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Abstract: Forest disturbance detection is important for revealing ecological changes. Long-time series
remote sensing analysis methods have emerged as the primary approach for detecting large-scale
forest disturbances. Many of the existing change detection algorithms focus primarily on identifying
high-intensity forest disturbances, such as harvesting and fires, with only a limited capacity to detect
both high-intensity and low-intensity forest disturbances. This study proposes an online continuous
change detection algorithm for the detection of multi-intensity forest disturbances such as forest
harvest, fire, selective harvest, and insects. To initiate the proposed algorithm, the time series of the
Normalized Difference Vegetation Index (NDVI) is fitted into a harmonic regression model, which
is then followed by the computation of residuals. Next, the residual time series is entered into the
adaptive exponentially weighted moving average (AEWMA) chart. This chart adaptively adjusts the
smoothing coefficients to identify both high-intensity and low-intensity disturbances. When the chart
value consistently deviates from the control limit, the forest pixel is classified as disturbed. With
an overall spatial accuracy of 85.2%, including 86.1% producer’s accuracy and 84% user’s accuracy,
along with a temporal accuracy of 96.7%, the algorithm enables precise and timely detection of
forest disturbances with multiple intensities. This method provides a robust solution for detecting
multi-intensity disturbances in forested regions.

Keywords: change detection; multi-intensity forest disturbances; landsat time-series; AEWMA chart

1. Introduction

Forests currently play a pivotal role in the global carbon cycle, biodiversity preser-
vation, and environmental monitoring [1]. However, they are susceptible to disturbances
resulting from climate change, human activities, and various other factors [2–5]. The distur-
bance of forests elucidates the process of forest evolution and the development of forest
ecosystems, exerting a fundamental influence on the ecological environment [6–9]. The
advancement of science and technology has enabled remote sensing to supplant manual
investigations as the primary tool for Earth observation and the detection of large-scale ter-
restrial ecosystem changes, making it an effective method for quantitative analysis and the
characterization of surface change processes [10]. Since the U.S. Geological Survey (USGS)
made Landsat datasets accessible, these resources have found extensive use, particularly in
large-scale change detection studies [11,12]. This access presents a valuable opportunity to
gain a more comprehensive understanding of changes on Earth. Acquiring timely infor-
mation on forest disturbances using remote sensing time series is pivotal for sustainable
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forest management, carbon accounting, ecosystem management, and the exploration of
ecological shifts and vegetation recovery [13].

Time series change detection methods can identify the characteristics, trends, and
development patterns of changes in images. Most pixel-based remote sensing change
detection methods are post-classification methods [14] and direct detection methods [15].
Post-classification comparison methods involve conducting a classification and subse-
quently comparing the results with those of a previous image to identify any changes that
may have occurred. However, these methods are limited by the accuracy of the classifica-
tion results. The direct detection method identifies pixel changes directly using specific
indicators or thresholds, such as Landsat-based detection of trends in disturbance and
recovery (LandTrendr) [16], Breaks for additive seasonality and trend (BFAST) [17], and the
continuous change detection and classification algorithm (CCDC) [18]. The LandTrendr
algorithm employs images captured during the same season to mitigate the influence
of seasonal variations on change detection outcomes [16,19]. While LandTrendr excels
at capturing long-term trends, it introduces discontinuities in the time series and may
slightly delay the detection of sub-annual changes due to its use of annual images obtained
only once per year. Therefore, several algorithms encompass fitting harmonic regression
models to extract the residual time series and identify intra-annual alterations [17,18,20].
The BFAST [17,21] algorithm iteratively dissects the time series into seasonal, trend, and
residual components, and it has been widely employed for high-intensity disturbances such
as fire and harvest [22–25]. In addition, the Continuous Monitoring of Forest Disturbance
Algorithm (CMFDA) [26] employs a harmonic regression model to mitigate phenological
changes, enabling the detection of forest disturbances at high temporal frequencies by iden-
tifying pixels with three consecutive changes as disturbances. Building upon the CMFDA,
the CCDC [18] Continuous Monitoring of Land Disturbance (COLD) algorithm [27] was
subsequently developed. Both of them extend the capability for continuous detection of
multiple land cover changes.

However, most of the aforementioned methods are tailored for the detection of high-
intensity disturbances, and errors significantly escalate in the presence of multiple distur-
bance types with varying intensities [28]. For instance, while the COLD algorithm can
detect disturbances with varying intensities, it still exhibits relatively high omission errors
for low-intensity disturbances [27]. The effective detection of low-intensity disturbances is
pivotal in identifying multi-intensity disturbances and has emerged as a prominent and
well-acknowledged topic in recent years [29,30]. Zhao et al. [31] proposed an algorithm
that detects not only high-intensity but also low-intensity disturbances, which are difficult
to obtain by single-best-model algorithms. However, high-intensity disturbances will have
lower accuracy as the data gets noisier. Brooks et al. [20,32] introduced a change detection
algorithm that applies the exponentially weighted moving average (EWMA) chart to iden-
tify subtle disturbances in forest degradation and thinning. The EWMA Change Detection
(EWMACD) is sensitive to low-intensity disturbances when the smoothing coefficient λ
that determines the threshold for detecting changes is small. However, in cases of sudden
and severe disturbances, a small λ may result in a delay effect in detecting high-intensity
disturbances. It means a single EWMA chart with a fixed λ cannot well detect low- and
high-intensity disturbances simultaneously. In summary, the current change detection algo-
rithms for single-intensity (high- or low-intensity) forest disturbances cannot well detect
multi-intensity forest disturbances. synchronously; however, the simultaneous occurrence
of multi-intensity forest disturbances in the same area is common.

The aim of this study is to construct a change detection algorithm for detecting multi-
ple intensities of forest disturbances. Capizzi and Masarotto introduced an adaptive EWMA
(AEWMA) chart [33], which can adaptively adjust λ to enhance shift identification and
improve robustness [34,35]. This study is to introduce an AEWMA change detection (AEW-
MACD) algorithm designed to facilitate the detection of multi-intensity forest disturbances.
The detected disturbance agents in this article include both high-intensity disturbances
(harvest and fire) and low-intensity disturbances (selective harvest and insects). Through
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comparing it with the EWMACD algorithm, the ability of AEWMACD to detect various
disturbance agents was evaluated, and the differences in detection accuracy among these
agents were analyzed.

2. Study Area and Data
2.1. Study Area

This study area is situated in two representative counties, Jingzhou and Tongdao,
in the southwestern part of Hunan Province, China, characterized by a significant forest
cover (Figure 1). In 2021, the local statistical offices in these two counties reported forest
cover percentages of 74.93% and 77.24%, respectively. This region’s forest ecosystem is
fragile and highly susceptible to disturbances, owing to its distinctive karst landscape, soil
conditions, extreme climate, forest insects and diseases, human activities, and other con-
tributing factors. The primary agents of forest disturbance targeted in this study encompass
deforestation (such as harvest and selective harvest), insects, and fire, leading to different
change magnitudes in the forest’s spectral characteristics. Consequently, this study area
offers an ideal setting for assessing the feasibility of detecting a wide range of disturbance
agents within Landsat time series data using the proposed AEWMACD algorithm.
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Figure 1. Geographic location and Landsat image of this study area: (a) general location within China,
(b) within Hunan Province, (c) Landsat8 OLI false-color composite image (RGB = near-infrared, red,
and green band), and (d) validation data selected in this area.

2.2. Data

The algorithm employed Landsat data, which offers a medium spatial resolution
(30 m) and a long archival period spanning over 50 years [36]. Specifically, Landsat5
TM data, Landsat7 ETM+ data, and Landsat8 OLI data were utilized. Over the period
from 2001 to 2021, a total of 177 surface reflectance (SR) products were procured from the
USGS (Table 1), ensuring that the proportion of contaminated pixels remained below 60%
(Figure 2). To mitigate the scan line corrector (SLC) malfunction experienced by Landsat7
since 2003, interpolation was conducted using the ENVI plugin. A forest benchmark mask
was generated by employing a random forest classification algorithm, utilizing the Landsat
image captured on 3 October 2002. The Normalized Difference Vegetation Index (NDVI)
was computed and served as the input for the algorithm.
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Table 1. Information on data and validation data.

Data Type Acquisition Date (Sum) Resolution Sources

Landsat
5 (TM) 14 September 2001–25 August 2011 (48)

30 m USGS7 (ETM+) 5 August 2001–2 December 2021 (88)
8 (OLI) 13 July 2013–8 November 2021 (41)

MOD14A1 (Version 6.1) 18 February 2000 to Present 1000 m MODIS (USGS/GEE)
High-resolution data 3 May 2003 to Present - Google Earth PRO

Validation data 5 August 2001–2 December 2021 Vector
Manual

Interpretation;
Statistical Data; News
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Figure 2. Temporal distribution of available images with less than 60% of contaminated pixels
between 2001 and 2021.

2.3. Validation Data

Due to the absence of other remote sensing images with both higher temporal and
finer spatial resolution than Landsat images spanning from 2001 to 2021, the most reliable
and optimal source for assessing the accuracy of forest disturbance detection based on
Landsat time series is the Landsat images themselves [18,37]. To ensure the judicious
selection of samples for this study, we employed a range of methodologies, including visual
interpretation through Google Earth, consultation of statistical data and news sources,
and the utilization of existing partial datasets such as the MODIS fire detection dataset
(MOD14A1) (Table 1). Consequently, we meticulously curated a total of 500 reference
samples from these images, evenly distributed between undisturbed forest areas and areas
experiencing disturbances, with 250 samples in each category (Figure 1d).

In the process of validation data selection, the first step are spatial coordinate matching.
Google Earth data, statistical data, and forest disturbance news all directly acquire the
latitude and longitude of the disturbance point and then match them to the Landsat image.
However, since the resolution of the MODIS fire dataset (MOD14A1) are lower than that of
Landsat, the corresponding range on the Landsat image is found according to the latitude
and longitude of MOD14A1, and then the fire pixel on Landsat is determined by manual
interpretation. The second step is temporal matching. MODIS products, statistical data,
and news all directly acquire the time information and then match the nearest Landsat
image backward. However, due to the restricted temporal precision of available high-
resolution images (usually spanning one or two years), manual interpretation are applied
to Google Earth data. This process begins with an examination of the chosen disturbance
pixels and their occurrence times on Google Earth data. Subsequently, a comparative
analysis is conducted with the disturbance pixels in Landsat images taken before and
after the disturbance time, facilitating the determination of disturbance timing on Landsat
imagery. These disturbance samples are classified into four types, grouped into two primary
categories: high-intensity (harvest and fire) and low-intensity (insect and selective harvest),
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as depicted in Figure 3a. In the absence of disturbances, the time-series curve should
demonstrate a cyclic pattern, as denoted by the dashed line in Figure 3b,c. However, when a
disturbance occurs, the curve deviates from this regular pattern, as illustrated by the dotted
lines in Figure 3b,c. Therefore, high-intensity disturbances in the forest were identified as
harvest and fire due to their substantial impacts on the ecosystem, resulting in significant
spectral variations in Landsat images during these events (Figure 3b). Additionally, low-
intensity disturbances were categorized as insect and selective harvest, as they exhibit
relatively small alterations in spectral values (Figure 3c).
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Figure 3. (a) Distribution of disturbed validation data; (b) High-intensity disturbances with significant
spectral value changes, such as harvest; (c) Subtle disturbances with minor spectral value changes,
such as early insect. The dashed lines in the time-series curve should illustrate a cyclic pattern, while
the dotted lines indicate deviations from this regular pattern when a disturbance occurs.

3. Methods

The flowchart for detecting multi-intensity forest disturbances using the proposed
AEWMACD algorithm is shown in Figure 4. To adapt the AEWMA charts for Landsat
data analysis, a preprocessing step is applied to the 177 acquired Landsat images. This
step utilizes the harmonic regression method to mitigate the influence of seasonality. By
subtracting the fitted time profiles from the observed data, both the seasonality and a
significant portion of the temporal autocorrelation are effectively removed. As a result, a set
of residual values is obtained, which can be assumed to follow a normal distribution and
exhibit independence. These residual time series then served as the input for the AEWMA
control chart, where the AEWMA value for each pixel is calculated to assess the occurrence
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of disturbances. The algorithm consists of three main components: harmonic regression
(Section 3.1), X-bar outlier rejection (Section 3.2), and AEWMA control chart processing
(Section 3.3).
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3.1. Harmonic Regression Model

Due to seasonal effects, this study employs harmonic regression methods to eliminate
the influence of phenological variations on disturbance detection.

Given a clearly observed time series of length n, t = [t1, t2 · · · , tn], the following
harmonic model is built during the training period:

yi = a0 +
k

∑
j=1

(
bj cos

(
2π j
D

ti

)
+ cj sin

(
2π j
D

ti

))
+ εi (1)

where yi is the NDVI values, a0 is the intercept coefficient, and k is the order of the
harmonic function and set to 2, which is rooted in the observation that two harmonics
suffice to represent the predominant periodic variations in the time series in the majority of
cases [38]. bj and cj are the coefficients of the cosine and sine harmonics, respectively; εi is
the regression residual of the Julian date; D is the number of days in a year. These model
coefficients are obtained using the ordinary least-squares method.

3.2. X-Bar Outlier Rejection

After harmonic regression, the harmonic regression model may not identify clouds,
shadows, or other outliers corresponding to short-term events. Introducing the Shewhart
chart and utilizing the X-bar to reject outliers in a second iteration can effectively mitigate
most cloud and shadow interference:

β̂ =
(
X′

trainXtrain
)−1X′

traintntrain′ (2)

where Xtrain is a matrix composed of ntrain ×
(
1 + cj + bj

)
designs, and each harmonic

coefficient is adjusted to the Julian date. After all elements with standardized residuals
greater than a global user-specified threshold are filtered out, β̂ is recalculated, and then
the residuals res for the entire time series are calculated:

res = t − Xβ̂ (3)
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X is the matrix obtained by computing the full n ×
(
1 + cj + bj

)
design, and then the

training period variance s2 is estimated:

s2 =
resntrain res′ntrain

ntrain − 1
(4)

where resntrain represent the residual on the training period. The first two steps were
employed to eliminate seasonal changes and outliers.

3.3. AEWMACD
3.3.1. EWMACD

The EWMA values are determined as follows:

EWMAi = (1 − λ)EWMAi−1 + λεi (5)

The initial EWMA1 value of the algorithm is set to 0. λ is the smoothing coefficient, and
i = [1, 2, . . ., n] represents the different time steps of the time series. A value of λ close
to 1 indicates that historical data are given little weight, whereas a value of λ close to
0 implies that the result of EWMAi is primarily dependent on the value of EWMAi−1 from
the previous time step.

The control limit of the EWMA chart is defined by the following equation:

CLi = 0 ± Ls

√
λ

2 − λ

[
1 − (1 − λ)2i

]
(6)

L is the constant of the control limits, and s is the standard deviation of all residuals during
the training period. Then, the EWMACDi is calculated by dividing the EWMAi value by
the CL value:

EWMACDi = Sign(EWMAi)·int
[∣∣∣∣EWMAi

CLi

∣∣∣∣] (7)

Sign() is used to obtain the positive and negative sign of EWMAi value, which describes
the direction of deviation from the predicted fluctuation.

∣∣∣ EWMAi
CLi

∣∣∣ indicates the absolute

value of EWMAi
CLi

, and int[] indicates the integer of this absolute value. The disturbance was
signaled when the EWMACD value was less than 0, and a recovery was detected when it
was greater than 0. No disturbance/recovery occurs when it is equal to 0.

3.3.2. AEWMACD

EWMA charts can quickly detect small or large shifts in independent event sequences
by setting different smoothing coefficients λ. However, a single EWMA control chart with
a fixed λ cannot detect both large and small shifts. Brooks et al. specified a fixed smoothing
coefficient of 0.3 [20]. Nevertheless, a small λ value gives less weight to the current residual,
εi, thereby reducing the impact of high-intensity disturbances on the statistic, EWMAi,
which results in a significant delay effect. Capizzi and Masarotto introduced the adaptive
adjustment of the smoothing coefficient function and proposed the AEWMA chart to
address the aforementioned problems. The AEWMA chart has proved the feasibility of
detecting both large and small shifts and is widely used [39–42].

The AEWMA chart adjusts the smoothing coefficients to an equivalent smoothing
coefficient function w(ei) that can vary with the ei at the current i moment as follows:

w(ei) =


1 + 1−λ

ei
r ei < −r

λ |ei| ≤ r
1 − 1−λ

ei
r ei > r

ei = εi − AEWMAi−1

(8)

AEWMAi = (1 − w(ei))AEWMAi−1 + w(ei)εi (9)
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where r is a threshold value that determines when to use a high smoothing coefficient or
a low one. r is a constant when the chart has been designed. Low-intensity disturbances
(|ei| ≤ r) can be detected by the cumulative amplification effect through using a small
equivalent smoothing coefficient; Conversely, when a high-intensity disturbance agent
occurred (ei < −r or ei > r), the equivalent smoothing coefficient w(ei) adaptively obtain
larger and more weight was assigned to current residual εi with high negative value and
then the sudden drop of current chart value AEWMAi makes the high-intensity disturbance
quickly detected, effectively overcoming the temporal delay problem.

The AEWMACDi is then calculated by dividing the AEWMAi value by the CL value:

AEWMACDi = sign(AEWMAi)·int
[∣∣∣∣ AEWMAi

CLi

∣∣∣∣] (10)

The control limit is the same as EWMACD in Equation (6). When the AEWMACD value
consecutively exceeds the control limit three times, a forest pixel is marked as disturbed, and
no disturbance occurs if its AEWMACD value is equal to 0. The value of λ in Equation (6)
was determined through experimental testing by repeatedly executing the AEWMA chart
on a representative subset of this study. The initial value of AEWMA1 is set to 0, and the
value of the constant L is set to 3 based on experience [38].

3.3.3. Parameter Optimization

While the AEWMACD algorithm dynamically adjusts the smoothing coefficient, it
is important to define the initial value of the smoothing coefficient. Upon observing the
composite image, the initial smoothing coefficient struggles to detect these disturbances
when it is set to high values, such as 0.3 or 0.4, as shown in Figure 5e,f. Thus, we initially
set λ to 0.15 as our smoothing coefficient. The experiments, depicted in Figure 6, revealed
that r > 0.15 resulted in poor aggregation of disturbance patches. Therefore, the effective
threshold value r was set to 0.1 for achieving multi-intensity forest disturbance detection.
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3.4. Accuracy Assessment

An accuracy assessment was performed, covering both spatial and temporal dimen-
sions. For the spatial accuracy assessment, a visual comparison were conducted between
reference data and detected disturbances. The locations where disturbances matched the
reference data were meticulously marked, and essential metrics were then quantified,
including Overall Accuracy (OA), User’s Accuracy (UA), Producer’s Accuracy (PA), and
Kappa value. In the temporal accuracy assessment approach, the date corresponding to the
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first image in which disturbance was identified through visual interpretation was treated
as the initial occurrence date of disturbance.

Kappa =
p0 − pe

1 − pe
(11)

p0 is the observed agreement, representing the proportion of agreement actually
observed. pe is the expected agreement, representing the agreement expected to occur
by chance.
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4. Results

The algorithm generates a stacked raster as output, where each layer corresponds to
a disturbance period based on the Landsat NDVI date in the stack. We demonstrate the
algorithm’s feasibility of detecting multi-intensity forest disturbances (Section 4.1) and
assess its accuracy (Section 4.2). The results for the entire study area of AEWMACD and
EWMACD are depicted in Figure 7.
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4.1. Feasibility Analysis of Detecting Multi-Intensity Disturbances Using the
AEWMACD Algorithm
4.1.1. Low-Intensity Forest Disturbance Detection

The AEWMACD algorithm incorporates a low smoothing coefficient, enabling it
to effectively identify low-intensity disturbances such as insect damage and selective
harvesting. As illustrated in Figure 8, an insect agent occurred on 26 November 2007
(Figure 8b,d). The AEWMACD values of the disturbed forest pixel showed that the insect
agent was accurately and timely detected at the initial disturbance date (the dashed line in
Figure 8e). Furthermore, an example of detecting selective harvesting is shown in Figure 9.
Although harvesting only occurred on part of the forest pixel, the algorithm still successfully
detected the disturbed pixel. This demonstration underscores our adaptive algorithm’s
ability to identify low-intensity disturbances, highlighting the strengths inherited from the
EWMACD algorithm.
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Figure 8. Low-intensity disturbance caused by insects: (a,b) depict Landsat images in different
periods; (c,d) illustrate the AEWMACD change detection results in different periods; and (e) presents
the NDVI and AEWMA values within the black box in the images, and the dashed line marks the
moment of disturbance occurrence.
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4.1.2. High-Intensity Forest Disturbance Detection

To assess the effectiveness of the AEWMACD algorithm in responding to high-
intensity disturbances, a forest patch where a harvest event occurred on 4 December
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2010 was selected as an illustrative case (Figure 10). While the EWMACD algorithm
failed to promptly identify the disturbance in the green box on the initial disturbance
date (Figure 10h), the AEWMACD, featuring adaptively adjusted smoothing coefficients,
successfully detected this disturbance in a timely manner (Figure 10e). It showed that
the EWMACD algorithm identified the disturbance with a one-time step delay, but the
AEWMACD algorithm detected the disturbance promptly as it occurred (Figure 10j). Ad-
ditionally, a fire took place on 10 November 2007, as illustrated in Figure 11. Through
adaptively adjusting the smoothing coefficient, the AEWMACD algorithm with an in-
creased smoothing coefficient can timely and effectively detect the fire agent (Figure 11j). A
comparison of the algorithm’s detection results with the actual situation revealed the high
responsiveness of the AEWMACD algorithm to high-intensity disturbances.
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Figure 10. High-intensity disturbances caused by harvest and the delayed detection problem ad-
dressed by EWMACD were corrected by AEWMACD: (a–c) represent the Landsat images in different
periods; (d–f) represent the AEWMACD change detection results in different periods; (g–i) represent
the EWMACD change detection results in different periods; and (j) represent the NDVI, EWAMCD,
and AEWMACD values of the pixel in the green box, and the black dashed line represents the time
that disturbance occurred.
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represents the moment when the disturbance occurred.

4.1.3. Multi-Intensity Forest Disturbance Detection

The improved AEWMACD algorithm exhibits robust detection performance for both
low-intensity and high-intensity disturbances, as demonstrated in the example above.
Landsat’s extensive time series data, with long archival periods covering regions suscep-
tible to multi-intensity disturbances, is well-suited for simultaneous detection of pixels
affected by various disturbance levels. To illustrate this capability, we examine a specific
pixel (Figure 12, indicated by the black box) experiencing both high- and low-intensity
disturbances at different periods. Initially, a low-intensity disturbance, signifying an in-
sect, was detected from 6 August 2007 to 10 November 2007 (Figure 12a,b). Subsequently,
following stabilization and model retraining, a high-intensity disturbance was identified
from 24 July 2020 to 12 December 2020 (Figure 12d,e). This pixel’s multiple disturbances
highlight the AEWMACD method’s ability to detect multi-intensity disturbances within
the same pixel at different periods.

4.2. Assessment of Disturbance Detection Accuracy
4.2.1. Assessment of Disturbance Detection Accuracy in the Spatial Domain

The validation data were used to assess the AEWMACD algorithm. Table 2 provides a
comparison of spatial accuracy between the EWMACD and AEWMACD algorithms, and
they reveal superior performance by the AEWMACD algorithm with an accuracy of 85.2%.
The Kappa value for AEWMACD is 0.70, whereas for EWMACD, it is 0.52. Notably, for
disturbed samples, the user accuracy and producer accuracy were separately 86.1% and
84%, while stable samples exhibited a user accuracy of 84.4% and a producer accuracy of
86.4%. Furthermore, we conducted accuracy assessments for detecting various types of
disturbances (Table 3). The results showed that the AEWMACD algorithm achieved an ac-
curacy of 84.4% for detecting harvest disturbances, 79.2% for fire detection, 82.4% for insect
disturbances, and 87.5% for selective harvest disturbances. The adaptive approach outper-
formed the EWMACD algorithm, especially in cases of high-intensity disturbances such
as harvest and fire. Additionally, in low-intensity cases, the accuracy of both algorithms
was comparable.

The commission errors are primarily attributed to two factors: (1) continuous noise or
cloud interference and (2) mountain shadows. (1) In the algorithm fitting process, we utilize
the Shewhart chart for outlier rejection, effectively eliminating most instances of cloud
interference. However, some residual thin cloud pixels that escape Shewhart chart filtering
can still be erroneously identified as disturbances, as illustrated in Figure 13. Notably,
the majority of the pixels in the blue box in Figure 13b–d remain obscured by continuous
clouds for three consecutive periods, resulting in certain pixels being incorrectly flagged as
disturbances on 3 August 2012 (Figure 13f). (2) As satellites capture images during Earth’s
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orbit, the acquired data may not be in orthorectified form. Moreover, different capture times
can also result in shadows affecting the images. As illustrated in Figure 14, the pixels within
the red box consistently represent forested areas. However, the influence of shadows causes
variations in NDVI values. These subtle spectral changes occur continuously for more than
three times, leading the algorithm to detect them as low-intensity disturbances. Therefore,
the algorithm may exhibit commission errors in areas covered by mountain shadows.
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Figure 12. Disturbance of different intensities by insect and harvest: (a,b,d,e) represent the Landsat
images in different periods; (c) represents the AEWMACD change detection results of subtle distur-
bance; (f) represents the change detection results of high-magnitude disturbance; and (g) represents
the NDVI and AEWMA values of the pixel in the black box.

Table 2. Spatial accuracy assessment of AEWMACD and EWMACD results.

Result
Sample AEWMACD EWMACD

Disturbance No Disturbance Total UA 1 Disturbance No Disturbance Total UA 1

Disturbance 210 34 244 84.0% 183 53 236 77.5%
No disturbance 40 216 256 86.4% 67 197 264 74.6%

total 250 250 500 250 250 500

PA 2 84.0% 86.4%
OA 3 85.2%

73.2% 78.8%
OA 3 76.0%

Kappa 0.70 Kappa 0.52
1 UA represents the User’s accuracy. 2 PA represents the Producer’s accuracy. 3 OA represents overall accuracy.
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Table 3. Spatial accuracy assessment of EWMACD results.

Types
AEWMACD EWMACD

Disturbance No
Disturbance

Producer’s
Accuracy Disturbance No

Disturbance
Producer’s
Accuracy

Harvest (high) 135 25 84.4% 114 46 71.3%
Fire (high) 18 5 79.2% 14 10 58.3%

Insect (low) 28 5 82.4% 27 7 79.4%
Selective

harvest (low) 28 4 87.5% 28 4 87.5%
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Figure 14. Commission error caused by mountain shadows in the red box, which represents all pixels
in this region were detected as disturbances: (a–d) represent the Landsat images in different periods;
(e–h) represent the AEWMACD change detection results in different periods.

The main reasons for omission errors are twofold: (1) extreme small changes in the
NDVI values of the pixels when the disturbance occurs, and (2) the absence of multiple
available clear observations during the disturbance. (1) The primary reason lies in the
minimal change in NDVI values, resulting in smaller residual values after harmonic re-
gression. As shown in Figure 15, it was indicating disturbances on 19 April 2011 in this
region. However, the NDVI value only changed from 0.268 to 0.141. The minimal change
in NDVI values led to the omission error, and due to the rounding down of values for
noise reduction in the images, the subtle changes were not detected as disturbances (red
box in Figure 15). (2) Another contributing factor is the limited availability of Landsat
imagery during the disturbance event, which failed to meet the minimum requirement
of three steps. The Landsat images contained less than 60% contaminated pixels, which
meant that some areas lacked sufficient available images. As shown in Figure 16, only two
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clear observations in this region visually displayed disturbances. Since this number did not
meet the requirement of three consecutive observations, the disturbance was not detected.
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EWMACD algorithm (Table 4), allowing for more precise detection of disturbances. To 
tackle the delay effect associated with high-intensity disturbances, we heightened the al-
gorithm’s sensitivity by adaptively increasing the smoothing coefficient. The accuracy of 
the algorithm’s temporal detection was validated using spatially accurately detected sam-
ples. Manual verification of these samples confirmed the algorithm’s proficiency in de-
tecting disturbances, resulting in an overall temporal accuracy of 96.7% (89.1% + 7.6%) if 
one time step delay (late = 1 time step) in detecting disturbance is acceptable. In contrast, 
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Figure 15. Omission error due to small change in value: (a,b) represent the Landsat images in
different periods; (c,d) represent the AEWMACD change detection results in different periods; and
(e) represent the NDVI, AEWMA, and AEWMA values of the pixel that have not been rounded in the
blue box and the red box represents the difference in AEWMA values before and after round down.
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yellow box.

4.2.2. Assessment of Disturbance Detection Accuracy in the Temporal Domain

The date of forest disturbance occurrences was determined by identifying the date
corresponding to the first image through manual visual interpretation. This approach was
applied uniformly, regardless of whether it indicated complete or partial disturbances as
identified through manual visual interpretation. The introduction of the adaptive function
led to a substantial improvement in the algorithm’s temporal accuracy compared with
the EWMACD algorithm (Table 4), allowing for more precise detection of disturbances.
To tackle the delay effect associated with high-intensity disturbances, we heightened the
algorithm’s sensitivity by adaptively increasing the smoothing coefficient. The accuracy
of the algorithm’s temporal detection was validated using spatially accurately detected
samples. Manual verification of these samples confirmed the algorithm’s proficiency in
detecting disturbances, resulting in an overall temporal accuracy of 96.7% (89.1% + 7.6%) if
one time step delay (late = 1 time step) in detecting disturbance is acceptable. In contrast,
the EWMACD algorithm achieved a temporal accuracy of 87.1% (73.3% + 13.8%).

Similar to the analysis of spatial accuracy, the temporal accuracy of different dis-
turbance types was also assessed (Table 5). The accuracy of AEWMACD was 95.6%
(87.4% + 8.2%) for harvest and 94.7% (89.4% + 5.3%) for fire, which means AEWMACD
achieved high temporal accuracy for high-intensity disturbances. Additionally, the AEW-
MACD demonstrated a significant reduction in delay effects compared to the EWMACD,
especially in the context of high-intensity disturbances. Meanwhile, both of the algorithms
exhibit similar temporal accuracy for low-intensity disturbance detection.
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Table 4. Temporal accuracy assessment results.

Same Time Step Late = 1 Time Step Late ≥ 2 Time Steps Total

AEWAMACD Disturbance 187 16 7 210
AEWAMACD Proportion 89.1% 7.6% 3.3% 100%
EWMACD Disturbance 154 29 27 210
EWMACD Proportion 73.3% 13.8% 12.9% 100%

Table 5. Temporal accuracy assessment of different disturbance types.

Types Same Time Step Late = 1 Time Step Late ≥ 2 Time Steps Total

AEWAMACD
Proportion

Harvest (high) 118 (87.4%) 11 (8.2%) 6 (4.4%) 135
Fire (high) 17 (89.4%) 1 (5.3%) 1 (5.3%) 19

Insect (low) 28 (100.0%) 0 (0.0%) 0 (0.0%) 28
Selective harvest(low) 24 (85.7%) 4 (14.3%) 0 (0.0%) 28

EWAMACD
Proportion

Harvest (high) 92 (68.2%) 21 (15.5%) 22 (16.3%) 135
Fire (high) 12 (63.2%) 3 (15.8%) 4 (21.0%) 19

Insect (low) 26 (92.9%) 2 (7.14%) 0 (0.00%) 28
Selective harvest(low) 24 (85.7%) 3 (10.7%) 1 (3.6%) 28

Although there have been significant improvements in time accuracy, addressing the
delay effect remains a challenge. As shown in Figure 17, while forest pixels experienced
disturbances on 19 April 2011, changes were observed in individual pixels (the blue box)
during the subsequent period on 29 May 2011, indicating a one-time step delay. This delay
may be attributed to the inadequate fit of the harmonic model, causing disturbances that
did not exceed the control limits when they occurred.
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in the blue box, and the dashed line represents the moment when the disturbance occurred.
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5. Discussion

The AEWMACD algorithm achieves the detection of multiple forest disturbances
coexisting. Compared to EWMACD, AEWMACD reduces time delays in detecting high-
intensity disturbances. In contrast to algorithms primarily designed for high-intensity
disturbances, AEWMACD exhibits higher sensitivity to low-intensity disturbances.

The method also exhibits geographical limitations. The study area is primarily charac-
terized by evergreen tree species. When applying this method to regions with a diverse
array of tree species, its applicability remains to be validated. Moreover, if extending the
AEWMACD to tropical regions, the frequent influence of clouds and rainfall leads to sparse
availability of usable images, posing challenges to meeting the requirements of harmonic
regression [43] and thus affecting the feasibility of the algorithm.

The AEWMACD algorithm utilizes a single-band feature as its input. As noted by
Brooks et al. [20,32], relying on a single feature may result in greater errors compared to the
use of multiple features. This is because some features exhibit higher sensitivity to specific
disturbances. For instance, the Normalized Burn Ratio (NBR) offers significant advantages
in forest fire and harvest detection as it yields values greater than those resulting from road
construction and insect activity [44]. Additionally, in the case of harvest, the Shortwave
Infrared 1 (SWIR1) band tends to display higher values than those following a fire [45].
Algorithms that incorporate multiple features or Landsat image bands tend to achieve
higher detection accuracy, as exemplified by CCDC and COLD. Additionally, scholars
have introduced the MAEWMA chart [46] as an extension of the MEWMA chart [47] and
AEWMA chart, demonstrating superior results in quality control processes [48–51]. The
MAEWMA chart utilizes multidimensional features for quality control detection, providing
a new approach to incorporating spectral, temporal, and spatial characteristics into change
detection algorithms. The pursuit of this multi-feature-based approach holds potential for
future research.

During our experiments, we encountered another issue concerning the influence of im-
age quality on detection accuracy. Specifically, regions with continuous thin cloud shadows
could be erroneously identified as disturbances. Although the Shewhart X-bar chart can
help to eliminate outliers caused by clouds or shadows, it does not entirely eliminate errors,
as shown in Figure 12. This will be explored in our future research. Furthermore, some
pixel values may not exceed the control limits, primarily due to minor spectral variations,
which could potentially lead to omission errors. However, neighboring pixels may exhibit
more significant differences and be correctly identified as disturbances. To mitigate this
concern, we intend to incorporate an object-based change detection method [52] to filter
out these omission errors, ensuring the completeness of detected patches within the same
region [53].

Additionally, the detection algorithm only detected forest disturbances and did not
differentiate between disturbance types. This limitation restricts their utility for forest
resource management. Therefore, in future research, we intend to integrate classification
algorithms into the change detection process to attribute various intensities of disturbances.

6. Conclusions

In this study, we proposed an online change detection algorithm known as AEW-
MACD for detecting forest disturbances with different intensities. EWMACD algorithms
determine changes using fixed smoothing coefficients, which poses challenges when both
high- and low-intensity disturbances occur. To address the limitation, the proposed AEW-
MACD algorithm can adaptively adjust smoothing coefficients to enhance its effectiveness
in multi-intensity disturbance detection. It showed a rapid response of the AEWMACD
algorithm to high-intensity disturbances, and the sensitivity to low-intensity disturbances
proved the potentiality of the algorithm for early warning. The proposed AEWMACD
algorithm presents an alternative for quickly and accurately capturing diverse forest dis-
turbance agents driven by natural causes and human activities, laying the foundation for
subsequent attribution of forest disturbance agents. In future endeavors, the emphasis will
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be on optimizing the method for regions characterized by diverse tree species, with the goal
of achieving broader applications. Additionally, further research will be conducted to ad-
dress challenges related to multiple features, object-based approaches, and the classification
of disturbance types.
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