
mean of 100 model runs (i.e., 10 replicates, each with 10-fold cross-validation).

Species Image
Correction

Geolocation
Accuracy No. Plot

MARS RF
R2 Bias RMSE RMSE% R2 Bias RMSE RMSE%

E.
gl

ob
ul

us

L1C
All plots 544 0.36 −0.40 96.98 64.18% 0.35 −1.35 97.66 64.63%

Sub-meter plots 457 0.34 −0.99 100.86 66.20% 0.34 −1.04 100.70 66.09%

L2A-AC
All plots 544 0.33 0.72 98.43 65.61% 0.29 −0.91 100.73 67.15%

Sub-meter plots 458 0.31 −0.07 102.37 67.91% 0.29 −0.75 103.50 68.66%

L2A-ATC
All plots 544 0.37 0.19 94.53 63.69% 0.42 −0.89 90.76 61.15%

Sub-meter plots 457 0.36 −0.32 97.49 65.45% 0.43 −0.59 91.11 61.17%

P.
pi

na
st

er

L1C
All plots 411 0.37 −0.44 95.89 58.04% 0.33 −1.05 98.22 59.45%

Sub-meter plots 351 0.38 −1.23 97.04 60.01% 0.37 1.10 97.09 60.03%

L2A-AC
All plots 412 0.38 0.32 95.48 57.94% 0.36 −2.13 96.79 58.74%

Sub-meter plots 353 0.39 0.40 96.24 59.55% 0.40 −2.28 94.84 58.69%

L2A-ATC
All plots 415 0.32 −0.42 99.72 60.79% 0.38 −1.18 94.97 57.89%

Sub-meter plots 354 0.37 0.22 98.04 60.78% 0.40 −1.29 94.55 58.62%

P.
ra

di
at

a L1C
All plots 384 0.24 0.76 132.90 52.96% 0.12 −1.10 142.91 56.95%

Sub-meter plots 172 0.24 −0.72 125.08 57.87% 0.09 −3.80 138.99 64.31%

L2A-AC
All plots 384 0.27 0.21 132.02 52.61% 0.14 −2.60 145.22 57.87%

Sub-meter plots 171 0.29 0.98 120.15 55.59% 0.11 −1.89 134.58 62.26%

L2A-ATC
All plots 381 0.36 0.54 119.82 48.66% 0.36 0.37 118.45 48.10%

Sub-meter plots 172 0.29 1.72 115.69 54.08% 0.26 −0.73 116.10 54.27%

where L1C = scenes with geometric and radiometric correction; L2A-AC = scenes with geometric, radiometric
and atmospheric corrections; and L2A-ATC = scenes with geometric, radiometric, atmospheric and topographic
corrections. All plots = all plots are used after elimination of outliers; Sub-meter plots = only plots with sub-meter
geolocation are used.

Our findings indicate that the performance of the fitting algorithm depended on the
image correction level adopted. Thus, MARS was the best-fitting technique for L1C and
L2A-AC image corrections levels, whereas RF was the best approach for the L2A-ATC image
correction level. Therefore, we must consider both characteristics together to select the
best alternative. Thus, in almost all cases, geometrically, radiometrically, atmospherically
and topographically corrected images (L2A-ATC) and RF algorithm provided the best fits.
These results led us to select the L2A-ATC image correction level and the RF algorithm
to be considered in phase 2 of the analysis. This was true for all goodness-of-fit statistics,
except for bias in two of the three results obtained for the different species (Table 6). We
decided to select RF for further analysis in phase 2, although the bias values obtained must
be considered with caution, as it is highly recommended that final model be unbiased or
with the lowest possible bias. In fact, Tukey’s HSD multiple comparison test produced
significantly better results for the L2A-ATC correction level and the RF algorithm regardless
of the species (Figure 3).

As we had available a proportion of plots where precise geolocation was guaranteed
(sub-meter), we used two different databases to check the geolocation accuracy of the
results: all plots and only plots with sub-meter geolocation. The goodness-of-fit statistics
were used to compare both alternatives and the results obtained using the relative root
mean square error for comparison purposes and considering the different image correction
levels and the two algorithms used showed that the results for all the plots were higher
(Table 6). In addition, Tukey’s HSD multiple comparison test yielded very similar results
(not significantly different) for the two levels of geolocation accuracy (Figure 3). Based on
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these findings we decided to use the total number of plots to generate the final models in
phase 2 of this study.
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Figure 3. Results of Tukey’s HSD multiple comparisons test for RMSE of the total over bark volume,
TV (m3 ha−1) for three different levels of image correction (first column), for two levels of geolocation
accuracy (second column) and for the two algorithms tested (third column). The same superscript
letter beside values indicates that these are not significant different, and different letters beside vales
indicate that these are significantly different (p ≤ 0.05), where L1C = scenes with radiometric and
geometric correction; L2A-AC = scenes with geometric, radiometric and atmospheric corrections;
and L2A-ATC = scenes with geometric, radiometric, atmospheric and topographic corrections;
RF = Random Forest; MARS = Multivariate Adaptive Regression Splines; TV = total over bark
volume. The box-plot inserted in a rectangle outlined in red corresponds to the option selected as the
best in each case.

Average increases in the relative root mean square error values ranged from 1.56% to
8.50% for comparison of the total over bark volume (TV) estimates for L2A-ATC correction
with L1C-corrected images. The greatest improvement (8.50%) corresponded to P. radiata,
stands of which generally grew on the steepest slope (average, 35.93%). By contrast, the
lowest increment (1.56%) corresponded to P. pinaster, stands of which grew on less steep
terrain (average slope, 23.76%) (Table 7).

Table 7. Relative root mean square error values yielded by the RF algorithm (see Table 8) for species
and considering the average slope and aspect of the plots. Values within brackets indicate the
percentage gain in RMSE relative to the L1C values.

Species E. globulus P. pinaster P. radiata

Im
ag

e
co

rr
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ti
on L1C 64.63% 59.45% 56.95%

L2A-AC 67.15% (−2.51%) 58.74% (+0.72%) 57.87 (−0.92%)
L2A-ATC 61.15% (+3.49%) 57.89% (+1.56%) 48.10 (+8.50%)

Pl
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le Average slope (%) 28.06 23.76 35.93

Average aspect (◦) 179.14 179.21 179.60
% Plots with slope > 20% 67.91 52.95 75.74
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Table 8. Comparison of the RF regression models for forest variables by species. Column (1) includes the value of the goodness-of-fit statistics using only spectral
bands as predictors. The other columns show the percentage of change in the value of the statistics when using more predictor variables compared to (1). All values
represent the mean of 100 model runs (i.e., 10 replicates, each with 10-fold cross-validation). The values highlighted in bold correspond to the data group selected as
the best option for each combination of dependent variable and species.

Type Dependent Variable Statistic

Eucalyptus globulus Pinus pinaster Pinus radiata

Group of Predictor Variables Group of Predictor Variables Group of Predictor Variables

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

Density

Number of stems, N
(stems ha−1)

R2 0.24 +4.17% +8.33% +8.33% +8.33% 0.15 +6.67% +26.67% +40.00% +53.33% 0.1 +20.00% +60.00% +80.00% +50.00%
Bias 4.64 +34.91% +65.52% +17.24% +62.72% −4.91 +61.30% +102.85% +92.26% +178.00% −6.02 −9.30% +20.43% +13.79% +33.06%

RMSE 438.49 -0.88% −1.34% −1.48% −1.20% 412.04 −2.70% −4.18% −5.30% −6.63% 283.12 −1.60% −3.78% −5.09% −3.87%

Basal área, G
(m2 ha−1)

R2 0.40 +10.00% +12.50% +15.00% +15.00% 0.41 0.00% +12.20% +12.20% +12.20% 0.33 0.00% +9.09% +18.18% +18.18%
Bias −0.05 −20.00% +20.00% +40.00% +80.00% −0.08 −25.00% −50.00% −50.00% +25.00% −0.01 −300.00% −500.00% +100.00% −500.00%

RMSE 9.50 −3.26% −3.68% −4.63% −4.42% 10.59 +0.38% −4.53% −4.25% −4.72% 11.18 0.00% −2.15% −5.10% −5.10%

Size Dominant height, H0
(m)

R2 0.26 +3.85% +11.54% +23.08% +26.92% 0.26 +7.69% +7.69% +34.62% +42.31% 0.28 +14.29% +21.43% +32.14% +28.57%
Bias 0.04 −75.00% −100.00% −200.00% −150.00% −0.04 +50.00% +50.00% +100.00% +25.00% −0.01 +300.00% −300.00% −400.00% −500.00%

RMSE 6.31 −0.63% −2.06% −4.28% −4.75% 5.49 −1.28% −1.28% −6.38% −7.47% 5.36 −2.61% −4.66% −6.16% −5.97%

Yield

Total volume
with bark, TV

(m3 ha−1)

R2 0.41 +7.32% +9.76% +12.20% +12.20% 0.38 +2.63% +7.89% +10.53% +18.42% 0.37 +2.70% +8.11% +18.92% +16.22%
Bias −0.62 +24.19% +122.58% +35.48% +35.48% −1.15 −45.22% +20.00% +37.39% −11.30% 0.11 +254.55% +618.18% −27.27% +218.18%

RMSE 91.21 −3.03% −3.66% −4.14% −4.14% 94.53 −1.03% −2.84% −3.09% −5.11% 117.94 −1.09% −2.42% −5.27% −4.58%
Aboveground
Biomass, AGB

(Mg ha−1) (Mg/ha)

R2 0.41 +4.88% +2.44% +4.88% +4.88% 0.36 +2.78% +8.33% +11.11% +13.89% 0.35 +5.71% +8.57% +20.00% +20.00%
Bias −0.79 +16.46% +40.51% +31.65% +20.25% −1.03 +2.91% −27.18% −35.92% −35.92% −0.41 −82.93% −168.29% −119.51% −48.78%

RMSE 63.13 −2.47% −1.39% −2.14% −2.08% 54.88 −0.80% −2.53% −3.37% −3.81% 61.15 −1.77% −2.29% −5.10% −4.73%

where R2 = pseudocoefficient of determination, Bias = bias, RMSE = root mean square error. (1) = spectral bands; (2) = spectral bands + spectral indices; (3) = spectral bands + spectral
indices + texture variables; (4) = spectral bands + spectral indices + texture variables + terrain variables; (5) = spectral bands + spectral indices + texture variables + terrain variables +
climatic variables.
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3.2. Phase 2: Contribution of Each Group of Predictor Variables and Final Fitting Models
3.2.1. Contribution of Each Group of Predictor Variables

Analysis of the contribution of each of the five groups of predictor variables revealed
differences according to the species. Thus, considering the results in Table 8 and the
averaged results of the five forest models for each species shows that the contribution
of spectral bands only (dataset 1) is higher for E. globulus (R2 = 0.34) and decreases for
P. pinaster (R2 = 0.31) and P. radiata (R2 = 0.29). Since the average performance of the
final models for different species is quite similar, this implies a greater contribution of the
other predictor variables for P. pinaster and P. radiata. Thus, for eucalypt, there is only an
average increase in R2 (considering the five dependent variables) of 13.47% for models
fitted with the best dataset relative to dataset 1, whereas this increased to 28.03% and
26.59%, for maritime pine and radiata pine, respectively. For E. globulus, we observed a
moderate-high contribution of spectral indices (group 1) and low contribution of textural
(group 3) and terrain variables (group 4). Although textural and terrain variables make
a large contribution for radiata pine and maritime pine, structural indices make a large
contribution for radiata pine and a low contribution for maritime pine (Table 8).

The climatic variables (group 5) did not make valuable contributions to the eucalypt
and radiata pine models. However, this group of variables improved the models for
maritime pine. Looking closely at the P. radiata results, the contribution of climatic variables
is null or negative as they reduce the predictive ability of the models (see Table 8). For this
species, the group 4 variables contribute to the best forest variables prediction including the
spectral bands, spectral indices, texture and terrain variables. Climatic variables improve
the models for P. pinaster, increasing the pseudocoefficient of determination up to 13.33%
(6.34% on average) relative to the results obtained from the group of variables no. 4
(without climatic variables). This contribution was only negligible for the basal area model
(Table 8). Although these are important improvements, according to Tukey’s HSD multiple
comparison test (with the RMSE), many are not statistically significant. In fact, none of
the improvements in groups of variables relative to the immediately adjacent group were
statistically significant (Figure S2).

3.2.2. Model Prediction

Five forest variables were predicted from Sentinel-2-derived predictors and other
ancillary variables. We considered two density variables (number of stems per hectare and
basal area), one size-related variable (dominant height) and two yield variables (total over
bark volume and total aboveground biomass). The models that produced the worst results
were the number of stems per hectare (N), with R2 ranging from 0.18 to 0.26 (relative RMSE
ranged from 51.8% to 67.0%), followed by dominant height (H0), with R2 ranging from
0.33 to 0.37 (relative RMSE ranged from 22.3% to 30.5%). Yield variables, total over bark
volume (TV) and aboveground biomass (AGB) and basal area (G) produced the best-fitting
results, with R2 greater than 0.40 (except G, for P. radiata, with R2 = 0.39) and reaching up to
0.46 (Table 9) (RMSE% ranged from 44.6% to 61.9%). However, all models displayed very
low bias, with higher values for N models (values of Bias% ranged between −0.024% and
0.001%) (Table 9; Figure S1). Therefore, the models can be considered unbiased as the Bias%
was always lower than 1% (average value of −0.006%).

Figure 4 shows the typical overall RMSE% increase for the validation dataset and the
reduction in the Bias% as a consequence of the 100 iterations. These graphs show the model
performance for classes of the predicted variable; all models (regardless of the response
variable) performed similarly, overestimating lower values and underestimating higher
values, although to a much lesser extent.
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Table 9. Summary of the contribution of each group of independent variables to the predictive ability of models and their goodness-of-fit statistics. All values
represent the mean of 100 model runs (i.e., 10 replicates, each with 10-fold cross-validation). The numbers in brackets represent the number of variables included in
the model, and the number outside brackets indicate the accumulated importance measure expressed in relative values (VIMR), where Avg. = average, VIMR value
of the five models, R2 = pseudocoefficient of determination, Bias = bias, Bias% = relative bias, RMSE = root mean square error, RMSE% = relative root mean square
error of the best models.

Eucalyptus globulus Pinus pinaster Pinus radiata

N G H0 TV AGB Avg. N G H0 TV AGB Avg. N G H0 TV AGB Avg.

In
de

pe
nd

en
t

va
ri

ab
le

s

G
ro

up

(1) 0.24 (2) 0.47 (4) 0.18 (2) 0.26 (2) 0.48 (6) 0.33 0.29 (2) 0.53 (3) 0.25 (3) 0.51 (4) 0.43 (3) 0.40 0.41 (5) 0.35 (4) 0.32 (4) 0.44 (4) 0.39 (3) 0.38
(2) 0.55 (6) 0.36 (5) 0.47 (9) 0.56 (6) 0.52 (4) 0.50 0.34 (5) 0.20 (2) 0.23 (5) 0.13 (2) 0.23 (3) 0.23 0.28 (3) 0.31 (3) 0.29 (4) 0.24 (3) 0.22 (3) 0.26
(3) 0.07 (1) 0.11 (2) 0.07 (2) 0.06 (1) - 0.06 0.09 (3) 0.27 (3) 0.15 (3) 0.14 (2) 0.16 (2) 0.16 0.14 (1) 0.16 (3) 0.16 (3) 0.10 (2) 0.13 (4) 0.13
(4) 0.14 (2) 0.06 (1) 0.17 (4) 0.13 (2) - 0.10 0.20 (3) - 0.23 (3) 0.07 (1) 0.08 (1) 0.12 0.17 (2) 0.17 (3) 0.23 (4) 0.22 (4) 0.27 (5) 0.21
(5) - - 0.11 (3) - - 0.02 0.08 (1) - 0.15 (2) 0.16 (2) 0.10 (1) 0.10 - - - - - 0.00

No. of
variables 11 12 20 11 10 14 8 16 11 10 11 13 15 13 15

G
oo

dn
es

s-
of

-fi
t

st
at

is
ti

cs

R2 0.26 0.46 0.33 0.46 0.43 0.23 0.46 0.37 0.45 0.41 0.18 0.39 0.37 0.44 0.42
Bias −5.44 −0.07 −0.02 −0.84 −0.92 −13.65 −0.10 −0.05 −1.02 −0.66 −6.85 −0.02 0.03 0.08 0.08

Bias% −0.007 −0.004 −0.001 −0.006 −0.009 −0.024 −0.005 −0.003 −0.006 −0.007 −0.015 −0.001 0.001 0.000 0.001
RMSE 432.63 9.06 6.01 87.43 61.57 384.72 10.01 5.08 89.7 52.79 268.7 10.61 5.03 111.73 58.03

RMSE% 51.8 49.5 28.0 58.9 61.9 67.0% 44.6 30.5 54.7 57.2 59.2 38.1 22.3 45.4 45.5
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According to the VIMR scores shown in Table 9, spectral bands contributed most
to the P. pinaster and P. radiata models (averaged accumulated VIMR of 40% and 38%,
respectively), followed by the spectral indices (averaged accumulated VIMR of 23% and
26%, respectively), with texture and terrain variables contributing 16% and 12% in P. pinaster
and 13% and 22% in P. radiata. Climatic variables contributed the remaining 10% in
P. pinaster and 0% in P. radiata (Table 9). However, important differences were observed
according to the spectral variables with the highest VIMR score; thus, the spectral bands
that contributed most to the P. pinaster models were the short-wave infrared bands B11
and B12, representing 71% of the total contribution of this group of variables to the set of
models, followed by red band (B4) and Red-Edge-1 (B5). By contrast, the green band (B3)
and red band (B4) contributed most to the set of models in P. radiata, representing 43% of
the contribution of this group of variables, followed by near-Infrared (B8) and short-wave
infrared B11 (Table 10). The spectral indices that contributed most to P. radiata models
were EVI, GNDVI, TCB and ARI, with an accumulated VIMR of 0.95, which represented
73% of the contribution of this group of variables. For P. pinaster, the corresponding
indices were MARI, GNDVI, EVI and NBR2, with an accumulated VIMR of 0.79 which
represents 70% of the contribution of this group of variables. The NDVI texture indices
that contribute most to the models were CON, DIS, ENE and COR for P. radiata and MEN,
SDT, ENT and DIS for P. pinaster, with accumulated VIMR of 0.52 and 0.74, which represent
contributions of 78% and 91%, respectively. The terrain variables that contributed most to
the forest models were WI, SLP, ASP and ELV for P. radiata and ELV, WI, PLC and SLP for
P. pinaster, with accumulated VIMR of 0.87 and 0.58, which represent contributions of 81%
and 100%, respectively. Climatic variables did not contribute to the P. radiata models, but
did contribute to the P. pinaster models. Thus, only MAT contributed, with an accumulated
VIMR of 0.31, which represents a contribution of 63%.
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Figure 4. Plots of the distribution of relative bias and root mean square error (RMSE) of models
by classes of the predicted variable in training (T) and the 100 model runs (10-repeated, 10-fold
cross-validation) (V), where N = number of stems per hectare, G = basal area, H0 = dominant height,
TV = total over bark volume and AGB = aboveground biomass.

For E. globulus, spectral indices contributed most to the forest models (averaged
accumulated VIMR = 0.50), with ARI, TCW, EVI and TCB contributing with an accumulated
VIMR of 1.38, which represented 55% of the total importance of this group of variables
(Table 9). The following most important group of variables was the spectral bands (averaged
accumulated VIMR = 0.33). The four most relevant were B11, B6, B5 and B7, which
contributed an accumulated VIMR of 1.48, representing 90% of the importance of this group
of variables. Terrain variables (averaged accumulated VIMR = 0.10) were the third most
important group of variables according to the averaged accumulated VIMR score, with ASP,
HLI, PLC and ELV representing 55.49% of the total importance of this group of variables.
Texture was fourth group according to its contribution to ability prediction of eucalypt
forest models, with an averaged accumulated VIMR = 0.06. The variables MEN, HOM, COR
and SDT contributed with an accumulated VIMR of 0.41 (100% of the total importance of
this group). Finally, climate made a very small contribution, with an averaged accumulated
VIMR = 0.02.
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Table 10. Variables included in the models and their relative variable importance values (VIMR).
Sum = sum of the VIMR values of the five models.

Type Indep.
Variable

Eucalyptus globulus Pinus pinaster Pinus radiata

N G H0 TV AGB Sum. N G H0 TV AGB Sum. N G H0 TV AGB Sum.

Sp
ec

tr
al

ba
nd

s

B2 - - - - 0.06 0.06 - - - - - - 0.09 0.06 - - - 0.15
B3 - - - - - - - - - - - - 0.07 0.09 - 0.10 0.16 0.42
B4 - - - - - - - - 0.11 0.08 - 0.19 0.07 0.08 0.06 0.10 0.09 0.40
B5 0.11 - 0.08 - 0.10 0.29 - - 0.08 0.09 - 0.17 - - 0.12 - - 0.12
B6 0.13 0.11 - - 0.06 0.30 - 0.07 - - 0.04 0.11 - - 0.08 - - 0.08
B7 - 0.05 - 0.06 0.04 0.15 - - - - - - - - - - - -
B8 - - - - - - - 0.07 - - - 0.07 - 0.12 - 0.10 0.14 0.36

B8A - 0.06 - - 0.04 0.10 - - - - 0.04 0.04 - - 0.06 - - 0.06
B11 - 0.26 0.10 0.20 0.19 0.75 0.20 0.39 0.06 0.19 0.34 1.18 0.11 - - 0.14 - 0.25
B12 - - - - - - 0.08 - - 0.14 - 0.22 0.07 - - - - 0.07

Sp
ec

tr
al

in
di

ce
s

ARI 0.10 0.10 0.06 0.11 0.08 0.45 - - - - - - 0.15 - - - - 0.15
CRE - - - - - - - - - - - - 0.06 - - - - 0.06
EVI - 0.08 0.05 0.09 0.08 0.30 0.06 0.10 - - - 0.16 - 0.08 0.10 0.11 0.13 0.42

EVI2 - - - - 0.04 0.04 - - - - - - - - - - - -
GNDVI - 0.06 - - - 0.06 0.08 - 0.04 0.06 - 0.18 - 0.06 0.05 0.05 0.05 0.21
MARI - - - - 0.05 0.05 - 0.10 0.04 0.07 0.10 0.31 - - - - - -

MCARI - - 0.05 0.07 0.06 0.18 - - - - - - - - - - - -
MSAVI - 0.07 - 0.06 - 0.13 - - - - 0.05 0.05 - - - - 0.04 0.04

MSI 0.08 - - - - 0.08 0.05 - - - - 0.05 - - 0.04 - - 0.04
NBR - - - - - 0.07 - - 0.05 - - 0.05 - - - - - -
NBR2 - - 0.03 - - 0.03 0.10 - 0.04 - - 0.14 0.06 - - - - 0.06
NDMI - - 0.08 - - 0.08 0.05 - 0.06 - - 0.11 - - - - - -
NDVI - - - - - - - - - - - - - - - - - -
PSSR 0.08 - 0.03 - - 0.11 - - - - - - - - - - - -
SAVI - - - - - - - - - - - - - - - - - -
TCA 0.07 0.06 0.04 - - 0.17 - - - - - - - - - - - -
TCB 0.14 - 0.07 - - 0.21 - - - - 0.08 0.08 - 0.17 - - - 0.17
TCG - - 0.06 0.06 0.05 0.17 - - - - - - - - - 0.07 - 0.07
TCW - - 0.09 0.17 0.16 0.42 - - - - - - - - 0.09 - - 0.09

Te
xt

ur
e

SEC - - - - - - - - - - - - - - - - 0.03 0.03
CON - - - - - - - - - - - - - - 0.05 - 0.04 0.09
COR - 0.05 - - - 0.05 - - - - - - 0.14 0.06 - - - 0.20
DIS - - - - - - 0.03 0.08 - - - 0.11 - - 0.05 0.06 0.03 0.14
ENE - - - - - - 0.03 - - - - 0.03 - 0.05 - 0.04 - 0.09
ENT - - - - - - 0.03 - 0.04 - - 0.07 - - - - - -

HOM 0.07 - - - - 0.07 - - 0.04 - - 0.04 - 0.05 - - 0.02 0.07
MAX - - - - - - - - - - - - - - - - - -
MEN - 0.06 0.04 0.06 - 0.16 - 0.10 0.06 0.07 0.09 0.32 - - - - - -
SDT - - 0.04 - - 0.04 - 0.09 - 0.07 0.08 0.24 - - 0.05 - - 0.05

Te
rr

ai
n

ASP - 0.06 0.04 0.06 - 0.16 - - - - - - - 0.07 0.05 0.06 0.06 0.24
ASR - - - - - - - - - - - - - -
CU - - - - - - - - - - - - - - 0.06 - - 0.06
ELV - - 0.04 - - 0.04 - - 0.14 0.07 - 0.21 - - - 0.05 0.06 0.11
HLI 0.07 - - 0.07 - 0.14 - - - - - - - - - - - -
PLC 0.07 - - - - 0.07 0.06 - - - 0.08 0.14 - 0.05 - - - 0.05
PFC - - - - - - - - - - - - - - - - 0.04 0.04
SLP - - 0.04 - - 0.04 0.06 - 0.04 - - 0.10 0.08 - 0.07 0.05 0.05 0.25
TSI - - 0.04 - - 0.04 - - - - - - - - 0.05 - - 0.05
WI - - - - - - 0.08 - 0.05 - - 0.13 0.09 0.06 - 0.06 0.06 0.27

C
lim

at
ic

TM - - 0.04 - - 0.04 - - - 0.09 - 0.09 - - - - - -
TMAX - - 0.04 - - 0.04 0.08 - 0.06 0.07 0.10 0.31 - - - - - -
TMIN - - - - - - - - - - - - - - - - - -

PT - - 0.03 - - 0.03 - - 0.09 - - 0.09 - - - - - -
RA - - - - - - - - - - - - - - - - - -

3.3. Results of Mapping Forest Variables

Spatially continuous maps of the forest variables resulting from application of the
best models for the three major commercial timber plantations (E. globulus, P. pinaster
and P. radiata), occupying areas greater or equal to 80% (according to the Spanish Forest
Map) were generated. Figure 5 shows, as an example, the distribution of TV (m3 ha−1)
for the different forest species across the study area. Finally, average values per hectare
and total Sentinel-2-based wall-to-wall predictions for the five forest variables and for the
three species were generated per region (Table 11).



Forests 2024, 15, 99 20 of 30

Forests 2024, 15, x FOR PEER REVIEW 20 of 30 
 

 

where Avg. = mean value of the forest variable (units of the variable per hectare); Sd = standard 
deviation of variables; Total = total amount of the variable (units of the variable); N = number of 
stems, G = basal area (m2), H0 = dominant height (m), TV = total over bark volume (m3) and AGB = 
aboveground biomass (Mg). 

 
Figure 5. Example of the spatial distribution of the total over bark volume, TV (m3 ha−1) in the four 
regions in northern Spain under study (bottom). Top: Detailed map (10 × 10 m/pixel of spatial res-
olution) for this variable. 

4. Discussion 
4.1. Impacts of Geolocation Accuracy, Image Correction Level and Fitting Algorithm on Total 
Volume Estimation 

The study findings did not show any clear impact of the plot geolocation accuracy on 
the stand volumes estimated using Sentinel-2 data. Thus, contrary to what might be ex-
pected, the result of using all plots was better than the result of using only sub-meter plot 
accuracy. This seems to suggest that the model performance mainly depends on other 
characteristics of the plots used for the model development (e.g., stand age, density, …) 
rather than on the precision of the geolocation. 

While is true that accurate geographical co-registration of remote sensing data and 
field plots has been recognized as necessary [24,68], its impact strongly depends on the 
size of the field plot and on the type of the remote sensor used (active or passive) and its 
spatial resolution. 

Thus, ref. [24] showed that larger plot sizes (300–400 m2) compensate for errors; these 
results were later confirmed and extended by [69], who found that prediction improved 
markedly as plot size increased from 314 m2 (10 m radius) to 1964 m2 (25 m radius), the 
maximum size of the SNFI plots. In our study, 83.33% of the plots were of radius equal or 
greater than 15 m (52.08% have a radius of 25 m). There are two main reasons underlying 
these results [69]: (i) large plots capture more on-ground variability and therefore are more 

Figure 5. Example of the spatial distribution of the total over bark volume, TV (m3 ha−1) in the
four regions in northern Spain under study (bottom). Top: Detailed map (10 × 10 m/pixel of spatial
resolution) for this variable.

Table 11. Table showing the average and standard deviation values per hectare and total of
the Sentinel-2-based wall-to-wall predictions for the three forest species and the four regions in
northern Spain.

Region

Galicia Asturias Cantabria Basque Country

Avg. (Sd) Total Avg. (Sd) Total Avg. (Sd) Total Avg. (Sd) Total

E.
gl

ob
ul

us N 816.42 (120.11) 108,162,865.38 782.00 (131.34) 30,174,276.15 790.58 (129.26) 26,771,979.95 868.86 (180.21) 8,625,895.65
G 18.21 (3.95) 2,412,527.76 15.79 (3.34) 609,186.45 16.89 (4.07) 572,048.59 20.12 (6.37) 199,773.22

H0 21.66 (2.03) 2,870,200.23 20.17 (1.49) 778,171.45 21.25 (1.88) 719,627.29 22.23 (2.81) 220,672.33
TV 152.15 (38.17) 20,157,482.01 126.57 (29.66) 4,883,988.79 141.38 (38.21) 4,787,726.89 170.94 (61.01) 1,697,084.24

AGB 103.48 (26.00) 13,709,146.49 86.45 (19.72) 3,335,870.38 95.80 (25.94) 3,244,040.50 117.41 (41.94) 1,165,589.52

P.
pi

na
st

er N 663.05 (129.72) 111,420.57 605.84 (92.03) 8,788,913,94 809.37 (271.92) 173,420.57 794.72 (185.78) 4,177,647.49
G 21.19 (4.86) 3,569,806.40 22.90 (4.05) 322,160.32 25.96 (9.04) 5,561.59 27.65 (5.65) 145,354.34

H0 15.88 (2.54) 2,675,987.48 15.95 (1.62) 231,398.86 16.19 (2.66) 3,468.13 17.69 (1.57) 92,982.27
TV 156.43 (41.86) 26,353,790.70 164.17 (32.25) 2,381,631.85 197.49 (78.15) 42,316.14 208.83 (43.58) 1,097,773.53

AGB 87.27 (24.04) 14,701,927.30 113.07 (26.48) 1,640,230.48 66.97 (16.88) 14,349.93 103.61 (26.08) 544,669.58

P.
ra

di
at

a N 513.70 (87.71) 30,609,531.69 521.11 (76.32) 9,831,803.62 466.87 (76.92) 3,032,877.78 476.96 (64.09) 54,692,959.82
G 26.05 (4.10) 1,552,099.38 26.99 (4.23) 509,313.68 26.32 (4.93) 171,007.17 27.80 (5.46) 3,187,960.25

H0 20.52 (1.47) 1,222,504.17 20.44 (1.83) 385,672.55 21.70 (2.17) 140,998.67 23.24 (2.18) 2,664,458.16
TV 215.59 (38.68) 12,846,469.77 222.08 (41.58) 4,189,903.77 230.08 (50.87) 1,494,652.27 259.30 (61.23) 29,733,439.08

AGB 114.94 (20.58) 6,848,897.27 116.21 (21.72) 2,192,591.69 114.32 (27.88) 742,616.38 132.73 (30.24) 15,219,668.09

where Avg. = mean value of the forest variable (units of the variable per hectare); Sd = standard deviation of
variables; Total = total amount of the variable (units of the variable); N = number of stems, G = basal area (m2),
H0 = dominant height (m), TV = total over bark volume (m3) and AGB = aboveground biomass (Mg).
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4. Discussion
4.1. Impacts of Geolocation Accuracy, Image Correction Level and Fitting Algorithm on Total
Volume Estimation

The study findings did not show any clear impact of the plot geolocation accuracy
on the stand volumes estimated using Sentinel-2 data. Thus, contrary to what might be
expected, the result of using all plots was better than the result of using only sub-meter
plot accuracy. This seems to suggest that the model performance mainly depends on other
characteristics of the plots used for the model development (e.g., stand age, density, . . .)
rather than on the precision of the geolocation.

While is true that accurate geographical co-registration of remote sensing data and
field plots has been recognized as necessary [24,68], its impact strongly depends on the
size of the field plot and on the type of the remote sensor used (active or passive) and its
spatial resolution.

Thus, ref. [24] showed that larger plot sizes (300–400 m2) compensate for errors; these
results were later confirmed and extended by [69], who found that prediction improved
markedly as plot size increased from 314 m2 (10 m radius) to 1964 m2 (25 m radius), the
maximum size of the SNFI plots. In our study, 83.33% of the plots were of radius equal or
greater than 15 m (52.08% have a radius of 25 m). There are two main reasons underlying
these results [69]: (i) large plots capture more on-ground variability and therefore are more
resistant to the harmful effects of co-registration errors and (ii) large plots maintain a greater
amount of spatial overlap between land plot and LiDAR data. This latter was demonstrated
by [35], who showed that for plot size of 1964 m2 (25 m radius) and positioning errors of 5
and 10 m (much larger than the 3–5 m theoretical errors), the areas overlapping a plot in a
correct position and a plot located in an altered position were 84.3% and 74.7%, respectively.
These previous arguments, which mainly concern LiDAR actively remotely sensed data,
are also applicable to passively remotely sensed data. Ref. [70] found than co-registration
errors have a greater impact on stand volume estimates derived from LiDAR data than on
those derived from Landsat data, suggesting that geolocation precision requirements are
currently lower when using optical data from satellites. Moreover, this requirement will be
less demanding even when the spatial resolution of the sensor is lower (i.e., 20 m/pixel
vs. 10 m/pixel), which is consistent with the plot size arguments expressed above. This is
likely because the spatial resolution of the images (i.e., 20 m/pixel) implies that the same
radiometric value corresponds to an area of 400 m2 (20 × 20 m pixel size). Our findings
therefore suggest that expected positioning errors of between 5 and 10 m of SNFI plots
do not have a significant influence on the accuracy of estimation of forest variables from
Sentinel-2 images.

The best-fitting algorithm and the image correction levels were selected together, as
they are mutually dependent. MARS yielded better results for L1C and L2A-AC correction
levels, whereas RF performed best with the L2A-ATC and also yielded the best values of
the goodness-of-fit statistics; the fitting algorithm and the image correction level selected to
develop the final models were, respectively, RF and L2A-ATC. This finding is consistent
with those of previous studies demonstrating the superior performance of the RF algorithm
over the MARS approach and Sentinel-2 data [71].

When dealing with forest on steep terrain and north or northwest orientations (higher
levels of shade in the northern hemisphere), better results are expected a priori for forest
variable estimation when topographic correction of the images is carried out. This is because
topographic correction can reduce the effects of varying topography/terrain surfaces and
associated shading on spectral reflectance. This correction is more effective when an
accurate terrain digital model is used, as it will determine the accuracy of the aspect and
slope determinations on which the correction accuracy strongly depends [72]. Although
the mean aspect is similar for plots of three species (ca. 179◦), greater improvement in the
model performance was observed, as the slope increased, when topographic correction
was implemented.
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4.2. Model Accuracy and Role of Different Groups of Predictor Variables

The models based on number of stems per hectare (N) and dominant height (H0) were
the least precise (average R2 of 0.22 and 0.36, respectively). By contrast, models of density
(G) and yield variables (TV and AGB) produced the best results, with R2 of 0.43 and 0.44,
respectively. This is not surprising, as remote optical sensors are predicting yield (volume
or biomass) or density variables (site occupancy) better than predicting the number of
stems per hectare or stand height (e.g., [49,73,74]). In fact, these sensors are considered
unsuitable for predicting vertical vegetation structures such as stand height [48], which
is accurately predicted with LiDAR data. However, the sensors perform well with yield
or site occupancy variables, as the data provided are strongly correlated with tree canopy
size, which determines the canopy reflectance [75]. Thus, although the number of stems
per hectare is often included as a density variable, it is only valid at the initial forest stand
stage, where all stems are of the same size. At later stages, the number of stems per hectare
is not a suitable measure of density, as site occupancy variables must be a function of at
least of the number of stems and an average tree size measure [76].

All models performed similarly, with overestimation of lower values and underestima-
tion of high values of the predicted variables. This a typical result when predicting forest
variables with optical data (e.g., [59,73,77]). It may occur because in low-stocked forest (low
values of density or yield), the canopy reflectance tends to include a greater contribution
from shadows, soil background and understory and a lower contribution from green leaves.
The opposite will be true for well-stocked forest. Moreover, many authors have observed
that canopy data obtained by optical and radar sensors tend to be saturated in excessively
dense forests (approximately at 250 m3 ha−1 or 150 Mg ha−1), which greatly reduces the
accuracy of estimation (e.g., [48,59,78]), although this phenomenon was generally not ob-
served in our cross-validation results from 100 runs, for two possible reasons: (i) the lack or
scarcity of mature forest stands and (ii) the use of indexes related to red-edge and texture
variables as predictors. Some authors have reported that red-edge indexes (e.g., [79,80])
and texture variables [81] can overcome the saturation problem and increase the accuracy
of estimation of forest yield variables, suggesting that inclusion of these variables may
contribute to increasing the upper limit of saturation reported in the bibliography.

Considering the weights of the spectral bands (assessed as the VIMR of each band) in
relation to the predictive ability of models, the species seem to be separated into two distinct
groups; one formed by E. globulus and P. pinaster and the other by P. radiata. Regarding the
first group there is a negligible contribution of the visible B2, B3 and B4 bands in E. globulus
and a moderate contribution in P. pinaster, and the short-wave infrared (SWIR) band (B11)
is the spectral band that most contributes the explanatory ability of density (G) and yield
models (TV and AGB). The variable B11 accounted for 38% to 81% of the importance score
of the contribution of the spectral band. Many authors have previously pointed out that
SWIR spectral bands are more closely related to vegetation properties such as water content,
canopy biomass and density or yield variables (e.g., [75,82,83]).

The four most important spectral bands are B11, B6, B5 and B7, contributing with
an accumulated VIMR of 1.48, which represent 90.08% of the importance of this group of
variables for E. globulus. Thus, the red-edge bands (B5, B6 and B7) together contribute
most, after B11, to the E. globulus model. For P. pinaster, the red-edge bands B5 and B6
and the visible B4 red band are the most important after the B11 and B12 SWIR bands.
The predictive power of red-edge bands has been reported in recent studies involving tree
species classification [60], forest biophysical variables (e.g., [20,41]) and average tree size
and forest yield variable estimations [73].

However, for P. radiata, the greatest contributions were made by the green band (B3)
and near-infrared band (B8), similarly to the findings obtained by [84] in the Western
Carpathian Mountains with Norway spruce stands (both with dark green canopies). Glob-
ally, the behavior of P. radiata spectral bands was different to that observed for P. pinaster and
E. globulus, with the greatest contribution by green (B3), red (B4) and infrared (B8) bands.
This ranking of the spectral bands response may be because E. globulus and P. pinaster
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stands have light green, relatively low-density canopies which visually contrast with the
denser and dark green radiate pine canopies.

Spectral indices contribute twice as much to E. globulus models than to P. pinaster and
P. radiata models, so that the spectral response (spectral indices + spectral bands) is much
stronger in eucalypt than pines. The Anthocyanin and Modified Anthocyanin Reflectance
indexes (ARI and MARI) are the spectral indexes that contribute most to improving forest
model estimates in E. globulus and P. pinaster, respectively. These indexes are related to the
anthocyanin content present in leaves and their values increase as leaves changes due to
tree growth or death of the leaves [85]. This is not surprising as the indices incorporate
some red-edge bands B5 (ARI) and B5 and B7 (MARI) in addition to the visible green
band B3. Both indices are positively correlated with yield variables (r = 0.35 for ARI in
E. globulus and r = 0.12 for MARI in P. pinaster). The Enhanced Vegetation Index (EVI) index
was the most important spectral index in P. radiata and the third most important in the
remaining species. This index was developed to optimize the vegetation signal, correcting
reflected light distortions caused by particulate matter suspended in the air, as well as
by influence of background data under the vegetation canopy [86,87]. According to [88],
GNDVI displays greater sensitivity to changes in chlorophyll content than NDVI, which is
strongly associated with nitrogen. These authors further asserted that GNDVI exhibits a
sensitivity to chlorophyll-a concentration that is at least five times higher than that of NDVI,
making it particularly advantageous for distinguishing stressed and senescent vegetation.
In the present study, the GNDVI was ranked as the second most significant spectral index
for P. pinaster and P. radiata, which may be due to its greater significance in the bands
of the visible and near-infrared regions of the electromagnetic spectrum. This finding is
consistent with the results obtained by [89] in the Lousã Region of Portugal, where P. pinaster
constitutes the predominant vegetation cover. The Tasseled Cap Wetness (TCW) index was
the second more important for eucalyptus. This index is sensitive to vegetation moisture
content into the pixel, and is valuable for differentiating deforestation and degradation [90].
Thus, considering that moderate and even severe defoliation by Gonipterus platensis is
frequent in many stands in the study area, this index may be amplifying the effect of not
capturing individual bands in isolation. Moreover, in our study, we found that the TCW
index was negatively correlated with total over bark volume (r = 0.48), as also observed
by [91], and with aboveground biomass (r = 0.46), which may indicate that the vegetation
has a lower moisture content in well-stocked stands (which are less dense).

The results of adding texture variables to spectral bands and spectral indices improved
R2 by on average 2.87% in E. globulus models, and by 8.60% and 12.90% in P. pinaster
and P. radiata models; the final models showed that texture variables are between 2.1
and 2.5 times more important in P. pinaster and P. radiata than in E. globulus. The overall
importance of the texture measures on the predictive capacity of the models is consistent
with the findings reported by [43], as the spectral responses (spectral bands and spectral
indices) play a more important role in forest variable estimation than textural images when
the forest stand structure is relatively simple (e.g., eucalypt plantations), although textural
images become more important as the complexity of the forest structure increases (e.g.,
maritime pine and radiata pine stands). This is because texture measures increase the spatial
information about the stand and therefore better capture their structural characteristics [92].
Many authors have increased the accuracy of forest models by adding texture measures to
the spectral bands and indexes (e.g., [93–95]).

Terrain and climatic features affect the environmental conditions for growth and may
be important for predicting forest variables. Overall, these variables were more important
in P. pinaster and P. radiata stands, in which spectral responses have been found to be less
important than in E. globulus stands. Elevation (ELV) is the most important terrain variable
in P. pinaster and is negatively correlated with both H0 and TV, which is consistent with the
fact the stands with the highest productivity of this species in North Spain occur in areas
close to the coast [96]. This variable may even be the most important explanatory variable
in areas characterized by strong elevational gradients [84]. The topographic wetness index
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(WI) is usually positive correlated with yield variables in arid areas [97]. However, the
inclusion of this variable in P. radiata lead to a negative correlation with yield predictions,
which seems to indicate that in rainy climates like in north-western Spain (annual rainfall of
between 1000 and 1300 mm), high levels of biomass for this species coincide with zones with
moderate or low levels of soil moisture. According to [87], prediction of eucalyptus stand
attributes was significantly influenced by various terrain attributes, including heat load
index, relative slope position, total curvature, aspect and terrain roughness index. These
terrain attributes were responsible for 54.5%, 41.6%, and 53.8% of the selected variables
used by RF models to predict volume, basal area and DBH, respectively.

The inclusion of climate variables was only important for P. pinaster, as the yield
models included the maximum (TMAX) and average temperature per month (TM); both
of which are positively correlated with yield variables. This is consistent with the species
autoecology as P. pinaster is the most widely distributed of the species considered, in
accordance with the climate conditions, and its distribution and productivity in north Spain
are also positively correlated with these variables [96].

Previous yield models, predicting TV and AGB, were built for the same species and for
much of the same region in North Spain by using public nationwide Airborne Laser Scanner
(ALS) data with 0.5 pulses/m2. The models yielded results with an RMSE% ranging from
30.8 to 38.3% and 31.7 to 38.3%, respectively [14], whereas, in this study, the errors ranged
from 45.4% to 58.9% and 45.5% to 61.9%, respectively. However, Sentinel-2-based estimates,
although less precise than those obtained with ALS data, are unbiased and therefore we
expect accurate estimates for an area of one hectare, as the values are obtained by averaging
the values obtained in 100 pixels with an expected error compensation.

4.3. Limitations and Future Developments

When designing a network of field plots to be used together with remotely sensed data,
spatial correlation of the plots and pixels centers (co-registration) should be a prerequisite
to eliminate any possible sources of imprecision and bias of model estimates. As field plots,
we used the SNFI systematic grid that was first established in 1986 [98] independently
of any remote sensing source of data to that date. In the present study, the discrepancy
between pixel size of the Sentinel-2 images (400 m2) and the SNFI field plots size (314 to
1964 m2) and their respective centers could also lead to some inconsistencies in the results.

Although the plots were chosen on the basis of various forest conditions to ensure
maximum representativeness (different plantation schedules or/and thinning treatments
and common pest and disease conditions), the sample size may be considered somewhat
restricted. To address this point, we used the k-fold cross-validation method, as proposed
by [99], to mitigate overfitting and minimize the risk of uncertainty in the predictions [100].
In general, our research prioritized the significance of the samples in capturing biomass
variability throughout the study region. Further research will aim for true validation of
the models from real data on timber harvesting to confirm the results obtained in the
cross-validation procedure.

Moreover, the estimation accuracy is greatly reduced in excessively dense forests
due to the saturation of canopy information obtained by optical data [48]. Furthermore,
saturation of forest AGB data is affected by topographic features in the study area, which
can alter the distribution and composition of tree species, vegetation growth rates, and
spectral reflectance. Specifically, factors such as elevation, slope and aspect play a crucial
role in this regard [78].

The developed models are intended for application to pure stands (basal area of the
target species greater or equal than 80%), and development of a model for mixed stands in
which at least 50% or more of the stand basal area corresponds to one or more of the three
forest species studied remains a task for the future.

Finally, one of the most important applications of our models is current assessment
of the timber resources at regional level. This application requires up-to-date, accurate
mapping of the forest species coverage. However, at present, the model predictions
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(spatially continuous maps) must be clipped with the area occupied by the species according
to the Spanish Forest Map, which is updated every 10 years. The combined use of the
model predictions developed here, and land cover classification models also based on
Sentinel-2 images will enable automatic estimation of timber resources. We are already
developing land cover maps that will provide annually updated estimates of forest timber
resources and overcome the drawbacks of the current method.

5. Conclusions

This research has shown that it is possible to use Spanish National Forest Inventory
(SNFI) field data and Sentinel-2 (spectral bands, spectral indices and texture variables) and
ancillary data (terrain and climatic variables) to develop high-resolution forest models to
estimate stand variables with reasonable accuracy (number of stems per hectare, basal area,
dominant height, total stand volume and aboveground biomass) for major commercial
timber plantations in northern Spain.

The findings of this study revealed the importance of carrying out topographical
corrections of the images in steeply sloping terrain or areas with complex topography. In
contrast to findings regarding airborne or satellite LiDAR data, we found that SFNI plots
can be used to develop accurate forest models from optically sensed data without the need
for sub-meter geolocation. The gain in model accuracy as a consequence of sequentially
including predictor variables (spectral bands, spectral indices, texture variables, terrain,
and climatic variables) depended on a complex mixture of stand variables and forest species
(and their forest structure and distribution), and therefore we always recommend using
this approach to develop such models. We highlight the importance of the availability
of public databases as the National Forest Inventories field plots and publicly available
remotely sensed data provided by space agencies, which enable development of accurate
forest resources prediction models at regional or national scales when used together.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/f15010099/s1, Table S1. Texture variables formulation employed in the study. Table S2.
Terrain variables formulation employed in the study. Figure S1. Scatter plots of the observed
vs. predicted values after 10 repeated 10-fold cross-validation (100 model runs). The dashed red
line represents the linear model fitted to the scatter plot, and the solid black line represents the
line of slope equal to 1. N = number of stems per hectare, G = basal area, H0 = dominant height,
TV = Total over bark volume, AGB = Total aboveground biomass. Figure S2. Results of the Tukey
HSD multiple comparisons test for RMSE of the five forest predictor variables for the three different
species (Pinus pinaster, left column; Pinus radiata, centre column; and Eucalyptus globulus, right column)
and the five groups of independent variables considered. The same letter indicates that the values
are not significantly different. Different letters indicate that the values are significantly different
(p ≤ 0.05). (1) = Spectral bands; (2) = Spectral bands + spectral dices; (3) = Spectral bands + spectral
indices + texture variables; (4) = Spectral bands + spectral indices + texture variables + terrain
variables; (5) = Spectral bands + spectral indices + texture variables + terrain variables + climatic
variables; N = Number of stems per hectare; G = Basal Area; H0 = Dominant height; TV = Total over
bark volume; AGB = Total aboveground biomass. The box-plot inserted in a red-dashed line rectangle
correspond to the data group selected as the best option for each species.
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