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Abstract: Urban parks not only enhance urban ecology but also play a crucial role in providing
cultural ecosystem services (CESs) for the well-being of urban residents. Both artificial and natural
landscape factors within parks contribute significantly to the supply of cultural ecosystem services.
To explore public perceptions of landscape factors and CESs, this study focused on 25 urban parks
in Hangzhou. Social media data uploaded by park visitors from 2018 to 2023 were collected to
establish a corresponding CES indicator framework. Combining computer vision with text mining,
we assessed the preferences and correlations between visitor-perceived CESs and park landscape
factors. The results indicated that the majority of park visitors perceive CESs (80.00%) with overall
satisfaction higher than importance. Among them, aesthetic experiences and recreation showed both
high satisfaction and importance. In shared social media photos, arbors (19.01%), herbaceous flowers
(8.99%), and groves (8.22%) were frequently presented as landscape factors. The study revealed close
correlations between user gender, landscape factors, and perceived CES categories, with females
contributing more to the perception of both. There were internal correlations within CES categories,
with spiritual services, aesthetic experiences, and recreation showing the most significant associations.
Different landscape factors impacted CES categories to varying degrees, and biological landscapes
formed by plant and animal factors were considered to provide more CESs. These findings are
significant for enhancing the quality of ecological services and biodiversity in parks.

Keywords: urban parks; cultural ecosystem services; landscape factors; public perception; social
media data; machine learning

1. Introduction

The development of urbanization constrains the natural environment in urban areas.
Urban parks have become increasingly important as spaces for urban residents to connect
with nature and engage in social interactions [1]. Throughout the lengthy process of urban
development, urban parks have accumulated rich and irreplaceable natural and cultural
heritage, holding high potential value in aesthetics, ecology, and archaeology [2]. The
accumulation of these resources makes urban parks the primary source of urban ecosystem
services [3,4]. The Millennium Ecosystem Assessment defined ecosystem services as
the benefits people obtained from ecosystems, categorizing them into four main types:
supporting, regulating, provisioning, and cultural [5]. As a crucial component of ecosystem
services, cultural ecosystem services (CESs) refer to the non-material benefits people derive
from ecosystems through spiritual fulfillment, cognitive development, reflection, and
aesthetic experiences [5]. They holds enormous potential for improving biodiversity,
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human mental and physical well-being, and more [6]. Urban park CESs directly reflect
the interaction between humans and ecosystems [7], constituting the subjective perception
process of individuals toward objective ecological systems. Effectively understanding
residents’ perceptions regarding CESs provided by green and blue areas within urban
parks is important. It contributes to better providing residents with the specific CESs
they need and strengthening residents’ commitment to environmental conservation [6,8].
However, due to the subjective and intangible nature of CESs, traditional methods face
challenges in objectively assessing and quantitatively analyzing them [9,10]. Therefore,
identifying and evaluating CESs pose specific challenges [10,11].

Currently, CES evaluation relies on monetization and non-monetization methods [12].
Recently, more researchers have used non-monetization methods to qualitatively and
quantitatively analyze CES preferences and perceptions. Methods include participatory
mapping with GIS [13] and the SolVES model [14]. With the efficient economic data mining
of big data, CES research methods are becoming more informative [2]. Photos [15] and
comments [16] on various platforms, along with historical materials like poems and ancient
texts [2], can be used to identify CESs. These data serve as information carriers, recording
stakeholders’ perspectives on cultural services and landscape features while describing
changes over time and space [2,17]. Although photo data are widely used, they cannot
capture all CES categories alone. Intangible benefits like inspirational values and spiritual
experiences are challenging to identify through visual content alone [18,19]. Natural
Language Processing (NLP) analysis can provide more information by explicitly expressing
users’ motivations, viewpoints, experiences, perceptions, or symbolic meanings [17,20].
Additionally, the NLP method is also commonly used to mine emotions in text and is
widely applied on platforms such as Twitter [15] and Instagram [21]. Analyzing visitors’
emotions helps understand the demands for CESs in urban ecosystems.

Due to the non-random distribution of CESs in urban ecosystems, they exhibit highly
localized patterns, leading to hotspots and cold spots of CES flow [22]. To facilitate the
rational allocation of environmental resources within ecosystems, scholars have actively
explored the factors that may affect CESs. These features include different land cover
types, the size of green spaces, respondents’ occupations and ages, and the openness
of the landscape [6,23–25]. Notably, various natural and artificial landscapes, such as
water bodies, birds, sculptures, and recreational elements, can provide a broad range
of CESs, sometimes even more comprehensive than the ecosystem [26,27]. Therefore,
by examining visitors’ detailed and specific landscape factors and CES preferences, we
can better understand the interaction between people and nature in urban parks [26].
Previous studies on CESs and landscape factors in urban parks have primarily focused
on a small scale, utilizing offline methods such as face-to-face interviews or participatory
mapping [28,29]. These studies often employ manual visual interpretation methods [26,30],
which are time-consuming, suitable for small amounts of data, and subject to the inherent
subjective biases of researchers [9]. To address this issue, the combination of computer
vision and social media photos has begun to be used in extracting perceptual information.
However, there is currently relatively little research on the correlation between landscape
factors and CESs using this combination [9].

In recent years, scholars have studied how urban park characteristics impact con-
sumer electronics product provision. These studies focus on specific cultural service
categories [22,31,32], like aesthetics, or particular urban park types [24,33]. Despite scholars
identifying associative rules among CES categories [34,35], there is a lack of comprehensive
analysis of the diversity of CES categories and their internal correlations. This may be
influenced by data types. Most studies on the correlation between CESs and landscape
factors rely on a single data type [9]. Some studies integrate text, tags, and photos [20]
but need an analysis process suitable for large-scale data. With social media growth and
residents’ interest in natural ecology, an efficient process for analyzing large-scale CES
perception datasets across time and space is necessary. There were supply and demand
differences in CESs in urban parks, but most studies only examined CES supply perception.
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For example, Riechers et al. [36] studied the impact of age and residence on the perceived
importance of cultural ecosystem services. Research on user satisfaction and expectations
(supply) for various CES sub-items is still limited [37]. Considering the aforementioned
research gaps, this study focused on urban parks in Hangzhou, attempting a novel re-
search approach—integrating computer vision and text mining methods. We combined
the advantages of text and image data to extract CES categories and visitors’ emotional
attitudes from Weibo comments and landscape factors from Weibo photos to obtain a more
comprehensive understanding of CES categories and landscape factors. The research aimed
to address the following issues: (1) understanding the CES categories of urban parks as well
as the satisfaction and expectations of park visitors; (2) effectively extracting the landscape
factor preferences of park visitors; and (3) exploring the impact of internal correlations and
landscape heterogeneity within CESs. This study provides a new perspective for evaluating
the framework of cultural ecosystems in urban parks, contributing to the coordinated
development of public perception and planning management. It offers a scientific basis to
rationally allocate environmental resources, optimize the efficiency of cultural services in
urban parks, and enhance the well-being of urban residents.

2. Materials and Methods
2.1. Study Area

Hangzhou (E118◦20′–120◦37′, N29◦11′–30◦34′) is located in the Yangtze River Delta,
serving as the economic, cultural, and educational center of Zhejiang Province. It is a
significant scenic tourist city with rich ecological and cultural resources. Throughout
history, the interaction and coexistence of the three major landscape factors (mountains,
lakes, and cities) have shaped the long-term relationship between human habitation and
the natural environment. The construction of urban parks in Hangzhou has left behind a
wealth of perceptual information about the harmonious coexistence of humans and nature.
Furthermore, Hangzhou has been a pioneer in constructing urban parks in China. Using
Hangzhou as an example, the results of this study have implications that can be valuable
for other cities in China and even globally [38].

The study area in this paper was based on the core areas delineated by the ‘Hangzhou
Green Space System Planning (Revised Edition) (2021–2035)’, which include Xihu District,
Shangcheng District, Binjiang District, and Gongshu District. These areas are significant
carriers of Southern Song culture, Wuyue culture, and Qiantang River culture, with nu-
merous historical sites. These cultural accumulations make these regions rich in tourism
resources, with prominent cultural heritage, providing abundant information for CES anal-
ysis. In addition, the vegetation structure in the core area is complex, and the vegetation
types are diverse. This makes these areas rich in plant resources and high in vegetation
coverage, with the West Lake area having the highest forest coverage, reaching 42.60%.
Simultaneously, many popular urban parks have been formed during the long process of
the transformation and protection of the West Lake Scenic Area in the core area. Therefore,
considering three main criteria, we selected representative urban parks within these four
districts as our research objects. First, the parks should have a large scale of visitation, with
sufficient comment data on social media [19] (filtered for urban parks with posts exceeding
50 pages on Weibo webpages). Second, the parks being studied should have outstanding
performance in historical and cultural aspects, plant landscapes, urban characteristics,
etc. Third, they should adhere to industry standards. According to industry standards,
parks with an area exceeding ten hm2 that can provide various activities are considered
comprehensive. Parks with independent land use and an area greater than one hm2 are
classified as community parks. Parks with specific themes are categorized as specialized
parks. In addition to botanical gardens, zoos, heritage parks, and historic gardens, special-
ized parks include other specific types such as children’s, waterfront, urban forest, and
urban wetland parks. Previous academic research has shown that online discussions and
visits to community parks are relatively low [39]; hence, they did not appear in this study.
Ultimately, based on the screening of the three criteria, we selected twenty-five distinctive
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urban parks (Figure 1), categorized into two main groups and eleven subcategories (refer
to Appendix A Table A1 for specific classification details).
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2.2. Research Design

This study utilized social media data that combine text and images to correlate CESs
with park landscape factors, conducting a perceptual assessment of CESs in urban parks.
The research process consisted of the following four steps (Figure 2): (1) Extracting CESs
from text using Natural Language Processing (NLP): Jieba 0.42.1 was applied to prepro-
cessed text data to obtain word frequency statistics, and a professional team was employed
for coding and constructing a CES perception information lexicon. (2) Using machine
learning to identify landscape factors in photos: the YOLO v5 model was trained to extract
landscape factors from preprocessed image data and construct a landscape factor percep-
tion system. (3) Correlation analysis: SPSS software and IBM SPSS Modeler software were
used to conduct an internal correlation analysis of CES categories and a corresponding
analysis with landscape factors. (4) IPA evaluation of CESs: using the Baidu AI intelli-
gent platform to conduct a sentiment analysis on text data, visitor satisfaction with CESs
was calculated and combined with CES coding statistics (importance) to construct an IPA
evaluation structure.
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2.3. Acquisition of Social Media Data

Social media data, shared by users in digital formats (text, images, and videos), consti-
tute a valuable information source for the collective perception of diverse landscapes [26],
serving as a crucial basis for analyzing the perceived cultural services by park visitors.
Sina Weibo is the largest social media platform in China, with over 500 million users
as of May 2020, accounting for 42.30% of all internet users, providing rich information
and data. Therefore, this study used the Python programming language to obtain data
from the Sina Weibo application programming interface (API). The data covered a time
range from 1 January 2018 to 4 April 2023, with 62,450 metadata items. Raw, crawled
social media data often contain a lot of noise and need to be cleaned. We used the Python
programming language and Excel statistical software to remove news, advertisements,
and data without actual content. At the same time, we also deleted metadata that did not
publish photos. Using Panda’s library in the program, we traversed the data. Then, we
identified and randomly selected User–Day (PUD) photos, i.e., the unique combination
of users and dates, to avoid excessive representation of some active users [9]. Finally, we
obtained 17,266 analyzable data points. According to the latest Weibo User Development
Report released on the official Weibo website, the user demographic on Weibo continued to
show a trend toward a younger audience in 2020, with users aged 19–51 accounting for
96.00%. Therefore, this study’s Weibo image and comment data primarily originated from
middle-aged and young demographics.

2.4. Processing of Social Media Data
2.4.1. Framework for Urban Park CESs and Landscape Factor Indicators

We referred to authoritative CES indicator classification schemes such as the Millen-
nium Ecosystem Assessment [5], the International Classification of Ecosystem Services [40],
and Ecosystems and Biodiversity Economics [41]. Based on the characteristics of Weibo
data and on-site investigations, we finally selected the following nine indicators as the
CES categories for this study (Table 1): spiritual services, aesthetic experiences, recreation,
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inspiration, existential values, cultural heritage, science education, social interaction, and
natural appreciation. Building upon the research of previous scholars on cultural ecosystem
services and some landscape factors [42–45], we identified 39 relevant landscape factors. A
well-established YOLO model was employed to recognize these 39 landscape factors in
photos from 25 parks. Factors such as ‘food’, ‘crowd’, ‘person’, ‘sunset’, and ‘night scene’
unrelated to actual park construction were excluded to mitigate the impact of collinear
data and outliers. In addition, we also removed the factor of perception frequency below
50 times (considered lower compared to 17,266 photos). Similar factors were merged, for
example, combining ‘Tree flowers’ and ‘Color leaf trees’ into ‘Arbors’ and categorizing
‘Massifs’ as ‘Groves’. This process resulted in a final list of 21 landscape factors related to
cultural ecosystem services, including lakes, ponds, natural revetments, arbors, herbaceous
flowers, and others. Following the classification of landscape design factors by American
landscape designer Norman K. Booth [46], these factors were categorized into four cat-
egories of urban landscapes: hydrological landscape, biological landscape, architecture
landscape, and facility landscape.

Table 1. CES perceived information dictionary.

CES Categories Indicator Connotation Code Partially Matched Keywords

Spiritual services Forgetting worries and feeling respect
for nature. C1 Full of vitality, enrich, satisfaction,

spirit, leisure, feel grateful

Aesthetic experiences Experience the charming scenery,
attractions, sounds or smells here. C2

Floral fragrance, beautiful scenery,
super good-looking, spring scenery,

beautiful

Recreation Conduct various leisure and
recreational activities in urban parks. C3

Recreation, picnic, take a walk, take a
picture, fly a kite, climb mountain,

boating

Inspiration The artistic inspiration inspired by the
park landscape. C4 Inspiration, creation, design, interests,

inquisitive, thought, crafty

Existential values
A place that can generate a sense of

connection and belonging, leading to
nostalgia.

C5
Sense of belonging, landmark building,

landmark, cherish the memory of,
famous, symbolize

Cultural heritage The cultural and historical value
contained in urban parks. C6 History, culture, artistic atmosphere,

cultural atmosphere, cultural heritage

Science education
Obtaining knowledge, science

popularization, and educational
opportunities through urban parks.

C7
Education, exhibition, commemoration,

study, significance, knowledge,
museum

Social interaction Promoting social interaction between
people. C8 Strolling baby, with family, exchange,

share, gather, connection, communicate

Natural appreciation Experience the pleasure of watching or
interacting with animals and plants. C9

Plant, animal, ornamental flowers,
ornamental plant leaves, insect, feed

fish, watch fish

2.4.2. Establishment of CES Perception Lexicon

The preprocessed text data underwent secondary processing, removing emoticons
and spaces from the text. We used the Jieba 0.42.1 in Python to segment the comment
data and annotate parts of the speech. To increase the accuracy of segmentation in the
professional domain, based on the relevant literature [17,47,48], we loaded the Harbin
Institute of Technology stop word dictionary [49] and a custom dictionary (829 terms) and
then replaced synonyms. Due to the extensive database, we conducted word frequency
statistics on the segmentation and retained high-frequency words with a frequency greater
than six (to avoid ambiguity, the frequency of single-character words was not counted). We
referred to the grouping of text word frequency in the literature [9,22,35]. Then, we used
the Delphi expert evaluation method [17], established a coding team of 10 professionals,
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and coded high-frequency words with a frequency greater than 5 in 25 parks. For disputed
parts, we recoded them multiple times until we reached a consensus. Each text could
be coded into multiple landscape categories. We used Python programs to convert each
text-encoded form and check the CES information of the text that had not yet been encoded.
Finally, the CES perception information lexicon was constructed (Table 1).

2.4.3. Landscape Factor Extraction Based on Image Annotation

YOLO v5 is currently one of the mainstream target detection models in the YOLO
(You Only Look Once) series [50]. Compared to SD and Mobile Net, the YOLO algorithm is
a lightweight neural network with few parameters, a fast operation speed, and relatively
high accuracy. The YOLO model consists of four parts: the input end, the backbone
(primary network), the neck network, and prediction (output end) [51] (Figure 3). In
addition to vehicle and pest recognition applications, the YOLO model can effectively
identify landscapes. For example, Wang et al. [52] effectively identified images of Mount Lu
based on an improved YOLO v4. For this study, we trained the YOLO v5 model using the
Anaconda-Py 3.10 environment for Weibo photo data. The target recognition process was
as follows: (1) The preparation of a photo training set for landscape factor recognition. We
randomly selected 4300 photos from the preprocessed photo data and manually annotated
them using Labelimg 1.8.5 annotation software. The landscape labels included 39 categories,
such as herbaceous flowers, arbors, lawns, lakes, birds, and identification facilities. These
preprocessed photos were randomly divided into training and validation sets in a ratio of
3:1. (2) The dataset was trained for 200 iterations, and a balance was reached at 120 iterations.
The accuracy of the validation set converged without significant improvement, indicating
that the model training was completed.
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We used a confusion matrix to compare the image annotation results performed by
the YOLO v5 model with the author’s obtained image annotation results to evaluate the
accuracy of the image annotation results. Based on the confusion matrix, we calculated
True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN) for
the 21 selected landscape factors. TP represent positive results correctly predicted by the
model, TN denote negative results correctly predicted by the model, FP represent positive
results incorrectly predicted by the model, and FN represent negative results incorrectly
predicted by the model. We calculated the precision (Equation (1)), recall (Equation (2)),
mAP@0.5, and mAP@[0.5 = 0.95].

Precision =
TP

TP + FP
(1)

Re call =
TP

TP + FN
(2)
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2.5. Data Statistical Analysis

This study used IBM SPSS Modeler 18.0 software for an Apriori algorithm analysis of
internal association rules for CES categories. A Multiple Correspondence Analysis (MCA)
could reveal the relationship between multiple categorical variables through the score
distances on intuitive graphs. Then, based on the results of the Weibo text data analysis
(CES coding statistics, sentiment analysis), we used an IPA to analyze the differences
between users’ perceptions of the importance of CESs and experience satisfaction. This kind
of analysis helps propose targeted strategies for improving the quality of CESs in Hangzhou
city parks [53]. Perceived importance was measured by the frequency of occurrences of
cultural ecosystem service categories, and experience satisfaction was measured by the
proportion of positive text in the text data. The Baidu AI open platform’s emotion analysis
module completed the emotional judgment of visitors’ uploaded texts. All statistical
analyses and data plotting were performed in Microsoft Excel 2019 (Microsoft Corporation,
Redmond, WA, USA), Python 3.11.4 (Python Software Foundation, Wilmington, NC, USA),
SPSS 26 (International Business Machines Corporation, Armonk, NY, USA), and IBM SPSS
Modeler 18.0 software (International Business Machines Corporation, Armonk, NY, USA).

3. Results
3.1. CESs in Social Media Texts
3.1.1. The Similarities and Differences in the Perceptions of Urban Park CESs

The gender ratio of the visitors in the 25 urban parks was 2.26:1, with 57.64% of the
visitors being from outside the province and 42.34% from within the province. Out of
17,266 text data points, we counted 7371 words with a frequency greater than six, which
were counted and encoded as 985 words as CES perception information. Approximately
14,737 texts reflected visitors’ perceptions of CESs, accounting for 85.35%. The overall
perception frequency of CESs was above 80.00%, with 13 parks having a perception fre-
quency exceeding 90.00%, accounting for 52.00%. All CES categories were perceived in
the various parks, but there were differences among different parks (as shown in Figure 4).
The perception frequencies of spiritual services, aesthetic experiences, recreation, and nat-
ural appreciation were significantly prominent. Aesthetic experience and recreation had
relatively even distribution ratios in the various parks, around 19.00% (Figure 5).

Figure 4 presents the CES frequencies in different types of parks. The comprehensive
parks had a total of 7585 text records and 19,412 CES code records documenting visitors’
perceptions of CESs. Among them, Prince Bay Park and White Pagoda Park had the highest
frequency of perception keywords, accounting for 25.85% and 24.52%, respectively. In
the 7152 perception records of specialized parks, there were 21,077 CES code entries, with
zoos (n = 4770, 22.63%) and botanical gardens (n = 6431, 30.51%) showing a significant
advantage in the quantity of perceived CES code entries. According to Figure 5, the
aesthetic experience function of Tongjian Lake Park and the leisure and recreation function
of White Pagoda Park had the highest proportions among all CESs in their respective
parks, accounting for 38.16% and 32.04%, respectively. Spiritual services and natural
appreciation had average ratios of 12.99% and 14.69%, respectively, ranking only behind
aesthetic experience and recreation. The differences in historical and cultural perceptions
among the different parks were substantial, with the highest being in the Eight Diagrams
Field Heritage Park at 23.96% and the lowest in Hangzhou Zoo at 2.54%. Social interaction
was prominent in Children’s Park and Hangzhou Zoo, accounting for 17.00% and 12.29%,
respectively. These data indicated that the public prefers social activities in these two parks.
Among all the parks, only a few visitors perceived inspiration, existential values, or science
education (all below 6.20%), with inspiration having the lowest perception frequency.
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3.1.2. Importance–Performance Analysis of Visitors at Urban Park CESs

According to the emotional value statistics processed by the Baidu AI Open Plat-
form’s sentiment analysis module, visitors’ positive Weibo texts had the highest proportion
(92.07%, n = 15,897), followed by negative texts (6.60%, n = 1139), and neutral texts (1.32%,
n = 230). Table 2 shows the results of the visitors’ ratings of the importance and perfor-
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mance of CESs by type. The overall importance of CESs to all the visitors (24.88) was lower
than their performance level (78.97). The satisfaction with recreation and cultural heritage
was significantly higher than the other service categories, and the emphasis on aesthetic ex-
periences and recreation was significantly higher than the other service categories. The IPA
perception evaluation model was used to analyze the performance of different categories
of CESs and the visitors’ emphasis. The IPA analysis uses the average values of importance
and satisfaction as the dividing points for the X–Y axis, dividing the space into four quad-
rants [54], corresponding to different management priorities: the first quadrant represents
high importance–high satisfaction; the second quadrant represents high importance–low
satisfaction; the third quadrant represents low importance–low satisfaction; and the fourth
quadrant represents low importance–high satisfaction. According to the perception eval-
uation model (Figure 6), the CESs provided by urban parks in Hangzhou’s main urban
area met visitors’ needs well. The CES categories that could continue to be maintained
include inspiration, existential values, science education, and social interaction; aesthetic
experiences and recreation had significant advantages. Service categories that needed
improvement included natural appreciation, spiritual services, and cultural heritage.

Table 2. Perceived performance and importance of cultural ecosystem services.

CES Categories Number of Negative Texts Number of Active Texts Importance Performance (Satisfaction)

Spiritual services 251 4868 17.37 51.00
Aesthetic experiences 399 7474 50.00 80.67

Recreation 691 9458 54.77 91.25
Inspiration 51 922 5.81 80.85

Existential values 42 1120 6.81 83.42
Cultural heritage 121 3098 18.76 77.46
Science education 110 2229 12.91 93.90
Social interaction 217 2807 17.79 81.74

Natural appreciation 496 7754 39.72 70.72
Total 2378 3,9730 24.88 78.97
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3.2. Landscape Factors in Social Media Photos

After iterative training, the YOLO v5 model had an average precision of 0.981, demon-
strating exemplary performance in annotating target images. In verifying 1122 manually
annotated images against the model results, all 21 landscape factors showed high precision
and recall rates (Table 3). The YOLO v5 model identified landscape factors in 7662 pho-
tos out of 14,752 pieces of metadata (excluding data where a CES was not recognized).
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Among the identified landscape factors, biological landscape had the highest frequency
(61.00%, n = 6795), followed by hydrological landscape (16.58%, n = 1847) and architectural
landscape (15.89%, n = 1770). The lowest frequency in the 7662 photos was for facility
landscape (6.53%, n = 727). As each Weibo post might encode multiple CES categories, we
used the Python programming language to match each CES type with landscape factors for
each piece of data, resulting in 32,874 corresponding data entries. Among them, biological
landscape were associated with the most perceived CESs (n = 17,769), while the fewest
were found in facility landscape (n = 2629) (Table 4). After visualizing Table 4 (Figure 7),
we learned that among the four categories of landscapes, hydrological and biological
landscape mainly provided perceptions of spiritual services, aesthetic experiences, and
recreation. The natural appreciation function was more reflected in biological landscape,
while the cultural heritage and recreation functions tended to be reflected in architectural
and facility landscape.

Table 3. Image annotation results and accuracy.

Landscape Categories Landscape Factors Number of Labels Accuracy Recall mAP@0.5 mAP@[0.5 = 0.95]

Hydrological landscape
Lakes 112 0.991 0.953 0.994 0.826
Ponds 163 0.918 0.660 0.985 0.747

Natural revetments 263 0.890 0.889 0.952 0.626

Biological landscape

Arbors 438 0.961 0.947 0.985 0.790
Lawns 69 0.985 0.927 0.983 0.769

Herbaceous flowers 321 0.970 0.984 0.993 0.813
Woody flowers 178 0.966 1.000 0.933 0.841

Groves 99 0.980 0.878 0.988 0.730
Fish 114 0.923 0.982 0.990 0.773
Birds 77 0.991 1.000 0.995 0.712

Other animals 227 0.980 1.000 0.995 0.841

Architecture landscape

Pavilions 26 0.785 1.000 0.978 0.808
Bridges 70 0.975 0.971 0.986 0.768
Towers 27 0.836 0.941 0.955 0.611

Other traditional
buildings 220 0.949 0.986 0.993 0.778

Modern architecture 81 0.947 1.000 0.993 0.842

Facility landscape

Entertainment facilities 127 0.965 1.000 0.994 0.811
Identification facilities 47 0.994 1.000 0.995 0.876

Seats 40 1.000 0.966 0.989 0.754
Landscape sketches 52 0.949 1.000 0.995 0.855

Roads 110 0.956 0.982 0.994 0.789

Table 4. The occurrence frequency and proportion of CES categories in different landscape categories.

CES Categories

Hydrological
Landscape

Biological
Landscape

Architecture
Landscape Facility Landscape Total

N % N % N % N % N

Spiritual services 1208 3.83 3199 10.13 499 1.58 318 1.01 5224
Aesthetic experiences 1179 3.73 3455 10.94 957 3.03 188 0.60 5779

Recreation 984 3.12 3777 11.96 799 2.53 697 2.21 6257
Inspiration 180 0.57 427 1.35 144 0.46 129 0.41 880

Existential values 146 0.46 500 1.58 540 1.71 150 0.48 1336
Cultural heritage 231 0.73 620 1.96 1535 4.86 213 0.67 2599
Science education 234 0.74 575 1.82 655 2.07 314 0.99 1778
Social interaction 194 0.61 579 1.83 368 1.17 413 1.31 1554

Natural appreciation 721 2.28 4637 14.69 604 1.91 207 0.66 6169
Total 5077 16.08 17,769 56.27 6101 19.32 2629 8.33 31,576
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3.3. The Correlation between Urban Park CESs and Landscape Factors
3.3.1. Interconnectedness of CES Categories in Urban Parks

Through the Apriori association rule analysis of visitors’ perceptions of CES categories,
11 association rules that met the conditions (confidence > 60.00% and conditional support
> 20.00%) were mined (as shown in Table 5). These 11 association rules indicated strong
correlations with a temporal sequence. The most frequent itemsets included aesthetic expe-
riences (C2)–recreation (C3), spiritual services (C1)–aesthetic experiences (C2), and spiritual
services (C1)–recreation (C3). This result indicated that in the context of 25 urban parks,
these three CES categories were frequently perceived together and had solid correlations
and orders. As seen from Table 5, when women perceived aesthetic experiences or spiritual
services in urban parks, they were highly likely to perceive recreation. Rules 7–11 reflected
the association rules between four categories, and there was a high probability of perceiving
another type when perceiving spiritual services with aesthetic experiences or recreation.

We conducted a Spearman correlation analysis to demonstrate the overall correlation
among all the CES categories. As seen in Figure 8, there was a correlation among the CES
categories, and they exhibited varying degrees of correlation. In addition to the three pairs
C1–C2, C1–C3, and C2–C3 with high correlations (R > 0.85), the correlation between natural
appreciation and aesthetic experiences, recreation, and spiritual services was also high,
with R values of 0.93, 0.88, and 0.83, respectively. Additionally, the correlation between
recreation and social interaction also reached 0.83. However, we found two negative
correlations: existential values and inspiration (R = −0.07) and inspiration and science



Forests 2024, 15, 213 13 of 22

education (R = 0.00). This finding suggested that when visitors perceive existential values
or scientific education, their perception of inspiration might weaken.

Table 5. Mining table for association rules between categories of cultural ecosystem services.

Number X Y Number of
Instances

Support
Percentage

Confidence
Percentage

Rule Support
Percentage Lift

1 C2 C3 7825 45.32 60.79 27.55 1.12
2 C1 C2 5914 34.25 63.22 21.66 1.40
3 C1 C3 5914 34.25 68.28 23.39 1.26
4 C2,0 C3 5232 30.30 61.70 18.70 1.14
5 C1,0 C2 4225 24.47 61.40 15.02 1.35
6 C1,0 C3 4225 24.47 68.17 16.68 1.26
7 C9,C2 C3 4055 23.49 63.87 15.00 1.18
8 C1,C3 C2 4038 23.39 66.86 15.64 1.48
9 C9,C3 C2 3874 22.44 66.86 15.00 1.48
10 C1,C2 C9 3739 21.66 60.76 13.16 1.53
11 C1,C2 C3 3739 21.66 72.21 15.64 1.34

Note: 0 is female; C1 is spiritual services; C2 is aesthetic experiences; C3 is recreation; C9 is natural appreciation.
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3.3.2. Correlation between CES Categories and Park Landscape Factors

Cross-tabulation and Monte Carlo post hoc chi-square tests showed a significant
statistical correlation between the CES categories and landscape factors (χ2 = 21,156.983,
df = 160, p < 0.05). We used an MCA analysis and the Euclidean distance measurement
method to associate landscape factors in photos with CES categories in text data. The results
of the analysis showed that three components account for 39.11% of the total variance
in visitors’ expression of perceived CES categories (Figure 9 shows the dual plots of the
first two axes). The first part of Figure 9 (accounting for 52.39% of the total variance)
revealed gender differences in visitor perception. Component 2 (accounting for 48.58% of
the total variance) showed the perceived connection between landscape factors and cultural
ecosystem service categories.

Figure 9. The MCA diagram shows the positions of CESs (red font), landscape factors (gray font),
and visitor gender (blue font) in the first two-dimensional factor plan.

The MCA indicated that user gender, landscape factors, and perceived CES categories
were closely related. Concerning gender landscape preferences, males and females were
in the third and first quadrants, respectively, with some differences. Males preferred
architectural landscapes (other traditional buildings, modern buildings, pavilions, bridges,
towers), landscape sketches, identification facilities, and roads. At the same time, females
were more inclined to perceive hydrological landscapes (lakes, ponds, natural revetments),
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groves, and woody flowers. Regarding CES categories, males had a higher perception of
science education, existential values, cultural heritage, and inspiration, while females were
likelier to perceive recreation, aesthetic experiences, and spiritual services. In studying
the correlation between CESs and landscape factor perception, we could judge the degree
of correlation based on the distance to the origin [55]. From the MCA dual-line chart
(Figure 9), we found that natural appreciation was closely related to herbaceous flowers,
other animals, and fish, showing a significant correlation. Recreation, spiritual services,
and aesthetic experiences form a bundle closely related to ponds, natural revetments,
lawns, and groves. Additionally, science education, existential values, and cultural heritage
form another bundle associated with identification facilities, landscape sketches, and
architectural landscapes (other traditional buildings, modern buildings, pavilions, towers,
and bridges). Pavilions and bridges were closely connected to historical and cultural factors,
while towers, modern architecture, and roads were closely linked to social interaction.
Traditional buildings and signage facilities were closely associated with science education
and existential values.

The author created a Sankey diagram to visually represent each CES category’s per-
ceptual flow. As shown in Figure 10, females contributed significantly to the perception of
all the CES categories, enhancing the perceptions of spiritual services, aesthetic experiences,
and recreation for all landscape factors, particularly arbors and herbaceous flowers, fish,
landscape sketches, and seats, which had the lowest contribution rates to the perceptions
of the remaining six CES categories.
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4. Discussion
4.1. Visitors’ Preferences for Cultural Ecosystem Service Categories and Landscape Factors in Parks

In previously published studies, visitors’ perceptions of CESs, entertainment, and
aesthetics have often been highlighted, while capturing inspiration was less common [24,56].
These research results partially aligned with our findings. Through using NLP methods to
identify comments, we found that the overall perception frequency of Hangzhou urban
parks’ CESs was relatively high. Among them, spiritual services, aesthetic experiences,
recreation, and natural appreciation were most easily perceived by the public. At the
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same time, inspiration and existential values were relatively challenging to perceive. This
phenomenon was related to Hangzhou being one of China’s famous historical and cultural
cities and tourist destinations. Yao and Leng et al. [57] found that parks with high-level
management, service environments, and green coverage could bring residents pleasant
mental experiences. In contrast to the results of Gai et al. [3], this research found that visitors’
overall perception of the importance of CESs was lower than their actual performance.
This result was related to the high-quality construction and service management of urban
parks in Hangzhou. According to the IPA analysis, visitors had higher expectations for
natural appreciation, spiritual services, and cultural heritage, but the actual performance of
parks in these aspects was slightly lower. This phenomenon might be attributed to factors
such as a high prevalence of mosquitoes in the plant community and a lack of systematic
introduction and interpretation of historic and cultural landscapes in the parks. In future
urban park construction and management, in addition to introducing mosquito-repelling
plants in close-range viewing areas, using innovative educational methods such as WeChat
accounts for dissemination and QR code technology to share information about flora and
historical buildings can also enhance visitor satisfaction with natural appreciation, science
education, and cultural heritage.

According to the statistics of 17,266 user–day (PUD) photos, three landscape factors,
including arbors (19.01%), herbaceous flowers (8.99%), and groves (8.22%), were more
frequently depicted in landscape factors. This was consistent with the findings of Oteros-
Rozas et al. [26], Ma et al. [45], and Graves et al. [58], who found that the public highly
perceived plant landscapes such as trees. The degree of preference for different landscape
factors was similar to the conclusion of Huang et al. [59], who found that the preferred
landscape factors in urban parks were deciduous trees > herbaceous flowers > ponds >
gates > pavilions. Daniel et al. [60] found that over 20.00% of photos were taken of nature,
and natural photos were more likely to occur in parks and areas with high vegetation
cover. Similar to this discovery, we also extracted a relatively high proportion of natural
landscapes from the photo data. At the same time, unlike the conclusion of Yang et al. [61],
there were some differences in landscape category preferences based on visitor gender.
Males preferred architectural landscapes, facility landscapes, and roads. At the same
time, females were more inclined to perceive hydrological landscapes, groves, and woody
flowers. This difference might be related to gender habits. Yang et al. [62] found that most
male tourists preferred sitting, while female tourists preferred taking photographs. In
Hangzhou, urban parks, flower clusters, and natural embankments often attract visitors to
pause and take pictures. Urban park managers can capitalize on gender-specific landscape
preferences by strategically placing service facilities in different recreational areas. For
instance, they can create prominent photo spots in flower landscapes favored by women
and install nearby restroom facilities to enhance the visitor experience.

4.2. Factors Influencing Visitors’ Perception of Cultural Ecosystem Services in Park Landscapes

The research indicated that a set of ecosystem service functions can consistently co-
occur in time and space and could be perceived concurrently. This aligned with conclusions
from studies by Jang et al. [35], Zhai et al. [63], and Wang et al. [64]. The Apriori association
rule analysis revealed a significant correlation between aesthetic experiences, recreation,
and spiritual services. This result resembled the conclusion that nature-based tourism
affects visitors’ happiness [65]. Unlike Fulvia et al. [34], a strong association was found
between natural appreciation, aesthetic experiences, and recreation. When users perceived
natural appreciation and recreation, there was a high probability of perceiving aesthetic
experiences. This might be due to the introduction of flowering plants or trees species in
urban parks, which enhanced park attractiveness and conveyed aesthetic experiences [22].
Previous research on demographic characteristics and CESs found gender to be a crucial
factor influencing public perception [66]. This study found females were more likely
to perceive CESs than males, contrasting with Tan et al. [67] but aligning with Calvet-
Mir et al. [68]. Exploring the preference differences in CES categories, females preferred
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aesthetic experiences, recreation, and spiritual services, while males preferred cultural
heritage, science education, existential values, and social interaction. Researchers drew
divergent conclusions about gender preferences [33,69], which might be influenced by age,
occupation, cultural differences, etc.

In this study, an MCA analysis was used to bind CES categories with landscape factors,
revealing a close relationship between landscape factors and CES category perception.
Previous research [23,43] found that all 21 landscape factors influenced CES category
perception to varying degrees, and the same landscape factor could influence multiple
CES categories. Among them, the main factors influencing CESs were arbors, herbaceous
flowers, woody flowers, other traditional buildings, natural revetments, towers, land-
scape sketches, bridges, and other animals. Numerous studies have demonstrated these
landscape factors to be generally preferred by the public [45,70,71]. Overall, associations
formed three bundles of CES and landscape factors. As expected, the perception of natural
appreciation mainly came from natural landscapes (biological and water). These landscape
factors often coexist because environments such as lakes and forests are habitats for various
animals. Similar to the findings of Zhang et al. [23], natural areas did not have a significant
advantage in contributing to their existential values compared to non-natural areas such
as landscape sketches, buildings, roads, and identification facilities. Science education,
cultural heritage, and social interaction often trigger perceptions related to human-made
landscapes [26]. Regrettably, we found that visitors’ perception of science education was
mainly related to artificial landscapes, such as identification facilities, and they rarely paid
attention to the knowledge provided by natural factors, such as plants in urban parks. The
perception of cultural heritage came mainly from landscape factors such as identification
facilities and buildings (pavilions, bridges, towers, and modern buildings). These land-
scapes were usually carriers of poetry and scientific texts. Some identification facilities
recorded information about plants and structures, while certain buildings were endowed
with personified historical images and spiritual representations [28]. Visitors intuitively
perceived these landscape factors as historical and cultural, and they were also considered
to have good educational and scientific uses [72]. At urban life’s brisk pace, few tourists
felt the urge to explore historical knowledge, except for professionals. Urban park staff
can strengthen science education by promoting experiential learning through practice,
such as knowledge tests and architectural pattern design competitions, to enhance their
understanding of architecture and biological landscapes through participatory activities. In
the third bundling group, landscapes contributing to recreation, aesthetic experiences, and
mental satisfaction shared similarities. These similarities primarily came from hydrological
features and vegetation, including natural revetments, ponds, lawns, and arbors. Similar
studies have also extensively reported on the importance of vegetation and water bodies
for aesthetics [73,74]. As suggested by Zhang et al. [75], planting more trees and vibrant
flowers and providing transparent water sources could enhance public aesthetics and
improve mental restoration.

4.3. Methodological Advantages and Limitations

In recent years, social media data have become a new trend in researching CESs.
Compared to traditional data, social media text data have the advantages of a large volume,
long span, accessible collection, and strong randomness [17] and have gradually become
an important data source for studying CES perception. This study combined text data
with photo data and used machine learning to advance more accurate photo content
recognition. This process overcame the limitation that a single type of data might cause
the public to lose some perceptual information. Li et al. [76] focused on analyzing the text
and image data of Weibo and proved that these two types of data can comprehensively
describe public aesthetic elements. Landscape studies have indicated that this method
could effectively reflect users’ perceptions of CESs and landscape factors [20]. Furthermore,
by assessing CES and landscape factor perceptions, we can comprehensively understand



Forests 2024, 15, 213 18 of 22

human interactions in urban parks [3], providing decision makers with more targeted
transformation suggestions and a theoretical basis.

While this study proposed a method for combined text and image CES research, it
had limitations related to online data. Uploaded data content is influenced by visitor
characteristics like education level, gender, income, and visit frequency. Obtaining such
data is challenging on privacy-focused social media platforms, reflecting the current state of
most platforms [17,24]. Social media data mainly reflect the opinions of younger users who
publish comments, making it challenging to study the perceptions of users like children
and the elderly who do not often comment. Future research could employ various methods,
including surveys, participatory mapping, and social media evaluation for different user
groups. Integrating multiple data sources, including mobile signaling and exercise app
data [17], can enhance CES perception evaluation methods. Refining factors influencing
public CES perception will provide park managers with practical suggestions for improving
CES supply and spatial quality in urban parks.

5. Conclusions

Cultural ecosystem services do not represent the quality of the ecological environment
but rather reflect the complex and dynamic interactions between ecosystems and humans.
This study analyzed park visitors’ preferences for CESs provided by urban parks and the
impact of landscapes on these preferences from a first-person perspective. We found that
utilizing two types of data from the Weibo platform to explore visitors’ perceptions of CESs
and landscape factors was an effective method. In addition to different association rules
within CES categories, the perception of CES categorieswas also closely correlated with
visitor gender and landscape factors. This correlation led to bundling multiple landscape
factors with several CES categories. To improve the quality of park ecological services
and meet the needs of residents, the construction and management of urban parks should
carefully consider the preferences of park visitors towards CES and landscapes. Detailed
landscape factors can be employed to target improvements in specific CES categories.
However, due to the limitations of the social media user population, the research cannot
deeply understand the influence of personal information factors. In subsequent steps, a
combination of participatory mapping and various data types, such as mobile signaling,
should be employed for a broader analysis to enhance the practical significance of the
research results.
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Appendix A

Table A1. Detailed information on 25 city parks.

District Urban Park Name Area/hm2 Types Number of Valid
Comments

Xihu District

The Prince Bay Park 80.00 Comprehensive park 2497

Viewing Fish at Flower Pool Park 20.00 Comprehensive park 1548

Breeze-ruffled Lotus at Quyuan
Garden 12.65 Comprehensive park 1901

Hupao Park 13.12 Other specialized park (theme of
Tiger Running Spring) 619

HangZhou Zoo 20.00 Specialized park (zoo) 2195

HangZhou Botanical Park 284.64 Specialized park (botanical park) 2991

Youth & Children’s Park 14.00 Other specialized park
(children’s park) 81

Agoda of Six Harmonies Park 6.80 Specialized park (heritage park) 108

Xishan Forest Park 1381.00 Other specialized park (urban
forest park) 52

Wuchao Mountain Forest Park 522.00 Other specialized park (urban
forest park) 47

Tongjian Lake Park 67.72 Other specialized park (urban
wetland park) 59

The Xixi National Westland Park 1150 Other specialized park (urban
wetland park) 1026

Shangcheng
District

White Pagoda Park 78.40 Comprehensive park 2246

Chengdong Park 6.26 Comprehensive park 69

Orioles Singing in the Willow 21.00 Comprehensive park 510

Bachelor Park 12.70 Comprehensive park 68

Chengbei Sports Park 44.78 Other specialized park (sports
and gymnastic park) 52

Jiangyangfan Ecological Park 19.80 Other specialized park (urban
wetland park) 56

Long bridge Park 2.80 Other specialized park
(waterfront park) 203

The Eight Diagrams Field Heritage
Park 6.00 Specialized park (heritage park) 435

Lakeside Park 5.80 Other specialized park
(waterfront park) 53

Yongjin Park 2.80 Other specialized park
(waterfront park) 53

Gongshu
District

Grand Canal Asian Games Park 46.70 Comprehensive park 33

Banshan Forest Park 1002.88 Other specialized park (urban
forest park) 257

Binjiang
District Riverside Park 28.00 Comprehensive park 107

Although the area of Chengdong Park does not exceed 10 hm2, it is stated in the government announcement
that it is a comprehensive park. (https://wgly.hangzhou.gov.cn/art/2022/1/17/art_1229505585_58939557.html,
accessed on 12 December 2022).

https://wgly.hangzhou.gov.cn/art/2022/1/17/art_1229505585_58939557.html
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