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Abstract: Vegetation cover in the Loess Plateau region is an important component of ecological pro-
tection in the Yellow River Basin, and this study provides a scientific reference for further vegetation
restoration. Based on Landsat images and related data, we utilized the dimidiate pixel model and
Geodetector method to study the vegetation cover in the Wuding River Basin from 2000 to 2022.
The results indicated the spatial and temporal distribution of the vegetation cover and its changes
over the study period. Additionally, the driving factors influencing its spatial changes were also
uncovered. We also propose a land use shift vegetation cover contribution formula to quantify the
effect of land type change on the FVC. The study showed that (1) the overall vegetation cover of the
watershed increased significantly, and the FVC showed an increasing trend from 2000 to 2013 and a
slow decline from 2013 to 2022, with the gradual transformation of low-graded FVC into a higher
graded one. (2) The FVC increased spatially from northwest to southeast, and the trend of future
changes is mainly decreasing. (3) The strongest explanatory power for the FVC change is the land
use type and its interactive combination with rainfall. (4) The conversion of grassland to cropland
contributes the most to the vegetation cover at 1.52%, and the increase in the cropland area is more
conducive to the increase in the vegetation cover.

Keywords: contribution of vegetation cover; FVC; spatiotemporal analysis; Wuding River Basin;
GEE; dimidiate pixel model

1. Introduction

The ecological environment serves as the foundation for human survival and devel-
opment, as well as the basis for economic and social progress. In the past half-century,
the intensification of climate change and human activities has posed significant threats to
natural ecosystems [1]. As one of the most important components of terrestrial ecosystems,
vegetation connects ecological elements such as atmosphere, soil, and hydrology, and
plays an important role in maintaining ecosystem stability [2]. Therefore, conducting the
dynamic monitoring and trend analysis of vegetation changes across large spatial scales
and extended time series has become integral to ecological conservation efforts. Fractional
vegetation cover (FVC), typically defined as the percentage of land surface area occupied
by vertically projected vegetation within an observation area, stands out as one of the most
crucial indicators for elucidating ecological changes [3]. In the context of climate change,
accurate and long time series of vegetation cover data can better reflect the distribution
characteristics and trends of vegetation, and thus provide a scientific basis for ecosystem
stability [4]. Based on MODIS-NDVI data, Liu et al. [5] explored the characteristics of
spatial and temporal changes in vegetation cover and future trends in the Qinba Mountain
region from 2000 to 2014, and analyzed their driving factors. Hao et al. [6] studied the
spatial and temporal distribution and change characteristics of vegetation cover in the
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Yellow River Basin during 2009–2018 based on SPOT-NDVI data, and predicted its future
development trends. Zhang et al. [7] investigated vegetation cover changes and their
influencing factors in the Inner Mongolia river section of the Yellow River Basin from 2001
to 2018 using MOD13Q1-NDVI data, and predicted vegetation growth for the next 10 years
using the XGBoost method.

Undoubtedly, multi-temporal, high-resolution remote sensing technology provides
a rich source of data for vegetation cover studies, and related methods such as physical
modeling, empirical modeling, and hybrid image decomposition have been gradually
applied [8]. The physical modeling method entails numerous parameters and complex
calculations, while the empirical modeling method exhibits limited applicability. Within
the hybrid image decomposition method, the dimidiate pixel model posits that a single
image comprises two parts: plants and soil. Separate models are constructed for each
part to acquire information, resulting in higher accuracy. This approach is primarily
used for constructing vegetation cover extraction models [9]. Li et al. [10] employed the
dimidiate pixel model to calculate the vegetation cover of the Inner Mongolia Autonomous
Region (IMAR) from 2000 to 2013 and conducted an analysis of the trend in the FVC.
Zhang et al. [11] employed the dimidiate pixel model and the image difference method to
process and analyze Landsat data, investigating the spatial and temporal characteristics of
vegetation cover in the Santun River Basin. Being one of the classical models in the field of
vegetation cover, the dimidiate pixel model is capable of effectively mitigating the effects
of factors such as atmospheric or soil background.

The spatial distribution and changes in vegetation cover exhibit unique spatial het-
erogeneity under the combined influence of intricate natural environments and human
activities. Exploring the hidden drivers of regional vegetation cover changes is thus par-
ticularly important. Geodetector, a set of statistical methods proposed by Wang [12], can
directly quantify the interactions and impacts of driving forces without strictly adhering
to traditional statistical assumptions. Zhang et al. [13] explored the drivers of spatial
and temporal changes in vegetation NDVI in Inner Mongolia from 2000 to 2015 using
the Geodetector method, showing that annual precipitation had the highest explanatory
power and dominated the spatial and temporal distribution of vegetation NDVI along
with the soil type and vegetation type. Based on MOD13Q1-NDVI data, Li et al. [14] used
the Geodetector method to explore the driving factors of spatial and temporal changes in
vegetation cover in Ningxia from 2000 to 2020. The results showed the spatial distribution
was mainly due to the joint action of three major factors: climate, topography, and human
activities. Liu et al. [15] explored the drivers of spatial and temporal variations in NDVI
in the Ili River Basin, Xinjiang, from 1998 to 2018 using the Geodetector method. They
found that vegetation cover was mainly affected by three factors: temperature, vegetation
classification, and altitude, all with explanatory powers over 40%. Many scholars have
utilized the Geodetector method to achieve research results, so we also employed it to
explore the drivers of vegetation cover change in the Wuding River Basin.

Situated in the middle and upper reaches of the Yellow River in northern Shaanxi, the
Loess Plateau region is a typical ecologically fragile area plagued by severe soil erosion.
Scholars have shown great concern for the changes in its vegetation cover [16–18]. In 1999,
China implemented measures such as “returning farmland to forests and grassland” to
combat soil erosion and enhance the ecological environment on the Loess Plateau [19,20]. Yi
et al. [21] demonstrated that the NDVI in the growing season of the Loess Plateau showed
an increasing trend from 1999 to 2010, and the increase was more significant in the central
region. Bai et al. [22] showed that vegetation cover increased significantly in northern
Shaanxi, and NDVI was significantly correlated with both precipitation and temperature.
Zhang et al. [23] demonstrated that the impact of anthropogenic effects on vegetation
cover in the Loess Plateau region is positive. However, the positive effect of anthropogenic
effects in the central region is expected to gradually diminish. Previous studies [24,25] have
indicated a significant improvement in the vegetation cover of the Loess Plateau over the
past decades. However, certain factors in these studies are incomplete. For instance, some
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investigations have concentrated solely on the correlation between vegetation cover and
climate change [22,26], neglecting the impact of topographic factors and human activities
on vegetation growth. While some studies have examined the impact of human activities
on vegetation cover [27], there remains a deficiency in quantitative analyses concerning
factors like land type change and their effects on vegetation cover.

Based on the GEE remote sensing cloud platform, we extracted the annual average
FVC of the Wuding River Basin from 2000 to 2022 by the dimidiate pixel model, and applied
the Theil–Sen median, Mann–Kendall, and Hurst methods to analyze the characteristics
of the changes in the vegetation cover over the past 23 years and to predict trends in the
future. We used the Geodetector method to quantify the driving relationships between
the FVC and meteorological, surface, and anthropogenic factors. In order to explore the
impact of human activities on vegetation cover, we propose a formula for the contribution
of land use conversion to vegetation cover, quantifying the impact of land transformation
on regional vegetation cover. Our findings may provide a theoretical basis for ecological
management, soil and water conservation, and contribute to the sustainable development
of the Wuding River Basin.

2. Materials and Methods
2.1. Materials
2.1.1. Study Area

The Wuding River, a primary tributary of the Yellow River, is situated in the Loess
Plateau region’s heartland (Figure 1), spanning from 107◦47′ E to 110◦24′ E and 37◦00′ N to
39◦00′ N. The basin covers an area of 30,261 km2, exhibiting a topography that is elevated
in the southwest and lower in the southeast, characterized by significant undulation with
elevations ranging from 597 to 1812 m. The basin experiences a temperate continental
monsoon climate with arid and semi-arid conditions. The average annual temperature in
the Wuding River Basin ranges from 7.9 ◦C to 11.2 ◦C, with an average annual evapotran-
spiration of approximately 1100–1400 mm. Annual precipitation in the basin is unevenly
distributed spatially and temporally, with July-September contributing more than 65% of
the annual precipitation. Average precipitation varies from 300 to 500 mm, increasing from
northwest to southeast. The main soil types encompass chestnut calcium soil, black clay
soil, loess soil, wind sandy soil, freshly accumulated soil, and tidal soil, with loess soil
and wind sandy soil being the most widespread. Vegetation is influenced by climate and
other environmental factors, displaying a transition from grassland vegetation to desert
vegetation from south to north.Forests 2024, 15, 82 4 of 24 
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2.1.2. Data Sources

The study covers the time span of 2000–2022, with the primary data sources being
satellite image data, atmospheric data, land data, and anthropogenic data, as presented in
Table 1.

Table 1. Data sources (All data accessed on 10 September 2023).

Data Classification Data Datasets Resolution Data Origins

Image Landsat Landsat 5/7/8 Surface
Reflectance Tier 1 30 m https://earthengine.google.com/

Atmospheric data

Temperature GPRChinaTemp1 km [28] 1 km Zenodo (https://zenodo.org/)
Land surface
temperature

China annual land surface
temperature dataset 1 km Resource and Environmental

Science Data Center (www.resdc.cn)

Precipitation China monthly gridded
precipitation [29] 1 km Zenodo (https://zenodo.org/)

Relative humidity China Relative
Humidity Dataset 1 km National Earth System Science Data

Center (www.geodata.cn)
Sunshine hours China Sunshine

Hours Dataset 1 km

Aridity index Global Aridity Index
Dataset [30] 1 km CGIAR-CSI—Consortium for Spatial

Information (wordpress.com)

Land data
Soil Soil Type 1 km Resource and Environmental

Science Data Center (www.resdc.cn)Soil erosion China Soil erosion Dataset 1 km
Digital Elevation

Mode NASADEM 30 m Earthdata
(www.earthdata.nasa.gov)

Anthropogenic data
Population density LandScan Global 1 km LandScan (landscan.ornl.gov)

LC CLCD [31] 30 m Zenodo (https://zenodo.org/)
GDP ChinaGDP [32] 1 km

Note: Except for the image data, the rest of the data were uniformly adjusted to 30 m resolution through resampling.

2.2. Methods

The main methodology and research framework used in this study are shown in
Figure 2. To examine the specific spatial and temporal changes in vegetation cover within
the Wuding River Basin, we segmented the study area into upper, middle, and lower
watersheds based on both the river’s origin and administrative divisions [33,34]. Based on
Landsat imagery, we calculated the interannual FVC by selecting the average value from
April to October as the interannual NDVI using the maximum value synthesis method
and dimidiate pixel model [35]. Meanwhile, the Theil–Sen Median method was employed
to analyze the trend of FVC, and the Mann–Kendall test was conducted to assess its
significance. The coefficient of variation was utilized to analyze the degree of volatility.
Ultimately, the Hurst index was applied to predict the development trend of FVC. To
investigate the driving factors behind spatial and temporal changes in FVC in the Wuding
River Basin, we selected 13 factors that encompass both natural and anthropogenic elements.
Then, we analyzed the dominant factors influencing spatial changes in FVC using the
Geodetector method and quantified the degree of influence of different factors and their
interactions on FVC. To explore the impact of anthropogenic factors, particularly land use
transformation, on vegetation cover, this paper introduces an innovative formula for the
contribution rate of land use transfer to vegetation cover (Equation (10)). This formula is
employed to quantify the contribution rate of land use transfer to regional vegetation cover.
The details are as follows.

https://earthengine.google.com/
https://zenodo.org/
www.resdc.cn
https://zenodo.org/
www.geodata.cn
wordpress.com
www.resdc.cn
www.earthdata.nasa.gov
landscan.ornl.gov
https://zenodo.org/
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2.2.1. Dimidiate Pixel Model

The dimidiate pixel model assumes that a single image consists of two parts, vegetation
and bare soil, and the amount of image information, S, consists of the sum of the vegetation
part and the soil part, and the FVC formula is as follows:

FVC =
S − Ssoil

Sveg − Ssoil
(1)

where S is the image information, and Sveg and Ssoil , respectively, denote the information
reflected by the pure image of vegetation and soil.

We use NDVI combined with the dimidiate pixel model to extract the FVC:

FVC =
NDVI − NDVIsoil

NDVIveg − NDVIsoil
(2)

In this study, the NDVI values at 0.5% and 99.5% of the cumulative frequency were
selected to represent NDVIsoil and NDVIveg, and the FVC was classified into five classes
using the equally spaced classification [36] (Table 2).
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Table 2. Criteria for FVC classification.

Class Name Classification Criteria

Lower 0 < FVC ≤ 0.2
Low 0.2 < FVC ≤ 0.4

Mediocre 0.4 < FVC ≤ 0.6
High 0.6 < FVC ≤ 0.8

Higher 0.8 < FVC ≤ 1.0

2.2.2. Theil–Sen Median and the Mann–Kendall Methods

The Theil–Sen Median, a robust non-parametric method [37,38], is well-suited for
trend analysis in long time series data due to its strong error avoidance capability. The
formula is as follows:

β = Median
( FVCj − FVCi

j − i

)
, ∀i < j (3)

where β is the magnitude of the slope, FVCj and FVCi are FVC data for years j and i. FVC
tends to increase when β > 0 and decrease when β < 0.

The Mann–Kendall (MK) test is a non-parametric test for trendiness of time series
which does not require the sample to follow a normal distribution and is not disturbed
by outliers [39]. When the number of study years is greater than 10, the formulas are
as follows:

var(S) =
n(n − 1)(2n + 5)− ∑n

i=1 ti(ti − 1)(2ti + 5)
18

(4)

Z =


S−1√
var(S)

S > 0

0 S = 0
S+1√
var(S)

S < 0
(5)

where var(S) represents the variance of statistic S. We are given a significance level of
α = 0.05 and when |Z| > 1.96, it means that the trend passes the test of significance with a
95% confidence level.

2.2.3. Coefficient of Variation

The coefficient of variation (Cv) is expressed as the ratio of the standard deviation
to the mean, reflecting the relative volatility of the observed data [40]. The formula is
as follows:

Cv =

√
1
n ∑n

i=1
(
Ci − C

)2

C
(6)

The larger the coefficient of variation, the more pronounced the fluctuation of veg-
etation cover change, and vice versa; the smoother the fluctuation, the more stable the
vegetation cover change. By analyzing the coefficient of variation, we can identify spe-
cific areas in the study area with significant fluctuations in vegetation cover. These areas
may be more severely impacted by human activities and are also key areas for vegetation
restoration work.

Referring to [41], Cv was divided into five criteria as shown in Table 3 in order to
specifically analyze the degree of fluctuation of FVC (Table 3).

Table 3. Criteria for Cv classification.

Class Name Classification Criteria

Lower 0 < Cv ≤ 0.05
Low 0.05 < Cv ≤ 0.10

Mediocre 0.1 < Cv ≤ 0.15
High 0.15 < Cv ≤ 0.20

Higher Cv > 0.20
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2.2.4. Hurst Index

The Hurst index [40] is commonly used to assess the persistence or inverse persistence
in time series trends. For an FVC time series FVC(τ), with τ = 1, 2, 3, 4, . . ., n, its mean
value is

FVC(τ) =
1
τ

τ

∑
t=1

FVC(τ) τ = 1, 2, 3, . . . , n (7)

The sequence of cumulative deviations X(t,τ) is

X(t,τ) =
t

∑
j=1

(
FVC(t) − FVC(τ)) 1 ≤ t ≤ τ (8)

The extreme difference is

R(τ) = max
1≤t≤τ

X(t,τ) − min
1≤t≤τ

X(t,τ) (9)

The standard deviation is

S(τ) =

√
1
τ

τ

∑
t=1

(
FVC(t) − FVC(τ)

)2
(10)

The Hurst index is as follows:
R(τ)

S(τ)
= (cτ)H (11)

where H is the Hurst index, the effective value range is 0–1, and its meaning [42] is shown
in Table 4.

Table 4. Criteria for Hurst index classification.

Type of Change Classification Criteria

Anti-persistence 0 < Hurst < 0.5
Random Hurst = 0.5

Persistence 0.5 < Hurst < 1.0

2.2.5. Geodetector

Geodetector is a set of statistical methods for detecting spatial dissimilarity and re-
vealing driving forces behind it (Table 5). The core idea is based on the assumption that if
an independent variable significantly affects a dependent variable, then the spatial distri-
butions of the independent and dependent variables should be similar [12]. We selected a
total of 13 drivers from a combination of meteorological, surface, and anthropogenic factors,
all using the latest 2022 data (Table 6). We used the 2022 FVC, processed by the maximum
value synthesis method and the dimidiate pixel model, as the dependent variable Y. We
input the 13 driving factors as the independent variable X into the geoprobe to explore
the response relationship between vegetation cover changes and factors in the Wuding
River Basin.

Table 5. Role of the different modules of the Geodetector.

Type of Detector Function of Detector

Factor detector Detecting the extent to which a factor X explains the spatial dissimilarity of an attribute Y.

Interaction detector Identify interactions between different influences on factor X, i.e., assess whether factors X1 and
X2, acting together, increase or decrease the explanatory power of the dependent variable Y.

Risk detector Determine whether the mean values of the attributes of the corresponding independent variable
Y are significantly different in different intervals of the X factor.

Ecological detector Compare whether there is a significant difference between the effects of the two factors X1 and X2
on the spatial distribution of attribute Y.
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Table 6. Factors applied to Geodetector.

Data Classification Factor Unit

Atmospheric factor

Temperature ◦C
Land surface temperature ◦C

Precipitation mm
Relative humidity %

Sunshine hours h
Aridity index -

Land factor

Soil -
Soil erosion -

Slope ◦

DEM m

Anthropogenic factor
Population density persons/km2

LC -
GDP million CNY

2.2.6. Contribution of Land Use Shifts to Vegetation Cover

Human activities, mainly land use types, have a significant impact on vegetation cover,
and land use change driven by relevant policies is one of the main drivers of vegetation
cover change in the Loess Plateau region [27]. However, there is still a lack of research
to quantitatively analyze the impact of land use transformation on regional vegetation
cover; in order to solve this problem, this paper innovatively proposes a formula for the
contribution rate of land use transfer vegetation cover, as shown in Equation (12):

FVCR = (FVC1 − FVC0)×
LA
TA

(12)

where FVCR is the contribution rate of vegetation cover, FVC1 and FVC0 represent the
average vegetation cover at the end and beginning of the land use change period. LA is the
land area of the change type; TA is the total area of the study area.

The formula enables the direct quantification of the contribution of land use transfor-
mation to vegetation cover. This facilitates the analysis of which type of land use change
has the most significant impact on regional vegetation cover, offering valuable insights for
informed suggestions on regional vegetation restoration and ecological protection.

3. Results
3.1. Characteristics of Temporal Changes in FVC
3.1.1. Temporal Trends in FVC

The analysis of the time variation in the FVC in the study area from 2000 to 2022 by
linear regression as well as a t-test shows that (Figure 3) the mean value of the FVC in
the study area during the 23-year period was 0.34, with an overall upward trend, and the
average annual growth rate S was 0.0046/a (p < 0.01). The average annual FVC increases
from 0.26 in 2000 to 0.41 in 2022, representing a 57.7% increase. The lowest and highest
values are observed in 2000 (0.26) and 2013 (0.43). During the period of 2000–2013, the
average annual FVC in the Wuding River Basin exhibited a rapid growth trend, with a
growth rate S of 0.011/a (p < 0.01). The mean value of the FVC over 14 years was 0.33, with
the mean value in 2013 reaching 0.43, representing a 62.7% increase compared to 2000. The
FVC increased significantly in all three watershed segments of the Wuding River Basin,
with the highest rate of FVC growth in the lower reaches, at a rate S of 0.0172/a (p < 0.01);
the slowest rate of FVC growth in the upper reaches, at a rate S of 0.0076/a (p < 0.01); and
the mid-reaches, at a rate S of 0.0106/a (p < 0.01).

During the period 2013–2022, the FVC exhibited a fluctuating downward trend, with
an annual average decline rate S of −0.0027/a (p < 0.01), and the 10-year average FVC value
of 0.37. All the watershed segments showed a declining trend, with the downstream area
experiencing the most pronounced decline, having a decline rate S of −0.0077/a (p < 0.01),
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the midstream area showing a decline rate of −0.0017/a (p < 0.01), and the upstream area
demonstrating the slowest decline, with a decline rate S of −0.0009/a (p < 0.01). Overall,
the FVC in the Wuding River Basin was in a period of rapid growth during 2000–2013, and
after reaching a peak growth rate in 2013, it began to fluctuate and decline, while in 2021, it
showed a recovery of vegetation. The average FVC in the three watershed segments were
0.45 in the lower reaches, 0.33 in the middle reaches, and 0.31 in the upper reaches. The
downstream area experienced the fastest growth and decline in FVC, while the upstream
area had the slowest growth and decline. However, the middle reaches exhibited an overall
better growth rate compared to the downstream area.
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3.1.2. Characteristics of FVC Class Changes

Based on Table 2, the FVC for the Indeterminate River Basin from 2000 to 2022 is
categorized into different classes (Figure 4). Throughout the time series, the proportion of
Lower area in the study region decreased significantly, while the percentage of Low area
exhibited an initial increase followed by a subsequent decline. Meanwhile, the percentages
of Mediocre, High, and Higher area experienced significant increases. Characteristic
changes in the vegetation cover classes varied considerably between the pre- and post-2013
phases. From 2000 to 2013, the proportion of Lower area decreased significantly, reaching a
minimum of 13% in 2013. During this period, the proportion of Low area increased and
then decreased, reaching a minimum of 33% in 2013. Moreover, the proportions of Mediocre
and High area steadily increased, reaching a maximum of 35% and 14%, respectively, in
2013, while the proportion of Higher area increased to a lesser extent.

From 2013 to 2022, the proportion of Lower and Low areas exhibited an increase
followed by a decrease, while the proportion of Mediocre and High areas showed a decrease
followed by an increase. The proportion of Higher areas fluctuated, reaching a maximum
of 5% in 2022. This suggests a certain degree of vegetation degradation in the study area
during this period, but is gradually improving [43]. Analyzing the overall changes over
the 23-year period reveals a 29% decrease in the proportion of Lower area, a 4% decrease
in the proportion of Low area, a 24% increase in the proportion of Mediocre area, a 7%
increase in the proportion of High area, and a 3% increase in the proportion of Higher area.
Overall, the increasing percentage of Mediocre and High area is primarily due to improved
vegetation in the Lower and Low classes. The vegetation cover in the Wuding River Basin
is improving, indicating the effectiveness of vegetation restoration [16].
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Statistics on the transfer of the different grades of FVC from 2000 to 2022 are shown in
Table 7. In 2022, the area of Lower and Low decreased by 8950.95 km2 and 4941.43 km2,
respectively. Meanwhile, the area of Mediocre, High, and Higher areas increased by
5360.17 km2, 1871.98 km2, and 343.98 km2, respectively. The most substantial decrease
occurred in the area share of the Lower class, transferring out of this type by 9707.33 km2,
followed by the Relatively Lower class with 7939.32 km2. The Lower class predominantly
converted into Relatively Low and Mediocre, while Low transformed into High and Higher.
Overall, the FVC classes underwent significant optimization during 2000–2022, resulting in
a significant improvement in vegetation cover.

Table 7. FVC Class Transfer Matrix (km2).

2000
2022

Lower Low Mediocre High Higher Total Roll-Out

Lower 3756.43 6031.05 2980.51 426.45 269.33 13,463.76 9707.33
Low 599.02 3869.46 5650.22 1354.38 335.70 11,808.78 7939.32

Mediocre 89.97 659.87 1560.47 782.02 253.74 3346.07 1785.60
High 28.69 107.89 249.38 310.10 215.77 911.83 601.73

Higher 38.70 68.54 96.14 220.96 306.21 730.55 424.34
Total 4512.82 10,736.81 10,536.72 3093.91 1380.75

Roll-in 756.39 6867.35 8976.24 2783.81 1074.53
Variation −8950.95 −4941.43 5360.17 1871.98 343.98

Note: (Roll-in is the transformation of other classes into this class, roll-out is the transformation of this class into
other classes and variation is the amount of change in a period minus the initial period).

3.2. Characteristics of Spatial Changes in FVC
3.2.1. Characteristics of FVC Spatial Distribution

As shown in Figure 5, the FVC shows an increasing spatial distribution from north to
south and from west to east from 2000 to 2022, with significant geographical differentiation.
The FVC low value area is mainly located in Wushen Qi as well as in the northwestern part
of Yuyang Qu. This region is also known as the Mao Wusu Desert, characterized by poor
vegetation cover. However, high-grade FVC also exists, suggesting some advancements
in ongoing afforestation activities [44]. The high FVC area is primarily situated in the
southeastern part of the study area, encompassing the middle and lower sections of the
watershed. This region constitutes a loess hill and gully area, mainly comprising Mili
County, Suide County, and Zizhou County, characterized by windy sandy beaches, flat
terrain, abundant groundwater, and favorable conditions for vegetation growth.
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To further investigate the distribution of vegetation, we classified the average FVC
according to Table 2 (Figure 6). The dominant FVC type was Low (48.7%), followed by
Mediocre (26.4%), with area shares of Lower, High, and Higher at 19.1%, 3.9%, and 1.8%.
Analyzing the area distribution of the FVC classes in the upper, middle, and lower sections
of the Wuding River Basin reveals that in the upper and middle reaches, Low has the
largest area share, followed by Low. In the lower reaches, Mediocre has the largest area
share, accounting for 70% of the total area share. This is because most of the upper and
middle reaches of the Wuding River basin are in the Maowusu Desert, characterized by
sparse vegetation, primarily desert vegetation. In contrast, the downstream area belongs to
the loess hill and gully area, more conducive to vegetation growth than the rest of the basin,
featuring predominantly short plants with a sparse and simple population composition [45].
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3.2.2. Characteristics of FVC Spatial Variation

We employed Theil–Sen Median and Mann–Kendall trend analysis to investigate
the spatial and temporal changes in the FVC in the Wuding River Basin from 2000 to
2022 (Figure 7). In 45.9% of the areas in the Wuding River Basin, the FVC exhibited an
increasing trend, with 12.6% of the areas showing a significant increase and 33.3% showing
a slower increase. The areas with a significant increase were primarily in the south of the
middle reaches of the Wuding River and the lower reaches, suggesting the highly effective
implementation of the project to convert farmland back into forests and grassland [46].
About 51.5% of the areas in the Wuding River Basin experienced a decreasing trend in the
FVC, with 48% of them exhibiting a slower decline, while 3.5% showed a significant decline.
The areas with significant decline were mainly located in the northwest of the study area,
namely, Wushen Qi and Yuyang District, situated at the southern edge of the Mao Wusu
Desert, indicating certain vegetation degradation in the desert region [21].
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The fluctuation of FVC is illustrated in Figure 8. Overall, the average value of the
coefficient of variation (CV) for the 23-year period is 0.29, indicating a high degree of fluctu-
ation. Among the five variability levels, Mediocre comprises the largest share, amounting
to 35.1%. This is mainly observed in counties such as Mili and Zizhou in the lower basin
section of the Wuding River. Low and Lower volatility zones contribute to 8.5% of the total,
with a more scattered distribution, mainly in Jingbian County within the upper basin of the
Indeterminate River and the northern end of the middle reaches of Yuyang District, among
other places with large-scale farmland. The High and Higher-volatility zones, making up
56.4% of the total, are primarily situated in the wind-sand area of the upper basin of the
Wuding River in the northwest of the study area. This area has a harsh natural environment
and is heavily influenced by ecological management and other factors, resulting in large
fluctuations in the regional vegetation cover. The High and Higher zones, accounting for
56.4%, are mainly located in the sandy and windswept area northwest of the upper reaches
of the Wuding River, where the natural environment is harsh and is directly affected by
anthropogenic factors, such as desert modification, thus contributing to a high degree of
volatility in the regional vegetation cover.
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Wuding River Basin, 2000–2022.

The Hurst index of the FVC is illustrated in Figure 9a, which has a maximum value of
0.99. The majority of the areas (64.6%) exhibit an anti-continuous future trend, primarily
located in the southeast of the watershed, particularly the downstream areas of Mili County
and Suide County, which are more influenced by human activities. In the watershed, 35.3%
of the area shows persistence, concentrated in the northwest of the study area, namely the
upper basin of the Wuding River and the northern end of the middle reaches of the river,
among other areas with large-scale farmland. These areas are less volatile and also exhibit
some persistent changes, as indicated by the analysis of FVC volatility.
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In this study, Hurst and Sen were superimposed to further explore the future trends
of vegetation change. The superposition of three Hurst and two Sen values produces six
results. Ignoring Hurst values of 0.5 as they account for a small percentage and are difficult
to predict, we focus on the remaining four: anti-sustained growth, anti-sustained decline,
sustained growth, and sustained decline (Figure 9b). The future trend in the FVC is domi-
nated by decline, with a regional share of 58.0%. The largest proportion of anti-persistent
decline is 50.1%, concentrated in Zizhou County and Mili County in the downstream
region of the Wuding River, likely due to urbanization and development affecting regional
vegetation cover [47]. And the proportion of persistent decline (degradation—degradation)
was 8.0%, mainly distributed in the Wuxing Banner and Jingbian County regions in the
upper part of the Wuding River region. The proportion of sustained growth (improvement—
improvement) was 27.3%, which was mainly distributed in Hengshan District in the middle
reaches of the Wuding River Basin region as well as in the northern end of Jingbian County.
The proportion of anti-sustained growth is 14.6%, distributed similarly to (degradation—
degradation), indicating afforestation and other work in the Upper Wuding River’s upper
part needs improvement, and some degraded areas remain untransformed. Overall, there
is a trend of improvement followed by degradation in the upper reaches of the Wuding
River, while the improvement of vegetation cover in the middle and lower reaches of the
river has improved, but there is still a need to strengthen the restoration of vegetation cover.

3.3. Analysis of Factors Driving Changes in FVC
3.3.1. Factor Detector

The spatial and temporal analyses of the vegetation cover revealed pronounced spatial
heterogeneity in its distribution. The analysis of the factors influencing the spatial variability
of the FVC using the factor detector (Table 8) demonstrated that while all the factors
significantly influenced the FVC’s spatial variability (p < 0.01), the explanatory power (q)
varied widely. The q value is the explanatory power of the driver on the spatial distribution
of the FVC, with larger q values indicating stronger influence and smaller q values weaker
influence. q has a value range of [0, 1], with a value of 1 indicating complete control of the
spatial distribution of the FVC by the driver, and a value of 0 indicating no relationship
between the driver and FVC.

Table 8. Explanatory power and significance of driving factors.

Factor Tem LST Pre RH SD Aridity
Index Soil Soil

Erosion Elevation Slope Pop LC GDP

q 0.064 0.111 0.133 0.097 0.123 0.121 0.117 0.056 0.088 0.038 0.108 0.345 0.011
p 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note: Tem, air temperature; LST, land surface temperature; Pre, precipitation, RH, relative humidity; SD, sunshine
duration; Pop, population density; LC, land cover; GDP, gross domestic product. q is the explanatory power
of each factor in the Geodetector’s factor detection for the spatial distribution of FVC and p is the level of
statistical significance.
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The explanatory power, in decreasing order, included land cover, precipitation, sun-
shine hours, aridity index, soil type, population density, surface temperature, relative
humidity, altitude, temperature, soil erosion, slope, and GDP. Among them, the q-values for
anthropogenic factors, land use type, and meteorological factors (precipitation, sunshine
hours, and aridity index) were greater than 12%, specifically 34.5%, 13.3%, 12.3%, and
12.1%, respectively. This suggests that the spatial variation in vegetation cover in the Wud-
ing River Basin results from a combination of human activities and meteorological factors,
with land use patterns playing a significant role in determining spatial variability [20]. Soil
type, population density, surface temperature, relative humidity, altitude, temperature, and
soil erosion had a relatively weak explanatory power for spatial variation in FVC, with the
q-values for slope and GDP below 5%, indicating low influence.

3.3.2. Interaction and Ecological Detector

We assessed the explanatory power of the changes in the FVC after factor interactions
based on an interaction detector (Figure 10); the results revealed a significant interaction
effect among the factors influencing the FVC. The effects of these factors were not indepen-
dent but occurred synergistically. The interaction effects included two-factor enhancement
and nonlinear enhancement, with the latter being more pronounced than the former. The
most significant explanatory power in the interaction is associated with land cover and pre-
cipitation, with a q-value reaching 0.523. The interaction between GDP and slope exhibits
the lowest explanatory power, with a q-value of only 0.055. This may be due to the limited
explanatory ability of both the slope and GDP individually in relation to the FVC, leading
to insufficient explanatory power when combined. Simultaneously, the combination of land
cover with most factors can yield a high q-value and its combination with precipitation,
sunshine hours, and soil type is optimal, with q-values exceeding 0.5.
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Employing the ecological detector, we conducted a comparative analysis to determine
the significant differences between each pair of factors regarding the spatial distribution of
the FVC. As depicted in Table 9, there are notable distinctions in the impact of most factors
on the spatial distribution of the FVC when comparing each pair of factors. However, the
population density does not exhibit significant differences when compared to most factors.
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Table 9. Ecological detector results.

Factor Tem LST Pre RH SD Aridity
Index Soil Soil

Erosion Elevation Slope Pop LC GDP

Tem
LST Y
Pre Y Y
RH Y N Y
SD Y Y N Y

Aridity index Y Y Y Y N
Soil Y Y Y Y N N

Soil erosion N Y Y Y Y Y Y
Elevation Y N Y N Y Y Y Y

Slope Y Y Y Y Y Y Y N Y
Pop Y N Y N N N N Y Y Y
LC Y Y Y Y Y Y Y Y Y Y Y

GDP Y Y Y Y Y Y Y Y Y Y Y Y

Note: Y represents a significant difference between the two factors for the spatial distribution of FVC, while N
represents no significant difference.

3.3.3. Risk Detector

Based on the risk detector, we determined the mean FVC values across various ranges
of factors or types of vegetation growth (Figure 11). Concerning meteorological factors, the
FVC exhibited a pattern of initially decreasing and then gradually increasing with rising
temperature, reaching the maximum value at temperatures of 18–20 ◦C. Similarly, with
increased precipitation, the FVC showed an increasing trend, peaking at precipitation levels
of 601–648 mm. The FVC showed an initial rise before declining, peaking at 53.4%–54.4%
relative humidity. It also rose then fell with increasing sunshine, peaking at 7.86–8.07 h.
Vegetation thrives in the meteorological environment of high temperature, low sunshine,
high rainfall, and medium humidity in the Wuding River Basin.
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Concerning surface factors, FVC exhibited a decreasing trend with an increase in the
aridity index, reaching its maximum at an aridity index of 0.58–0.66 (lower aridity index
indicates higher aridity) [30]. Changes in the soil type correspondingly influenced the FVC
in the Wuding River Basin, with the largest vegetation cover observed in irrigated silt soil,
signifying its suitability for vegetation growth in the basin. Additionally, as the elevation
increased, FVC initially rose, then declined, and eventually stabilized, peaking at elevations
between 850 and 990 m. Similarly, with an increase in slope, the FVC demonstrated an
upward trend, reaching its maximum value at slopes between 16.8 and 22.8◦. Notably,
the soil type factor exhibited the highest q-value and the most robust explanatory power,
highlighting its pivotal role as a surface driver of vegetation change in the Wuding River
Basin. Regarding anthropogenic factors, the Land Cover (LC) possessed the highest q-value
among all the factors, indicating that a high FVC could be achieved when the land use
types in the study area were farmland and grassland.

3.4. Impact of Land Use Type Shifts on Vegetation Cover
3.4.1. Trends in Land Use Types

The predominant land use types in the Wuding River Basin, in descending order, are
grassland, cropland, barren, impervious, water, and forest. Over the 23-year period, they
account for an average share of 73.58%, 20.30%, 5.52%, 0.24%, and 0.07%, respectively, with
grassland being the dominant component, followed by cropland. Illustrated in Figure 12,
grassland, impervious, water, and forest exhibit noteworthy growth trends, while cropland
and barren manifest a distinct declining trend. And grassland increased the most, with an
increase rate S of 0.00548/a (p < 0.01), while cropland decreased the most rapidly, with a
decrease rate S of 0.00138/a (p < 0.01). Overall, the increase in grassland, water bodies, and
woodland indicated that the overall FVC of the Wuding River Basin showed an increasing
trend. And the decrease in cropland and wasteland, along with the increase in impervious
surface, indicates that the urban development process in the Wuding River Basin is also
progressing gradually [48].
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3.4.2. Land Use Type Shifts and Contribution of Vegetation Cover

In the previous study, the FVC of the Wuding River Basin experienced rapid growth
from 2000 to 2013. After reaching its peak growth rate in 2013, it began to fluctuate and
decline from 2013 to 2022. The characteristics of the FVC changes varied significantly
between the two periods. In 2013, compared to 2000, grassland increased by 2799.23 km2,
barren decreased by 2403.58 km2, cropland decreased by 522.83 km2, impervious increased
by 77.67 km2, forest and water slightly increased. These changes suggest the successful
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implementation of the policy to convert farmland back to forest and grassland in the
Wuding River Basin during this period [49]. Figure 13 illustrates that the majority of
the decreased wasteland and arable land underwent conversion to grassland, with the
exception of maintaining itself unchanged. This observation supports the notion that the
FVC in the Wuding River Basin experienced rapid growth between 2000 and 2013. In
contrast, from 2013 to 2022, there was a reduction in grassland by 215.41 km2, a decrease in
wasteland by 236.88 km2, whereas cropland increased by 386.4 km2. The growth of forest
land was notably lower compared to the 2000–2013 period, and there was a decrease in
water area. These changes suggest that the accelerated urbanization during this period had
a more pronounced impact on vegetation cover, leading to degradation in some areas [43].
The conversion of grassland to cropland and barren increased significantly compared to
the pre-2013 period, attributed partly to shifts in national policies regarding arable land
resources [46], and partly to environmental deterioration from human activities.

Forests 2024, 15, 82 18 of 24 
 

 

pre-2013 period, attributed partly to shifts in national policies regarding arable land re-
sources [46], and partly to environmental deterioration from human activities. 

 
Figure 13. Land cover transfer mulberry map, 2000–2013–2022. 

To explore the precise impact of land use transformation on vegetation cover, this 
study introduces the formula for the contribution rate of vegetation cover resulting from 
land use transfer (Equation (12)). It computes the contribution rate of vegetation cover 
from land use transformation in the Wuding River Basin during the periods 2000–2013 
and 2013–2022 (Figure 14). Given that the predominant land types in the study area are 
grassland and arable land, the contribution rate of vegetation cover is relatively low due 
to the small area of other land types. 

Figure 14a illustrates that the most substantial positive impact during the period 
2000–2013 was the conversion of grassland to arable land, contributing 1.52 per cent. This 
was followed by the conversion of arable land to grassland and wasteland to grassland, 
contributing 1.29 per cent and 1 per cent, respectively. The conversions of grassland to 
woodland, water bodies, and wasteland to arable land all made positive contributions to 
vegetation cover. Conversely, the conversion of cropland to water bodies and impervious 
surfaces, along with the conversion of grassland to wasteland, had a negative impact on 
the vegetation cover. Notably, the most significant negative effect was observed in the 
conversion of cropland to impervious surfaces. It is worth mentioning that the mutual 
conversion of cropland and grassland both had positive impacts on vegetation cover. This 
may be attributed to the progress of fallow farmland and forest and grassland projects, 
leading to the conversion of grassland with low FVC to cropland in the study area [50], 
aligning with the FVC values of land use in this study. 

Figure 14b reveals that during the 2013–2022 period, the most substantial positive 
impact continued to be the conversion of grassland to cropland, contributing 0.99%, fol-
lowed by the conversion of wasteland to grassland, cropland, and water bodies to 
cropland. The most significant negative impact was the conversion of cropland to grass-
land, contributing −0.37%, followed by the conversion of cropland to water bodies, imper-
vious surfaces, and the conversion of grassland to wasteland and impervious surfaces. 
Overall, an increase in the area share of cropland types is more conducive to the expansion 
of vegetation cover in the study area, aligning with the experimental results of the risk 
detector. 

Figure 13. Land cover transfer mulberry map, 2000–2013–2022.

To explore the precise impact of land use transformation on vegetation cover, this
study introduces the formula for the contribution rate of vegetation cover resulting from
land use transfer (Equation (12)). It computes the contribution rate of vegetation cover
from land use transformation in the Wuding River Basin during the periods 2000–2013
and 2013–2022 (Figure 14). Given that the predominant land types in the study area are
grassland and arable land, the contribution rate of vegetation cover is relatively low due to
the small area of other land types.

Figure 14a illustrates that the most substantial positive impact during the period
2000–2013 was the conversion of grassland to arable land, contributing 1.52 per cent. This
was followed by the conversion of arable land to grassland and wasteland to grassland,
contributing 1.29 per cent and 1 per cent, respectively. The conversions of grassland to
woodland, water bodies, and wasteland to arable land all made positive contributions to
vegetation cover. Conversely, the conversion of cropland to water bodies and impervious
surfaces, along with the conversion of grassland to wasteland, had a negative impact on
the vegetation cover. Notably, the most significant negative effect was observed in the
conversion of cropland to impervious surfaces. It is worth mentioning that the mutual
conversion of cropland and grassland both had positive impacts on vegetation cover. This
may be attributed to the progress of fallow farmland and forest and grassland projects,
leading to the conversion of grassland with low FVC to cropland in the study area [50],
aligning with the FVC values of land use in this study.
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Figure 14b reveals that during the 2013–2022 period, the most substantial positive im-
pact continued to be the conversion of grassland to cropland, contributing 0.99%, followed
by the conversion of wasteland to grassland, cropland, and water bodies to cropland. The
most significant negative impact was the conversion of cropland to grassland, contributing
−0.37%, followed by the conversion of cropland to water bodies, impervious surfaces, and
the conversion of grassland to wasteland and impervious surfaces. Overall, an increase in
the area share of cropland types is more conducive to the expansion of vegetation cover in
the study area, aligning with the experimental results of the risk detector.

4. Discussion
4.1. Effect of Natural Factors on FVC in the Wuding River Basin

The Loess Plateau region experiences an arid and semi-arid climate, and the scarcity of
water resources constrains the robust growth of vegetation in arid areas [51]. The Wuding
River Basin receives 300–500 mm of annual precipitation, increasing from northwest to
southeast, corresponding with the spatial distribution of the FVC. Precipitation promotes
vegetation growth by providing water and soil nutrients, leading to a transition from
grassland to desert vegetation from south to north. However, uneven annual precipitation,
with 65% occurring in July-September, limits normal vegetation growth. Sunshine hours
also explain the spatial variability of the FVC, as sunlight directly affects plant photosyn-
thesis. Adequate light enhances plant photosynthetic efficiency and boosts their growth
rate. However, excessive sunshine hours can increase water evaporation rates, negatively
impacting water availability to plants [52]. Additionally, excessively high sunshine hours
may elevate surface temperatures, posing a threat to vegetation survival. Nevertheless,
optimal temperatures can foster vegetation growth, promoting not only the photosynthetic
process in conjunction with sunlight but also accelerating water utilization by plants. These
meteorological factors collectively enhance the robust growth of vegetation and the stability
of regional ecosystems [53].

In addition to meteorological factors, surface characteristics like soil and altitude
influence vegetation cover. Different soil textures result in varied vegetation growth
conditions due to differences in soil properties, affecting the region’s vegetation cover.
The study area features mylonitic and sandy soils, with mylonitic soils being the most
widespread and serving as the primary cultivated soils [54]. Conversely, sheep soil type
soils are loose and nutrient-poor, and windy sandy soils exhibit poor structure and low
agricultural productivity, thereby limiting improvements in vegetation cover to some extent.
Elevation stands out as a key topographic factor, influencing vegetation cover through its
impact on factors like light, temperature, and precipitation. In this study, the vegetation
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cover displayed a pattern of a gradual increase followed by a significant decrease with
rising altitude, underscoring the notable influence of altitude on vegetation cover.

4.2. Effect of Human Factors on FVC in the Wuding River Basin

Both natural factors and human activities significantly influence vegetation cover. In
the Wuding River Basin, the land use type factor, a human activity, exerts the strongest
influence on vegetation cover, aligning with Zhao et al.’s findings [55]. Studies have
indicated that the National Return of Ploughland to Forests and Grasslands Project, initiated
in 1999, effectively restored grasslands and woodlands in northern Shaanxi, leading to a
substantial improvement in regional vegetation cover [47]. Local government policies, such
as forest closure and terrace construction, further enhanced vegetation cover in northern
Shaanxi [56]. This underscores the crucial role of anthropogenic interventions, including
returning farmland to forests and grasslands and soil and water conservation projects,
in promoting vegetation growth and ecosystem health in northern Shaanxi. However,
human activities, mainly land use, have a dual impact on regional vegetation cover, with
both positive and negative outcomes. For instance, the Daliuta coal mine in the northern
part of Yulin City, Shaanxi Province, initially caused environmental pollution, soil erosion
and other geological hazards. Still, reclamation and remediation efforts since the 1990s
have mitigated environmental degradation, resulting in the establishment of artificial
woodland, scrub, and grassland [57]. In the long term, the conversion of land use types
due to the project of returning farmland to forest and grassland and urban expansion
will bring about varying degrees of interference and changes to the regional ecological
environment. Effectively harnessing human initiative, managing the balance between
resource development and ecological protection, is a necessary prerequisite for preserving
vegetation cover.

4.3. Optimal Conditions for Vegetation Growth in the Wuding River Basin

We identified the best conditions for vegetation growth based on risk detection
(Table 10). The factor interval with the largest average FVC was considered the opti-
mal condition for vegetation growth [58]. The analysis reveals that the vegetation of the
Wuding River Basin is suitable for growing in environments with moderate temperatures
and sunshine, high rainfall and humidness. The maximum FVC was achieved when the
topographic factors of the study area were irrigation-silting soil, elevation in the range of
850–990 m, and slope at about 20◦. The vegetation in the study area is suitable for a low
population density and low GDP environmental conditions, and cropland is the best land
cover type for vegetation growth.

Table 10. Optimal factor intervals.

Driven Factor Suitable Type or Range of FVC FVC

Tem 18.0–20.0 ◦C 0.486
LST 19.5–20.3 ◦C 0.427
Pre 601–648 mm 0.470
RH 53.4%–54.4% 0.421
SD 7.86–8.07 h 0.490

Aridity index 58%–66% 0.441
Soil irrigation-silting soil 0.647

Soil erosion 1.5%–5.1% 0.416
Elevation 850–990 m 0.491

Slope 18.6–22.8◦ 0.412
Pop 32–59 persons/km2 0.429
LC cropland 0.575

GDP 0.93–2.58 0.391
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4.4. Limitations and Prospects

Based on Landsat image data from the GEE platform, we analyzed and predicted
spatial and temporal changes in the FVC in the Wuding River Basin, and explored the
drivers of FVC by the natural environment and anthropogenic factors. We also propose
a vegetation contribution formula to quantify the role of land use transformation on
the regional FVC. While this study employed high-resolution image data and a precise
experimental model, potential errors may arise from factors such as the external azimuthal
displacement of the sensor, the curvature of the earth, and complex terrain [48]. Although
we included some anthropogenic factors in the analysis and quantified the contribution of
land transformation to vegetation cover, the analysis of the drivers of FVC change in the
results was incomplete due to the diversity of anthropogenic activities, and further selection
of more relevant anthropogenic factor indicators, the improvement of the model and
analytical methods, and an exploration of the accuracy of the formulae for the contribution
of vegetation cover are awaited in subsequent studies.

5. Conclusions

Based on the dimidiate pixel model, this paper explores the spatial and temporal
pattern of vegetation cover and its change characteristics in the Wuding River Basin from
2000 to 2022, and at the same time, adopts the Geodetector method to explore the drivers
that cause changes in vegetation cover. To study the effects of land use-dominated human
activities on vegetation cover, we proposed an equation to quantify the contribution of land
use transformation. Our results show the following:

[1] The overall trend of the FVC in the Wuding River Basin slowly increased from 2000 to
2022 (S = 0.0046, p < 0.01). The FVC increased rapidly until 2013 (S = 0.011, p < 0.01),
then decreased slowly after 2013 (S = −0.0027, p < 0.01). The downstream area had
the fastest growth and decline rates in both periods. There was gradual conversion of
low-grade FVC to higher grades and an overall improvement in vegetation cover in
the study area.

[2] From 2000 to 2022, the spatial distribution of the FVC in the Wuding River Basin
showed a gradual increase from northwest to southeast, with obvious geographical
differentiation. The high FVC areas were mainly distributed in the southeastern
part, and the low areas were mainly distributed in the northern part of the study
area. The future trend of the FVC is mainly decreasing (58.0%), which is mainly
distributed in the downstream area of the Wuding River, such as Zizhou County and
Mili County, where the vegetation cover is at a high risk of degradation, and needs to
be strengthened for protection in the future.

[3] The primary factor influencing the spatial differentiation of the FVC in the Wuding
River Basin from 2000 to 2022 was the land cover, which was directly affected by
human activities showing an explanatory power of 0.345. Additionally, natural fac-
tors, including precipitation, soil, and sunshine, also contributed to some extent. The
interactions among most of the driving factors exhibited either two-factor enhance-
ment or non-linear enhancement, with the most robust interaction explanatory power
observed between land use and precipitation, reaching an explanatory power of 0.523.

[4] The land use types in the study area, including grassland, water, forest, and imper-
vious, exhibited an increasing trend in their area shares, while cropland and barren
showed a declining trend. Grassland is growing the fastest and cropland is declining
the fastest. The transformation of grassland into cropland made the most positive
significant contribution to vegetation cover, at 1.52%. The expansion of cropland was
more favorable for enhancing vegetation cover in the study area.
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