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Abstract: Traditional village landscapes have a cultural and regional significance, and the visual
aesthetic quality of the landscape is widely regarded as a valuable resource to benefit the health and
well-being of urban residents. Although the literature has analyzed the influential mechanism of
landscape features on aesthetic senses, most were from a single dimension. To improve the precision
of the landscape aesthetic evaluation method, this study expanded the indicators for landscape
characteristics of public spaces in traditional villages by incorporating multiple dimensions, such
as landscape visual attraction elements and landscape color. It explored their associations with
sensory preferences in a case study in Dongshan (a peninsula) and Xishan (an island) of Taihu Lake.
We used multi-source data, a semantic segmentation model, and R language to identify landscape
characteristic indicators quantitatively. The research results indicated that the accuracy of the aesthetic
sensory assessment model integrating multi-dimensional landscape characteristic indicators was
significantly improved; in the open space of traditional villages, the public preferred a scenario
with a high proportion of trees, relatively open space, mild and uniform color tones, suitability for
movement, and the ability to produce a restorative and peaceful atmosphere. This study can provide
a guarantee for the efficient use of village landscape resources, the optimization of rural landscapes,
and the precise enhancement of traditional village habitat.

Keywords: aesthetic sensory; landscape characteristics; traditional villages; public space

1. Introduction

In comparison to modern cities, there are rich natural and civilized resources in
traditional villages, with important cultural and regional significance [1]. As an important
part of urban and rural ecosystems, rural landscapes can provide a variety of ecosystem
services, such as improving human mental, physical status, and well-being [2,3]. The
aesthetic experience of rural landscapes can effectively relieve the psychological pressure
of urban residents and provide them with the opportunity to escape the hustle and bustle
of the city and enjoy the natural environment in the context of rapid urbanization and
expansion [4,5]. Rural landscapes and urban landscapes complement each other. The
interaction between the two helps to meet the needs of the growing population, protect the
culture and natural resources of rural areas, and realize the sustainable development of
both areas [6]. On the other hand, commercial development and industrialization have had
fierce impacts on the traditional village landscape in the market economic environment [7].
As a result, the landscapes of traditional villages face a series of problems, such as regional
recession, increased homogeneity, and separation of tradition and modernity [8]. The
government and all walks of life are deeply concerned about improving the quality of
the traditional village landscape environment. The public space of traditional villages, as
an essential part of the village landscape, is a key part of the quality improvement of the
traditional village landscape [9]. Public space can be interpreted as a gathering place that
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promotes and facilitates social interaction [9]. The traditional village public space refers
mainly to the space where all villagers and tourists can freely enter for daily activities,
communication, and relaxation, such as squares, ancient wells, piers, and other spaces [9,10].
The European Landscape Convention defined landscape as an area that is perceived by
people, characterized by the interaction of natural and human factors or by the impact of
one of them [11,12]. According to the definition of landscape, the core of it is people [13].
Therefore, human sensory perception is an important part of the landscape. Landscape
aesthetic sensory perception means observers’ good and bad feelings towards the landscape
after a series of perceptions, cognition, and some other psychological assessments [14]. The
landscape aesthetic sensory judgment is an important tool to assist decision making in
landscape planning [15]. Understanding people’s aesthetic sensory perception can help
planners and designers create a more attractive, sustainable, and culturally appropriate
rural landscape [16]. Meanwhile, it can help meet the expectations of residents and visitors
and realize the multiple goals of environmental protection, sustainable development,
community interaction, and so on [17–19]. Based on the study of the relationship between
landscape aesthetic preferences, Arriaza et al., Hernández et al., and Yao et al. have
effectively improved urban and rural landscapes and environments [19–21]. Therefore,
understanding the spatial landscape elements in the public space of traditional villages that
positively influence public aesthetic sensory perception, quantitatively identifying them,
and understanding the influence mechanism can provide a basis for the protection and
enhancement of the traditional village landscape and construction management.

There are four recognized academic schools for the judgement of landscape aesthetic
preference: the expert school, the psychophysical school, the cognitive school, and the em-
pirical school, of which the psychophysical school is the most widely used [9]. This study
is based on the theory of the psychophysical school. They believe that landscape aesthetic
activity is a visually oriented perception process in which the aesthetic object interacts with
the aesthetic subject under the influence of the aesthetic psychological structure. Aesthetic
values projected by a subject on an object are culturally conditioned and are subject to
intergenerational change [22]. Therefore, aesthetic sensory perception is jointly influenced
by the characteristics of the aesthetic subject, such as cultural background, psychological
needs, mental state, emotional experience, and other factors, as well as the characteristics of
the aesthetic object, such as form, architectural style, color, texture, and other factors [23–25].
Based on the psychophysical paradigm, the aesthetic preference judgment model is mainly
divided into three steps: the first step is to construct the landscape feature characteriza-
tion system; the second step is to evaluate and rate the landscape environment by the
aesthetic subject; and the last step is to construct a functional relationship model between
the landscape features and the aesthetic preference [26]. Therefore, the construction of
a landscape feature characterization system is the premise and foundation of aesthetic
preference judgment. The system contains two levels of content. On one hand, it is the
identification of the types of elements in the environment. On the other hand, it is the
description of the characteristics presented by the landscape elements. Studies by Qin et al.
showed that the elements of mountains, trees, and water bodies had a positive impact
on the aesthetic preference of road landscape, in which the green view rate (GVR) was
significantly related to landscape preference [27]. Li et al. used eye-tracking technology to
identify the significant influence of trees, water bodies, and hard paving on the public’s aes-
thetic preferences [28]. López-Martínez explored the public’s visual perceptual preferences
for Mediterranean landscapes based on landscape photographs. The final results showed
that water and vegetation fundamentally contributed to positive evaluation of the overall
landscape scene. In summary, the category and type of landscape elements can influence
public landscape preferences, with plant elements being a significant factor [29]. Actually,
in the study of traditional villages, the plant landscape was not as typical in terms of its
material appearance as historical buildings and buildings under the protection of cultural
relics. So, the plant landscape was often neglected. At present, meso- and macro-scale
landscape element recognition are mainly based on the use of high-resolution satellite
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images and remote sensing data [30,31]. Surface elements can be automatically selected
based on color, texture, shape, edge, spectral reflectance, and other features combined with
different classification algorithms [9,32,33]. The recognition accuracy of this method is
affected by the resolution of remote sensing data, the selection of classification algorithms,
and the accuracy of feature extraction methods [34,35]. The identification of microscale
landscape elements is mainly performed by using machine learning and model training
based on magnanimous photographs, such as micro-scale landscape element recognition
which mainly uses machine learning and model training, such as supporting vector ma-
chine (SVM), decision tree, convolutional neural network (CNN), and other models to
realize automatic extraction of element categories [36,37]. The recognition accuracy of this
class of methods depends on the quality of the features, models, and applied training data.

The material elements of the landscape are the basis of the landscape environment.
The attribute characteristics shown by different elements have different effects on landscape
aesthetic sensory perception. According to environmental psychology, aesthetic sensory
perception is a process in which human vision, hearing, touch, smell, and taste work
together, among which the information obtained through vision reaches 87% [38]. Vision
is the most direct and effective way of perceiving the landscape. Zhang et al. explored
the relationship between four spatial visual attributes, including the openness of visual
scale, the richness of composing elements, the orderliness of organization, the depth of
view, and landscape preference through realistic photographs. The results showed that the
public preferred landscape scenes with high openness and orderliness. Moreover, the high
richness of composing elements could positively affect the preference when the landscape
is in good order [39]. Rechtman explored the relationship between field size, lot shape, land
texture, crop texture built elements, and visual sensory preference of agricultural farming
landscape based on photographic works. The results showed that land textures, crop
textures, and lot shapes could help explain the visual preference of agricultural farming
landscapes [38]. Chen et al. investigated the relationship between public space patterns
in traditional villages and landscape aesthetic preference based on radar point cloud data.
The research showed that average contour upper height, solid-space ratio, vegetation
cover, and comprehensive closure are four indicator factors that significantly correlated
with aesthetic preference [9]. Huang et al. used eye-tracking technology to explore the
relationship between landscape features, preference, and viewing behavior. Their results
showed that more drastic hue variation and chromaticity were conducive to visual fixation.
There was a close relationship between landscape preference and the number of gazes
in mountainous, aquatic, and forest landscapes [40]. Cao et al. investigated the effect of
color block patterns on landscape preference in suburban forests. The research showed
that the average area of the color blocks was positively related to landscape preference,
and the number of color blocks, maximum patch index, and standard deviation of patch
size were negatively related to landscape preference [41]. These above studies showed that
landscape color features and spatial form features had a significant effect on landscape
aesthetic preference. In these cases, color and spatial form were mostly discussed separately,
while the effect of object features on landscape aesthetic preference was explored from a
single dimension. Currently, there is no unified standard for identifying plant colors. The
previous research mainly focused on qualitative description. Color extraction technology is
a method of processing images through computers to identify and extract specific color
information. The basic principle is to map the pixels in the image to the color space and
extract the colors of interest from it by setting thresholds, clustering algorithms, or color
histograms [42]. With the development of color theory and color extraction technology,
the colorimetric method, instrumental measurement method, and software extraction
method have been widely used. The first colorimetric method is mainly based on the Royal
Horticultural Society (RHS) color card, natural color system (NCS) color card, Munsell
color card, etc., for color extraction, which is suitable for collecting a large amount of color
data; the second instrumental extraction method is mainly performed by using a color
measuring instrument such as colorimeter, chromameter, spectroradiometer, etc., which is
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suitable for color extraction of plant organs nearby; the third software extraction method is
mainly based on photo images, using image processing software such as Colorimpact 4,
Photoshop CC 2018, and other software for color identification, which are simple and easy
to use [42]. Most of the existing studies were aimed at the quantitative identification of a
single plant, and few of them involved the color extraction of plant landscape communities.
The landscape of plant communities presented irregular three-dimensional spatial patterns.
Existing studies generally used tools such as a tape measure, measuring tape, infrared
rangefinder, and camera to map and record the sample plots and to describe the flat surface
and elevation patterns of the sample plots with the help of AutoCAD 2016, Photoshop
CC 2018, SketchUp 2018, and other drawing software [9]. It is difficult to quantitatively
describe the three-dimensional spatial pattern indexes. It requires a lot of time and labor
costs, and lacks timeliness as well. The Scenic Beauty Evaluation (SBE) proposed based
on the psychophysical paradigm proposed by Daniel and Boster is currently the most
common method for judging aesthetic preferences [43]. It is widely applied in various
types of landscapes, such as rural settlements, roads, waterfronts, settlements, national
parks, and so on [19,44,45]. Taking into account time and economic costs, existing studies
have mainly used landscape photographs as the evaluation medium, but the content
of traditional photos was limited by the angle of view, making it difficult to show the
panoramic view. Currently, judging the visual quality of landscapes based on the scenic
beauty evaluation method mainly involves calculating the evaluator’s composite score for
the scene’s environment, which is invariably limited by the sample data volume.

Based on the above analyses, landscape features in the three dimensions of land-
scape components, colors, and spatial forms of plant landscape all have an impact on
public landscape aesthetic sensory perception. Existing studies mainly remain on the
topic of qualitative description of landscape characteristics and explore the relationship
between landscape characteristics and aesthetic preference from a single dimension, which
often leads to a low prediction model of landscape aesthetic preference, and makes it
difficult to effectively explain the main landscape feature indicators affecting aesthetic
sensory perception.

To address these research gaps, this study aims to improve the accuracy of the land-
scape aesthetic sensory assessment methods from both the construction of the landscape
characteristic index system and landscape preference judgment. First, based on the pre-
vious single dimension of spatial form features, landscape components and plant color
features are added to expand the landscape special index system. A quantitative descrip-
tion of indicators is achieved with the help of digital technology. At the same time, the
traditional beauty degree evaluation is improved, and the score of each evaluation subject
for the scene environment is calculated, expanding the sample data volume. Finally, the
relationship between multi-dimensional landscape characteristics and landscape aesthetic
preference is constructed. It will provide a theoretical basis and references for the refined
conservation and regeneration of the landscape of traditional villages.

2. Materials and Methods
2.1. Research Area

Dongshan and Xishan are located in the southwest of Suzhou, on the east bank of
Taihu Basin, which is close to Shanghai. Suzhou is located in the southeast of Jiangsu
Province, which belongs to the eastern coastal area of China. The region has a long history
of congregation which can be traced back to the earliest Spring and Autumn Period in the
Wuyue Kingdom. A dozen ancient villages are distributed in Dongshan and Xishan, and
most of them lie in front of mountains and boast rivers around, showing distinguishing
regional characteristics. Dongshan is a peninsula that extends into Taihu Lake, surrounded
by water on three sides, with a total area of 96.6 square kilometers. The existing resident
population of it is more than 5300. Xishan Island belongs to the islands in the lake, with an
area of about 79.8 square kilometers, and the current population of it is about 45,000 people.
Four representative traditional villages at national level with relatively well-preserved
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historical features, namely Yangwan Village, Wengxiang Village, Dongcun Village, and
Zhili, were selected for this study. Yangwan has an area of about 11.86 square kilometers and
a resident population of more than 3600; Wengxiang has an area of 3.77 square kilometers
and a resident population of approximately 1000; Dongcun has an area of 0.07 square
kilometers and a population of about 700; and Zhili covers an area of about 2.1 square
kilometers and has a population of approximately 2000. The study selected 31 typical open
outdoor spaces in villages where residents and visitors carry out daily communication,
activities, and recreation based on field visits (Figure 1) [9], and the boundaries of the
sample plots were limited to forest edges, road edges, or corner lines of building side walls.
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Figure 1. Thirty-one sample sites in four traditional villages.

2.2. Data Collection

To restore the true feelings of people in open space, this study was based on panoramic
pictures to judge aesthetic preferences and to identify landscape elements and color features.
Panoramic photographs were taken using a fixed standard of shooting to simulate the
human point of view and comprehensively display the landscape features; the cameras
were placed in the center of the scene at the height of 1.6 m; and the photographs were
taken with the same Insta360 ONE X2, which was connected to the cell phone with the
positioning enabled by Bluetooth. It helped to locate the geographic coordinates and the
photographs were taken over 3 days from 23–25 November 2021, 9:30–11:30 a.m. and
2:00–4:00 p.m. During this period, the weather conditions were favorable and climatic
conditions were similar.

A handheld 3D laser scanner, model GEOSLAM ZEB-HORIZON, collected spatial
morphology data. The experimental staff member held the instrument in front of their
chest, then started walking from the starting point around the field. Then, he returned to
the origin to form a closed loop. Data collection was completed in this way. The spatial
collection of morphology data was completed at the same time.
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2.3. Research Methods

The research was structured into five steps. In the initial stage, a semantic segmen-
tation model was employed to quantitatively identify visual attraction elements within
traditional village public space landscapes, utilizing panoramic photos as the primary
data source. Subsequently, in the second step, a combination of colorimetric and software
methods was applied to extract the color information of plant communities through Col-
orimpact 4 software (Tiger Color, Akershus, Norway). The color characteristics were then
quantitatively described based on the Munsell color card theory. Moving on to the third
step, three-dimensional laser scanning technology was introduced. The irregular three-
dimensional space of plant landscapes was characterized using the R language 4.1.0 (R Core
Team, Vienna, Austria). The fourth step involved an enhancement of traditional beauty
evaluation methods, integrating virtual reality technology to assess the aesthetic prefer-
ences of the landscape scenes. Lastly, predictive models for aesthetic sensory perception,
tailored to different scenarios, were developed.

2.3.1. Identification of Visually Attractive Elements of the Landscape

1. Image Pre-processing

With color panoramic photographs as a medium, we used the image analysis method
during the research to evaluate the quality of rural plant landscapes. As a proxy for real-life
scenes, pictures could effectively measure the psychological and aesthetic feedback of the
visitors. In addition, with a wide field of view, panoramic images could comprehensively
record the study site’s visual information and facilitate their quantitative analysis by
computer vision techniques. About 28.8% of the periphery of the panoramic images had
severe distortions. In contrast, the central portion of the camera lens with a vertical field of
view spacing of ±30◦ had less distortion and better matched the visual range of human
eyes [46,47]. We referred to the method of Li Yin and Zhenxin Wang to exclude the most
distorted part of the image caused by the camera lens by cropping out part of the image.
This method could retain the observation content closer to the human perspective [48]. The
vision frame showed the view areas reflecting eyelevel equivalent pedestrian experience for
three directions: front (A), left (B), and right (C) (e.g., Figure 2). Additionally, the content
with the vision frame was low in degree of distortion.
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2. Scene elements identification and extraction

We used the deeplabv3 model trained on the ade20k dataset to extract the scene
elements. Ade20k has strong generalization properties, and its extensive use in rural
studies verifies its reliability for extracting elements of rural scenes [49]. In addition, the
ade20k dataset can identify tree, grass, plant, and sky elements (Table 1), which meets the
needs of this study. From the pre-experimental results, image segmentation trained by this
dataset was more fine-grained and could accurately outline the countryside plants as well
as other elements. As a result, we applied this method to extract each kind of element from
all images (e.g., Figure 3).

Table 1. Landscape element identification.

Index Explanation

Percentage of structure (Structure) Structure = (Swall + Sbuilding)/S. In the formula, Sstructure represents the pixel area of the structure,
including walls and buildings; in the scene, S represents the total pixel area of the panoramic image.

Percentage of sky (Sky) Sky = Ssky/S. In the formula, Ssky represents the pixel area of the sky; in the scene, S represents the total
pixel area of the panoramic image.

Percentage of earth (Earth) Earth = Searth/S. In the formula, Searth represents the pixel area of the earth; in the scene, S represents
the total pixel area of the panoramic image.

Percentage of grass (Grass) Grass = Sgrass/S. In the formula, Sgrass represents the pixel area of the grass; in the scene, S represents
the total pixel area of the panoramic image.
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2.3.2. Feature Identification of Landscape Colors

Color elements are quantitative indicators that condense most information in the
color composition and the color space pattern. The usual means of recording color data in
previous studies is to record the RGB values of colors [42]. But, the RGB triple values are
in fact not regular. It is challenging to quantify colors from the perspective of the visual
sensory characteristics of the human eye, making it difficult to apply the study’s results
in practice. To solve the above problems, the HSV color model (Hue, Hue, H; Saturation,
Saturation, S; Brightness, Value, V) is suitable for the visual characteristics of the human
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eye. This model was chosen to divide the color threshold interval, which was the one
that most closely matched the human eye’s ability to perceive colors and can quantify
colors non-isotropically and uniformly from the perspective of the human eye’s sensory
perception of the color characteristics. In conducting this study, the researcher used the
ColorImpact 4 software (Tiger Color, Akershus, Norway) to extract the colors present in
plant elements. Following this, researchers utilized the quantification method to categorize
the non-uniform colors in the HSB color model into intervals of H (Hue): S (Saturation):
V (Brightness) = 8:4:4. This process successfully yielded a total of 128 distinct colors (e.g.,
Figure 4). Representative colors in the same interval range were used to divide the color
intervals, which was convenient for quantifying and analyzing the color data in the later
stage. The HSV color model was used to describe the detailed color characteristics of
plants. According to the non-uniformly quantified color intervals, the colors were divided
into different interval ranges, and the three color components were evaluated in a one-
dimensional feature vector, that is, L = H × G s × G v + S × G v +V. In the formula, H,
S, and V denote the hue, saturation, and luminance, respectively; Gs and Gv denote the
number of quantization levels for S and V, which both have 4 levels. Therefore, the final
expression was L = 16 H +4 S + V. It could be seen that the weight distribution of the hue is
the largest. So, hue was the main factor to distinguish the color characteristics. The related
derived indicators were calculated based on the three HSV indicators (e.g., Table 2) [50].
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Figure 4. Example of color extraction.

Table 2. Landscape color recognition.

Index Explanation

Number of Colors (NC) NC = SUM(HaSbVc); HaSbVc ≥ 1%. NC represents the total number of extracted colors, excluding
black, white, and gray, with a pixel percentage of more than 1%.

Main Hue Comparison (MHi) MHi = NMHi/N × 100. NMHiis the pixel of primary color which occupies the largest pixel area in the
scene; N is the total number of pixels of the image.

Adjacent Hue Comparison (NHi) NHi = NHi/N × 100. NHi is the pixel of adjacent colors which are within 60 degrees of each other on
the left and right of the primary color in the hue circle; N is the total number of pixels of the image.

Complementary Hue Comparison (CHi) CHi = NCH/N × 100. NCH is the pixel of complementary colors which are within 180 degrees of the
primary color; N is the total number of pixels in the image N is the total number of pixels of the image.

Warm and cool color tone contrast (THi) THi = NHf/NHw × 100. NHf is the pixel of cool colors; NHw is the pixel of warm colors.

Color Diversity Index (H’) H′ =
S
∑

i=1
Pi ln Pi; Pi represents the percentage of color i; S represents the total number of extracted

colors, S = NC.

Color Evenness Index (E’) E’ = H’/lnS. H represents the color diversity index; S represents the total number of extracted colors,
S = NC.
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2.3.3. Identification of the Spatial Morphology Characterization of the Landscape

1. Data pre-processing

Firstly, the point cloud data were cropped, denoised, and ground points were extracted
and normalized to retain the relevant point clouds in the study area while reducing the
amount of data. Then, cropped and retained the necessary study objects and separated
the hard surfacing point cloud and the tree canopy point cloud for subsequent analyses.
Due to the influence of external factors such as human beings or animals, many outliers,
namely noisy points, inevitably existed in the point cloud data. To improve the accuracy
of subsequent data analysis, noise reduction processing was required. In this study, the
distance between points was applied as the primary measure. On the basis of the experience
of previous experiments, it was set to be 10 points in surroundings. Then, the median and
standard deviation of the average distance of the points in the domain were calculated.
Meanwhile, to improve computational efficiency, the box grid filer was set to 0.1 m for
filtering based on satisfying the computational accuracy, and the sample point cloud was
reduced from ten million orders of magnitude to less than 50 w.

2. Construction of spatial morphology characterization indexes

This study utilized a traditional index system to characterize the spatial morphology
of public areas in the village that have been previously constructed. The system is based
on three-dimensions horizontal interface, vertical interface, and three-dimensional spatial
level. It included various parameters such as accessible area ratio (AAR), eccentricity rate
(E), Spatial Shape Index (SSI), Average Height of Upper Contour (hu), average height of
lower contour (hl), solid-space ratio (SVR), contour fluctuation range (FR), fluctuation
variance of upper contour (FVU), fluctuation variance of lower contour (FVL), vegetation
coverage (VC), plant diversity index (PDI), three-dimensional green visibility (3D-GVI),
enclosure degree (ED), and composite closure (CC) [9]. These 14 spatial morphology
indicators were used.

3. Quantitative identification of spatial morphological indicators

Indicators were mainly calculated using Lidar360 v3.2 software combined with R
language. The area and length class indicators were calculated by projecting the point
cloud of the study area to the XOY plane, and then carrying out edge extraction to identify
the edge contour, thus calculating the area within the contour. The height metrics were
calculated by outputting the point cloud data as raster data, thus calculating the edge height
within the raster. The long and short axes in the site were calculated using the traversal
method, which calculated the Euclidean distance from each point to each of the other
points, with the maximum value being the long axis and the minimum value being the
short axis. The 3D canopy volume was calculated using the α-shape method to construct
convex packets and accumulate the volume of each convex packet to derive the 3D green
volume.

2.3.4. Evaluation of Landscape Aesthetic Preference

This research has been approved by the Ethics Review Board of Nanjing Forestry
University and the participants have given their informed consent. Scenic beauty estimation
(SBE) is widely used to evaluate landscape quality, focusing on visitors’ aesthetic feelings
for landscape scenes. Considering the evaluator’s ability to operate technological products
and excluding the influence of utilitarian aesthetics, this study selected a total of 64 students
and experts with landscape professional backgrounds, of which 40 were students, and 24
were experts, for scoring. The panorama photos were imported into the Baidu VR platform,
and the images were converted to human perspective 360◦ autonomous rotating VR images,
and the evaluators wore VR glasses with the VIVE-VR model for evaluation and scoring.
The evaluation rating was divided into 5 levels, with corresponding scores from 1 to 5,
indicating dislike very much, dislike, neutral, like, and like very much, respectively. The
value of SBE was calculated based on scoring from multi-population for the scenes. In this
study, the quality of the 31 rural landscape scenes was audited directly by the results of
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visitor scoring. As each visitor could be taken into account, compared to calculating the
SBE, the method in this study effectively expands the sample size (64 times the SBE).

The validity of visitor scoring has been proved in previous studies related to SBE. This
study used one-way ANOVA to test whether there is a difference in the scoring of different
scenes. On this basis, this study used the ICC (intraclass correlation coefficient) to evaluate
the reliability scale between expert and student scoring on the same scene.

2.3.5. Statistics Analysis

1. Data pre-processing

The three types of indicators of the rural plant scene differ greatly in their scale due to
their different sources as well as units of measurement. Therefore, they were subjected to
maximum–minimum normalization to map the data features into the interval [0, 1] and
remove the influence of the scale on the assessment results. The formula is as follows:

Xmmx =
X − Xmin

Xmax − Xmin

where X is the original data, Xmmx is the normalized data, and Xmin and Xmax are the
minimum and maximum values of the original data, respectively.

2. Assessment Model Establishment

In previous studies, the excellent assessment capability of a linear model for SBE grade
evaluation was validated. This study utilized a multiple linear regression model to predict
visitor scoring by selecting indicators such as spatial morphological characteristics, feature
composition, and vegetation color characteristics of rural plant scenes as predictors. The
parameters of the linear model were solved using the least squares method. The model
formula is as follows:

Ŷ = β1X1 + β2X2 + . . . + βnXn + β0

where Ŷ is the assessment of visitor scoring, n is the number of predictors included in the
model, Xn is the nth predictor, and βn is the standardized regression coefficient of the nth
predictor.

In addition to the full model with all indicators as predictors, the optimized model
with streamlined indicators as predictors was established. Based on principal component
analysis, indicators with a higher contribution rate were selected for all-subsets regression
analysis. Adjusted R2, Mallows’ Cp (Cp), and the Bayesian Information Criterion (BIC)
were used to determine the optimized model.

3. Results
3.1. Result of Public Landscape Preference

Figure 5 illustrates the results of the scores from 40 students and 24 experts. The
one-way ANOVA result (F = 147.005, Sig < 0.001) indicated that the difference in scoring
across 31 scenes was statistically significant, while the ICC result (ICC = 0.969, p = 0.00107)
indicated the agreement between experts and students in scoring. In other words, the
difference in visitors’ aesthetic feelings for 31 scenes, and these differences were not affected
by visitors’ professional background. Accordingly, this study treated experts’ and students’
scoring of scenarios consistently.
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3.2. Quantitative Recognition Results of Landscape Features
3.2.1. Quantitative Results of Spatial Morphology

The quantitative result of spatial morphology is shown in Table 3. The value of the
variance of the upper and lower contour fluctuations was in the range of 10–16 levels,
indicating that the drastic degree of upper and lower contour fluctuations of traditional
villages in the Dongshan and Xishan regions was extremely small. So, the data in the table
were not shown. The average of the accessible area ratio (AAR) value of the sample plots
in the horizontal interface indicator (HII) reached 31.45%, and the average value of the
eccentricity of bottom surface morphology (E) of the sample plots was 1.4489. Most of
the sample plots showed a narrow and elongated morphology. The average spatial shape
index (SSI) value was 257,269.50, and the standard deviation reached 302,740.87, indicating
that the bottom surface morphology of the sample plots was more complex. The vegetation
coverage (VC) of the sample plots was generally high, with a mean value of 60%. The
average height of the upper layer of vegetation (hu) ranged from 4.23 m to 27.54 m. The
average height of the lower layer of vegetation (hl) ranged from 0.50 m to 5.36 m, which
indicated that the vegetation in the villages was generally higher, and the lower layer of
shrubs was lower. The solid-to-void ratio (SVR) of vertical interface ranges from 0.0015
to 0.0174, with a mean value of 0.0056, indicating that the vertical interface was more
open. The three-dimensional morphology index enclosure (ED) indicator ranged from
0.0037–0.2161 with a mean value of 0.0731, and the composite closure (CC) ranged from
0.0753–0.5337 with a mean value of 0.2365, with both indicators indicating high spatial
openness. The three-dimensional spatial green visibility (3D-GVA) ranged from 0.0397 to
0.2608, with a mean value of 0.1094. Meanwhile, the plant diversity index revealed that the
selection of tree species in villages was relatively unified.

Table 3. Results of morphological quantification.

Spatial
Composition

Morphological
Characteristics Index Minimum Maximum Mean Value Standard

Deviation

Horizontal
interface

AAR 0.076 0.8563 0.3145 0.1819
E 0.1455 2.7862 1.4489 0.5351

SSI 29,816.11 1,381,168.18 257,269.50 302,740.87
VC 0.2014 0.9202 0.6102 0.3519

Vertical interface

SVR 0.0015 0.0174, 0.0056 0.0033
FR 0.4146 1.9128 0.9397 0.3339
hu 4.2324 27.5353 11.9914 5.3382
hl 0.4996 5.3626 2.2667 1.1749

Three-dimensional
space

3D-GVA 0.0397 0.2608 0.1094 0.0548
ED 0.0037 0.2161 0.0731 0.0484
CC 0.0753 0.5337 0.2365 0.1301
PDI 0.1732 1.8919 1.105 0.4049

3.2.2. Results of Landscape Element Identification

The results of the identification of landscape elements are shown in Table 4 below.
Vegetation and structure were the leading landscape elements that constituted the open
space of traditional villages. The structure proportion ranged from 0.84% to 56.93%, with a
mean value of 31.14% and a standard deviation of 0.1147. The proportion of bare land in
the sample space was low, and the mean value was 5.39%, which indicates that the open
space of traditional villages in the region had a high green coverage rate, except for hard
paving. The mean value of the proportion of trees in the scene environment reached 14.48%,
and the interval range was 1.55%–43.82%, while the proportion of the lower ground cover
was lower, with a mean value of 1.94%. The data indicated that the vegetation level in the
sample space is more homogeneous, with fewer shrubs in the middle layer.
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Table 4. Results of landscape element identification.

Landscape Elements Minimum Maximum Mean Value Standard Deviation

structure 0.0084 0.5693 0.3114 0.1987
sky 0.0236 0.4923 0.2892 0.1205

earth 0 0.1881 0.0539 0.0556
tree 0.0155 0.4382 0.1448 0.1035

grass 0 0.1488 0.0194 0.0398

3.2.3. Results of Landscape Color Recognition

The results of the identification of scene landscape color features are shown in Table 5
below. The number of colors ranged between 3–8, with an average of 5 colors per scene.
The main hue of the scene environment was reddish, with low saturation and low value.
The distribution of hues in the scene was more dispersed, with fewer neighboring colors,
the range of the main hue was 0.57%–22.52%, and the proportion of neighboring colors
was 0.22%–17.12%. The scene had almost no complementary colors, and the proportion
of complementary colors tended to be 0. The scene environment mainly showed warm
tones, and the proportion of warm and cold colors ranged from 0 to 62.23%. The mean
value of the color diversity index reached 0.42, with a wide range of colors. However, the
color index was not high, with a mean value of 0.25 and a range of 0.04–0.55.

Table 5. Results of landscape color recognition.

Landscape Color Characteristic Index Minimum Maximum Mean Value Standard Deviation

Number of Colors (NC) 3 8 5 1
Main Hue Comparison (MHi) 0.0057 0.2252 0.0853 5.6911

Adjacent Hue Comparison (NHi) 0.0022 0.1712 0.0496 4.3807
Complementary Hue Comparison (CHi) 0 0.0024 0.0041 0.582
Warm and cool color tone contrast (THi) 0 0.6223 0.0757 0.1256

Color Diversity Index (H’) 0.0444 0.884 0.4244 0.2119
Color Evenness Index (E’) 0.0404 0.5493 0.2456 0.121

3.3. Landscape Preference Assessment
3.3.1. Indicator Screening

To reduce the parameters and dimensions of the calculation, this study conducted
a principal component analysis of the indicators. It calculated the contribution of each
indicator in different principal components. Significantly, the first seven principal compo-
nents and the second principal component presented more than 75% of the information
(Table 6) [9]. Therefore, we only took the index contribution rates in the first seven principal
components into consideration. Descriptions of the contribution rate of each indicator are
in the figure below (Figure 6). Indicators that contributed more than 50% were screened:
AAR, VC, FR, hu, hl, FVu, 3D-GVA, CC, structure, tree, MHi, Nhi, CHi, THi, H’, and C’.

Table 6. Total variance explained.

Component Initial Eigenvalues Extraction Sums of Squared Loadings

Total % of Variance Cumulative % Total % of Variance Cumulative %

1 5.843 22.475 22.475 5.843 22.475 22.475
2 3.774 14.515 36.99 3.774 14.515 36.99
3 3.335 12.826 49.815 3.335 12.826 49.815
4 2.452 9.429 59.244 2.452 9.429 59.244
5 1.96 7.539 66.783 1.96 7.539 66.783
6 1.755 6.749 73.532 1.755 6.749 73.532
7 1.373 5.281 78.813 1.373 5.281 78.813
8 1.22 4.692 83.505 1.22 4.692 83.505
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The 16 screened indicators were adopted in the all-subsets regression (Figure 7). When
the predictors were seven, adjusted R2 peaks, and Cp and BIC were minimized, indicating
that the model with streamlined indicators was optimal, and the corresponding predictors
were AAR, FR, CC, tree, NHi, CHi, and THi.
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3.3.2. Result of Public Landscape Preference Assessment

All indicators as predictors were included in the multiple linear regression to build
Model 1; the streamlined 7 predictors were included in the multiple linear regression model
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to build Model 2. As shown in Table 7, the adjusted R2 = 0.656 for Model 1 indicated that
all indicators explain 65.6% of the variation in visitor scoring. The adjusted R2 = 0.491
for Model 2 indicated that the 8 streamlined indicators explain 49.1% of the variation in
the visitor scoring. The Durbin–Watson values for Model 1 and Model 2 were 0.586 and
0.389, respectively, and were both consistent with independence. The two models’ residual
histograms and P-P plots were as follows (Figures 8 and 9). The residual histograms obeyed
the normal distribution, the mean was close to 0, and the standard deviation was close to
1 (standard normal distribution), which meant that the linear regression was attained at
the condition of normality. At the same time, the P–P plots also indicated that the model
matches the condition of normality, which thoroughly explained the validity of the models.
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Table 7. Model summary.

Model R R2 Adjusted R2 Std. Error of the Estimate Durbin-Watson

1 0.813 0.661 0.656 0.812 0.586
2 0.702 0.493 0.491 0.988 0.389

Table 8 shows the coefficients for Model 1 and Model 2. VC, FVu, structure, grass, NC,
Nhi, and H’ in Model 1 were not significant at 95% confidence intervals. This indicated
that VC, FVu, structure, grass, NC, Nhi, and H’ hardly predict visitor scoring. Based on the
beta coefficients, the accessible area ratio (AAR), spatial shape index (SSi), solid vacancy
ratio (SVR), contour fluctuation variance (FVl), sky, tree, main hue percentage (MHi), warm
and cool color tone contrast (THi), and color index (C’) can be entered into the Model 1
had a positive effect on landscape aesthetic preferences. Eccentricity (E), upper contour
mean height (hu), three-dimensional green volume (3D-GVA), degree of enclosure (DOE),
composite closure (CC), plant diversity index (PDI), earth, and complementary color ratio
(CHi) had adverse effects on landscape aesthetic preferences. The final model expression
for Model 2 was:
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Ŷ = 0.464AAR + 0.385FR − 0.819CC + 0.317TREE + 0.4NHi − 0.454CHi − 0.598THi + 1.545

Table 8. Model coefficients.

Model Predictors B β t p

1 (Constant) 0.362 0.416 0.678
AAR 2.657 0.44 11.531 0

E −1.93 −0.278 −10.088 0
SSI 0.738 0.117 2.475 0.013
VC 0.766 0.142 1.846 0.065
SVR 5.005 0.735 15.308 0
FR 1.774 0.281 2.428 0.015
hu −3.222 −0.524 −4.124 0
hl 2.827 0.485 10.427 0

FVu −0.531 −0.072 −1.837 0.066
FVl 2.245 0.298 7.731 0

3D-GVA −2.106 −0.371 −9.438 0
DOE −0.942 −0.152 −2.417 0.016
CC −1.312 −0.265 −4.416 0
PDI −1.859 −0.283 −9.696 0

Structure 0.181 0.046 0.918 0.359
Sky 1.41 0.247 4.347 0

Earth −1.108 −0.233 −7.882 0
Tree 2.081 0.364 4.209 0

Grass 0.341 0.065 0.696 0.486
NC 0.662 0.063 0.676 0.499

MHi 1.258 0.232 3.531 0
NHi −0.735 −0.135 −1.559 0.119
CHi −3.13 −0.551 −15.23 0
THi 1.978 0.343 5.849 0
H’ −6.68 −1.198 −1.863 0.063
C’ 8.66 1.464 2.811 0.005

2 (Constant) 1.545 24.825 0
AAR 2.801 0.464 21.084 0

FR 2.433 0.385 17.638 0
CC −4.062 −0.819 −29.062 0
Tree 1.811 0.317 11.063 0
NHi 2.173 0.4 15.429 0
CHi −2.578 −0.454 −21.334 0
THi 3.451 0.598 31.891 0

4. Discussion

To advance the regional and cultural significance of landscape resources in urban-
rural areas and promote the sustainable development of villages, tourism, and cultural
exchanges, we needed to understand the connection between aesthetic sensory perception
and the landscape environment and identify which landscape characteristics could con-
tribute to human mental and physical status and well-being. Many studies have explored
landscape characteristics and public aesthetic preferences from a single dimension. How-
ever, studies integrating multidimensional features to explore the factors that influence
landscape preferences were still scarce. There were many limitations, such as insufficient
quantification of landscape feature indicators and low accuracy of landscape preference
assessment models. This study aimed to compensate for these deficiencies in two aspects.
First, based on the existing landscape spatial morphology dimensions, this study expanded
the landscape feature characterization system by introducing two dimensions, namely,
landscape visual attraction elements and plant landscape color. At the same time, the
traditional beauty degree evaluation was improved and the score of each evaluation subject
for the scene environment was calculated, expanding the sample data volume. We focus
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on two main research questions: (1) identifying the main features that influence landscape
aesthetic preference and analyzing the influencing mechanisms; (2) how to improve the
progress of the landscape aesthetic preference assessment model. The following discussion
will focus on these two aspects.

4.1. Expanding the Dimensions of Landscape Characteristics Influencing Aesthetic Sensory Perception

The results of the study showed that seven landscape feature indicators, namely,
accessible area ratio (AAR), fluctuating range of contour (FR), comprehensive closure (CC),
tree, neighboring color ratio (NHi), complementary color ratio (CHi) and warm and cool
color tone contrast (THi), had a significant effect on aesthetic preference. The influence of
trees on landscape preference at the level of landscape elements was significantly higher
than that of other elements, and it was a positive factor that affected aesthetic sensory
perception. Trees were the primary type of vegetation in the public space of traditional
villages, and in line with previous studies, an aesthetically pleasing environment was
associated with plants [51–53]. The positive influence of plants, as the leading natural
element of landscape composition, could be explained by ecological and evolutionary
theories. They could create an environment where the provision of nature allowed for
humans to retain an affinity for the original natural ecological dynamics and humans could
enjoy the natural environment and the relaxing atmosphere [54]. The previous study’s
explanation for the Chinese people’s fondness for village plants was that urbanization in
China over the past few decades had caused severe ecological damage and that economic
development had intensified the demand for green space, thus making lush vegetation
the ideal image of the village landscape for tourists [54]. The type of village vegetation
(herbaceous vs. tree) in the study by Arriaza et al. did not produce a statistically significant
effect in the regression analysis of the variables, while the percentage of vegetation in the
picture was considered an important attribute of the village landscape [20]. Whereas the
vegetation cover type trees had a statistically significant effect in this study, herbaceous
trees did not provide an adequate explanation for the public aesthetic preference, which
may be related to the monoculture vegetation composition of traditional villages because
the percentage of herbaceous was relatively low there and was dominated by tall trees and
crops, excluding the bare land.

Accessible area ratio (AAR) and contour fluctuation range (FR) in the spatial form
dimension were positive factors that significantly affect landscape aesthetic preference.
Comprehensive closure (CC) negatively affected landscape aesthetic sensory perception.
Accessible area ratio (AAR) somehow indicates the space available to the public per unit
of area. The description of popular landscape scene environments in previous studies
was large landscape spaces that were naturally open and suitable for transportation and
activities, giving a sense of nature [55,56]. It suggested that the accessibility of landscape
spaces and the social and recreational activities that they accommodated had a positive
effect on landscape preferences. This was consistent with landscape sensory restoration
theory, where one of the four characteristics of restorative environments was compatibility.
It suggested that good landscape spaces had sufficient content and structure to provide
activities that were relatively consistent with individual purposes and preferences, thus
satisfying the activity needs of different users [57]. Previous studies have shown that people
preferred scenic environments that were open in scale and organized, which was different
from the results of this study [58,59]. The contour fluctuation range (FR) indicated the size
of the fluctuation range of the highest point of the plant canopy line at the vertical interface,
which to some extent destroyed the orderliness of the vertical interface. The study by Zhang
et al. showed that the interactions between visual attributes could lead to inconsistencies
in the interpretation of the main influences on landscape preference [39]. After careful
analysis, it was be found that the range of contour fluctuation (FR) and the variance of
upper contour fluctuation (FVu) together reflected the orderliness of the contour on the
vertical interface. In this study, the upper contour fluctuation variance (FVu) was infinitely
close to 0, which indicated that the intensity of contour fluctuation on the vertical interface
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in the 31 scene environments was very small. It had already possessed good order in itself,
while the increase in the fluctuation range was to strengthen the richness of the whole
map surface. Thus, the landscape preference of the scene was enhanced, which validated
previous research that richness showed an unstable effect on people’s preference, and that
richness had a positive effect only if the sense of order was high [60]. Berlyne’s study also
explained this phenomenon by suggesting that there was an inverted U-shaped functional
relationship between scene richness and landscape preference, where landscape preference
was initially positively related to scene richness, and then negatively related when a certain
threshold was reached [61]. The composite closeness index (CC) measured the degree of
closeness of the whole scene environment. It was negatively correlated with landscape
aesthetic preference but in line with the explanation of people’s preference for scenes with
open visual scales in previous studies, while it seemed to contradict the explanation of
people’s preference for scenes with a high proportion of tree elements. Prospect-refuge
theory can provide a reasonable explanation for this: people want to be able to observe
others but not be seen by others [62]. The openness of the line of sight provides a good
viewing experience, and the increase in the proportion of trees enriches the depth of the
field of view, while providing a certain degree of shading.

The proportion of neighboring hues (NHi) and the proportion of warm and cool hues
(THi) at the dimension of landscape color characteristics were positively correlated with
landscape perceptual preference, and the proportion of complementary hues (CHi) was
negatively correlated with it. Previous related studies have shown that large areas of warm-
colored plants in autumn can create a warm and peaceful feeling, and the combination of
adjacent red and yellow colors makes it more likely to form a harmonious color combina-
tion [63]. With a softer and more fluid excess between colors, it helps the public to process
visual information more easily, and at the same time creates an emotional experience of
calmness, gentleness, and serenity, which is thus preferred by the public [64]. These results
explained the positive effect of the proportion of neighboring hues (NHi) on landscape
preference in this study, where panoramas were also collected in autumn, and the color
of the foliage trees were dominated by reddish-yellow tones. Zhuang et al. showed that
increasing the proportion of cool colors and green vegetation in the urban floristic mirror
can enhance aesthetic preference [40], which was in line with the results of the present
study but contrary to the findings of Luo et al., which were consistent with the results of
this study but contrary to the results of Luo et al. A possible explanation for this was that
based on the theory of color psychology, warm colors are more likely to produce physiolog-
ical stimulation than cool colors, and rural landscapes are considered to be rejuvenating
or tranquil environments [51,65,66]. The proportion of cool-colored vegetation in the 31
scenes was generally small. Scenes in which the proportion of cool-colored evergreens
was slightly higher were more likely to create an atmosphere of calmness, gentleness, and
serenity, thus enhancing people’s aesthetic preference. Luo et al. showed that the number
of experimental colors is between 5 and 7. Among them the color leaf index was high, and
the large area of uniform fall warm colors were easily preferred by the public [64]. This
can be used to explain why the complementary hue ratio (CHi) hurt landscape aesthetic
sensory perception in this study. The sample sites selected in this study had relatively
few plant species, of which were colorful foliage plants of similar hues. And the whole
picture was relatively uniform, so the increase in complementary colors would destroy the
sense of order of the whole picture and make it difficult to obtain uniformity. The study
by Kuper showed that attentional restoration was positively correlated with landscape
sensory perception, and according to the theory of attentional restoration, exposure to
warmer colors was more likely to be preferred by the public [67]. According to the theory
of attention restoration, exposure to restorative environments will cause fascination or
effortless attention, which can also explain people’s preference for scene environments with
low complementary hue ratios and relatively uniform hues.

Based on the above analysis, we can describe the ideal public space scene environment
of traditional villages, where people can enjoy a wide view, a high proportion of trees, and
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mild and uniform color tones. The ideal public space is suitable for passages and activities
and can produce a restorative and peaceful atmosphere. The way people pay attention to
the landscape and the attractiveness of landscape features differs in different landscape
sensory perceptions, and landscape features are directly affected by the sensory process,
so these sensory perceptions can be strengthened by artificial landscape feature design.
Although landscape preference is influenced by many aspects, the most important factor
affecting the landscape preference of traditional villages is related to the ideal image of the
countryside in people’s minds, which is based on the symbolic experience of the perceiving
subject for the space. In the subsequent renewal and protection of traditional villages,
government authorities and planning and design departments should encourage public
participation, considering the physical structure of the landscape in conjunction with its
value and meaning, to create a more inclusive environment, thus promoting the sustainable
development of rural habitat.

4.2. Improvement of the Effectiveness of the Aesthetic Sensory Assessment

Compared with previous studies, this study mainly improved the accuracy of model
assessment accuracy from in various aspects. On the one hand, we analyzed the previous
landscape scores and the scores of each evaluation subject separately. The sample num-
ber was expanded to 64 times of that of the original, which helped to obtain more stable
assessment results. On the other hand, based on the previous spatial morphology single-
dimension indicators, two-dimensional feature indicators of landscape visual elements and
landscape color were introduced, which helped refine the influence dimensions of aesthetic
sensory perception. The conditions were conducive to a more comprehensive understand-
ing of the landscape characteristics of the public space of traditional villages. Previous
studies have shown that the multiple linear regression model was more advantageous in
the assessment of landscape rating, with the coefficient of determination R2 = 33.2% and
root mean square error RMS = 64.774, but only four significantly related morphology index
factors were selected to participate in the construction of the model, making it difficult to
understand the influence of other index factors on the assessment of landscape preference.
In this study, the multiple linear regression model was also chosen to predict landscape
preference, and all indicators of the three dimensions were included in the construction
of the model, with the adjusted R2 reaching 65.6%. The study streamlined the indicators
based on the comprehensive indicator multiple linear regression model, screening seven
significantly related indicators through principal component analysis and full subset re-
gression analysis to participate in the model construction, and the R2 of the streamlined
model reached 49.1%, which was also higher than that of 33.2% in the previous study. Both
models demonstrated the scientific rationality of the increase in indicator dimensions, and
the assessment accuracy of landscape preference was effectively improved based on the
previous single dimension. At the same time, the two models could be adapted to different
scenarios. The full-indicator assessment model contains all the available indicators, com-
prehensively considers the landscape characteristics, and better captures the diversity and
comprehensiveness. They paid attention to the interrelationships between the indicators
of different dimensions, which contributed to the fine management and enhancement of
the landscape of the public space of traditional villages. The streamlined predictive model
was suitable for rapid judgment of environmental aesthetic sensory perception and could
quickly improve the quality of spatial landscape environment in a short period.

4.3. Limitations and Future Work

Aesthetic sensory perception is a multidimensional perception process, which is jointly
influenced by the aesthetic object and the perception subject. Although this study added
two dimensions of landscape visual attraction elements and landscape color characteristics
based on previous studies, the influence of other dimensions of landscape characteristics
cannot be excluded. Subsequent studies should further improve the indicator system of
landscape features and explore how the mutual combinations of visual attributes affect
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aesthetic sensory perception, as well as how to better control confounding factors to
facilitate inter-comparisons between studies. Moreover, the morphological and color
characteristics of plant landscapes are time-sequential. The landscape characteristics show
great differences in different seasons or different periods of the same season. Therefore,
subsequent research should further strengthen the identification of landscape characteristics
at different times. At the same time, in the study, buildings, walls, and some other artificial
facilities, including poles, were uniformly classified into structures without making further
distinctions. Follow-up research will subdivide the composition of the structure and explore
the impact of various visual attraction elements on aesthetic sensory perception. Although
visual sensory perception is the main way of landscape aesthetics, the role of auditory,
tactile, olfactory, and gustatory senses in the process of aesthetic sensory perception should
not be ignored [68,69]. As a result, subsequent research should comprehensively consider
the influence of human perceptual organs on aesthetic sensory perception. In addition, this
study was based on the construction of aesthetic sensory perception assessment model
for 31 scenarios of traditional villages in Dongshan and Xishan of Taihu Lake, Suzhou,
and the values of each index have a certain range. Therefore, it is difficult to explore the
relationship between landscape features and landscape preference beyond the range of the
values, and the subsequent study needs to further increase the sample capacity to reveal
the general pattern of the public’s aesthetic preference for the landscapes of the traditional
villages. The following research needs to further increase the sample volume to reveal the
general public aesthetic sensory perception of traditional village landscape.

5. Conclusions

This study expanded the landscape characterization system for the public space of
the traditional village by integrating multiple dimensions: landscape spatial form, visually
attractive elements of the landscape, and their colors. It quantitatively identified each
index feature based on machine learning and LiDAR scanning technology. The traditional
scenic beauty evaluation (SBE) method was improved to construct the aesthetic sensory
perception assessment model with all indicators and indicators of significant influence.
The accuracy of the full-indicator aesthetic sensory assessment model (R2 = 65.6%) is
higher than that of the significant influence indicator aesthetic sensory assessment model
(49.1%). The assessment accuracy of both models is greatly improved compared with that
of the assessment model of the previous study (R2 = 33.2%). The results showed that the
accessibility area ratio (AAR), spatial shape index (SSI), solid vacancy ratio (SVR), contour
fluctuation range (FR), the average height of lower contour (hl), variance of lower contour
fluctuation (FVl), sky, tree, main color hue (MHI), warm/cold hue (THi), and color index
(C’) were able to enhance the public’s preference for public space in traditional villages.
Eccentricity (E), average height of upper contour (hu), three-dimensional green volume
(3D-GVA), degree of enclosure (DOE), comprehensive closure (CC), plant diversity index
(PDI), earth, and complementary colors (CHi) reduced the public’s aesthetic preferences for
the public space in traditional villages. Among them, the significant impact factors were
AAR, FR, CC, tree, NHi, Chi, and THi. The study revealed the public aesthetic sensory
perception of the public space of traditional villages, providing scientific and theoretical
guidance and a basis for relevant decision-making departments and planning and design
companies. Thus, it promoted the sustainable development of the rural living environment
and provided a good relaxation environment for the physical and mental health of urban
and rural residents.
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