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Abstract: Wildfires are a significant problem in Irkutsk Oblast. They are caused by climate change,
thunderstorms, and human factors. In this study, we use the Random Forest machine learning
method to map the wildfire susceptibility of Irkutsk Oblast based on data from remote sensing,
meteorology, government forestry authorities, and emergency situations. The main contributions of
the paper are the following: an improved domain model that describes information about weather
conditions, vegetation type, and infrastructure of the region in the context of the possible risk of
wildfires; a database of wildfires in Irkutsk Oblast from 2017 to 2020; the results of an analysis of
factors that cause wildfires and risk assessment based on Random Forest in the form of fire hazard
mapping. In this paper, we collected and visualized data on wildfires and factors influencing their
occurrence: meteorological, topographic, characteristics of vegetation, and human activity (social
factors). Data sets describing two classes, “fire” and “no fire”, were generated. We introduced a
classification according to which the probability of a wildfire in each specific cell of the territory
can be determined and a wildfire risk map built. The use of the Random Forest method allowed us
to achieve the following risk assessment accuracy indicators: accuracy—0.89, F1-score—0.88, and
AUC—0.96. The comparison of the results with earlier ones obtained using case-based reasoning
revealed that the application of the case-based approach can be considered the initial stage for deeper
investigations with the use of Random Forest for more accurate forecasting.

Keywords: hazard of wildfires; wildfire; forest quarters; wildfire susceptibility mapping; random
forest; data analysis; Baikal natural territory; Irkutsk oblast

1. Introduction

Wildfires remain a serious problem throughout the world [1–6]; they negatively affect
biodiversity and air, soil, and water quality [7–9], lead to ecosystem degradation [10], and
pose a threat to the safety of people and infrastructure [11,12]. Wildfires can be caused
by climatic conditions, careless handling of fire by the local population, or other factors
that depend on the characteristics of the regions [13–15]. In Russia, direct economic loss
attributed to wildfires includes a reduction in forestry and timber on 800 thousand hectares,
which is about 0.06% of GDP per year [16]. Irkutsk Oblast is a region with one of the highest
forest cover rates (78%) among the constituent entities of the Russian Federation. More
than 90% of the total forested area is occupied by fire-hazardous coniferous plantations [13].
In 2022, 1840 wildfires occurred in the region; the area covered by fire was 1390.9 thousand
hectares, and economic loss was estimated at RUB 780.3 million.

A feature of Irkutsk Oblast is that it is a very large territory with a low population den-
sity that is mainly concentrated along rivers, roads and railways. For the timely detection
of forest fires in this region, there is an aviation and ground monitoring system. Special
attention is paid to preventive measures in preparation for the fire season. These activities
include the construction and reconstruction of forest roads, the arrangement of fire-fighting
glades, and fire-fighting mineralized strips. The entire scope of the activities performed
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requires significant material costs and theoretical (scientific) substantiation. Thus, the task
of wildfire research is urgent to increase the efficiency of monitoring in such a large area.
Wildfire research is carried out in various directions: (i) fuel characterization, fire detection,
and mapping; (ii) fire weather and climate change; (iii) fire occurrence, susceptibility, and
risk; (iv) fire behavior prediction; (v) fire effects; and (vi) fire management [14].

Various methods and tools are used to perform the task of risk prediction: decision-
making methods [15], fuzzy systems [16–21], case-based reasoning [22–24], and methods
based on machine learning [8,14,25], which are considered by some researchers to be the
most promising.

Machine learning (ML) is a field of study in artificial intelligence concerned with
the development and study of statistical algorithms that can learn from data, generalize
to unseen data, and thus perform tasks without explicit instructions. The following ML
methods are defined [8,14,25–39]: artificial neural networks (ANNs), decision trees, support-
vector machines, regression analysis, Bayesian networks, genetic algorithms, Random
Forest, etc. ML methods are used to perform a wide variety of tasks [40–44], including
forecasting the risk of forest fires [8,14,25,34–39].

It is noted that the use of ML methods for predicting the risk of wildfires should
take into account the physico-geographical characteristics of the territories (geographical
location, relief, climatic zones, natural reservoirs, types of human activity, etc.) for which
they are used. In addition, a comparison of various methods has shown that machine
learning methods provide the highest prediction accuracy in the presence of large and
reliable data sets.

At the moment, for the territory of Irkutsk Oblast, studies are conducted using the
following techniques: analysis of statistical data on wildfires [13,45], analysis of the ef-
fectiveness of various methods for assessing meteorological factors of fire hazards in the
forests of the Southern Baikal area [46,47], mapping the landscapes of the Western Baikal
area [9], predicting the risk of wildfires for individual areas based on case-based reason-
ing [22]. However, mapping the fire hazard for the entire province, taking into account
its characteristics, as well as the creation of an automated technology that implements the
solution to this problem for any forecast period, has not yet been fully completed.

This task is being performed in the Matrosov Institute for System Dynamics and
Control Theory, Siberian Branch of Russian Academy of Sciences (ISDCT SB RAS), and
consists of several stages. The first stage was devoted to the collection and preparation of
data on the territory and the selection of data analysis methods. The second stage included
the tasks (steps) of applying the previously identified methods to various territorial entities,
for example, forest districts, national parks or territories adjacent to settlements, and
transport arteries (road and rail). At the first step of the second stage, the task of forecasting
and assessing the risk of forest fires was performed on the basis of case-based reasoning [22].
In this work, one of the steps of the second stage is considered. We use the Random
Forest method to map the fire hazard (predict the wildfire risk) for the territory under
consideration. The results of comparing this method with other machine learning methods
and its effectiveness for solving the problem are highlighted in [32,34–39]. It is believed that
this method does not require large costs to justify the parameters of the model; it allows
you to evaluate the contribution of each variable of the model to the overall classification
result. Next, it is planned to justify the choice of neural network architecture, train it, and
perform data classification based on it. The next stage of the study will be to substantiate
effective methods and model parameters for each territorial entity, in particular, forestry
operations and specially protected areas.

Thus, our study addresses wildfire susceptibility mapping or similar definitions of risk
in Irkutsk Oblast based on data from remote sensing, meteorology, government forestry
authorities, and emergency situations. Mapping the fire hazard of an area is the basis for
effective monitoring and predicting the development of wildfires, planning resources, and
making informed decisions to reduce risks and mitigate their consequences [15,48–50].
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Our main contributions that determine the novelty of the present work are the follow-
ing:

• An extended (improved) information domain model that describes information about
weather conditions, vegetation type, and infrastructure of the region in the context of
the possible risk of wildfires;

• An extended database that contains information about wildfires in Irkutsk Oblast from
2017 to 2020, complemented by new data on the type of vegetation (ground surface),
topography, and thunderstorms. Thunderstorm data were obtained from weather
station data;

• The results of an analysis of factors that cause wildfires and risk assessment of the
territory of Irkutsk Oblast based on machine learning methods, in particular, Random
Forest, in the form of fire hazard mapping;

• Results of assessing the effectiveness of predicting the risk of wildfires based on the
Random Forest method.

For Irkutsk Oblast, the study of forest fire forecasting based on Random Forest was
conducted for the first time.

The paper is organized as follows: Section 2 briefly describes the background, while
Section 3 presents our results. Section 4 contains discussion and concluding remarks.

2. Materials and Methods
2.1. Background
2.1.1. Wildfire Susceptibility Mapping

The fire hazard mapping approach consists of creating a spatial model of fire hazards
using remote sensing data or data from various agencies monitoring and managing fire
management activities based on data on landscape, climate, and human factors.

Currently, machine learning (ML) methods are most often used to perform this task.
They demonstrate greater accuracy compared to other methods, for example, logistic
regression. Researchers usually either use one of the ML methods, or compare the results
of several ML methods, or use ensembles of ML methods [14]. In particular, it is common
to use neural networks [26–33] to build fire hazard maps for the territories of Portugal [26],
Spain [27], Iran [29,30], Vietnam [31], and China [32]. The Naive Bayes method [3,51]
is used for the territory of Iran, neuro-fuzzy systems are employed for the forests of
Chile [17], Brazil [18], Vietnam [20] and Iran [21], the Random Forest method is applied
to Mediterranean Europe [34], Ethiopia [36] and China [32,35,39], and GIS-based multi-
criteria decision analysis methods (GIS-based multi-criteria decision analysis (MCDA)) [52],
analytical hierarchical process (AHP) [19,48,53,54] and case-based reasoning [22–24] are
used for this purpose, too.

It should be noted that works [38,39,55,56] compare ML methods and state that the
Random Forest method is superior in accuracy to neural networks and the support vector
machine (SVM). In [36,57], the authors highlight the effectiveness of ensemble methods.
The result of these methods and models is that fire hazard mapping and wildfire risk
assessment are based on various factors.

The following groups of factors influence the occurrence of wildfires [14,25,58]: mete-
orological factors, topographic factors, characteristics of vegetation, and human activity
(social factors). The group of meteorological factors includes the topographic wetness
index, average annual temperature, average annual precipitation, air temperature (average
daily and maximum), dates of transition of average daily temperatures through threshold
values, dates of onset and disappearance of stable snow cover, relative humidity (average
daily and minimum), lack of air humidity, number of days with relative humidity ≤ 30%
in one of the observation periods for a certain period, annual precipitation period, number
of days with rain, dryness index, weather regime, number of days with thunderstorms, etc.
The set of topographic factors includes altitude, terrain slope, etc. Social factors are the
following: distance from urban areas, land use, distance from roads, population density,
GDP per capita, etc. It is common to use various weather indices, e.g., the Canadian Forest
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Fire Weather Indices System (CFFWIS) [59]. The application of the factors described should
take into account the individual properties of the initial data and the study areas [60].

In [22], we forecast the risk of wildfires in certain areas of Irkutsk Oblast (Bodaibinsky
and Kazachinsko-Lensky Districts) based on case-based reasoning. This method was chosen
as the most effective for preliminary analysis of the obtained data set. The wildfire risk
forecasting accuracy score was 0.874.

The purpose of this study is to complement the model with new variables and increase
the description accuracy of the type of vegetation, the topography of the territory, and
thunderstorm activity. We use the Random Forest method for data characterizing the entire
territory of Irkutsk Oblast and compare the results obtained with the results of previous
studies.

2.1.2. Related Works: Using Random Forest for Wildfire Susceptibility Mapping

Random Forest (RF) is a machine learning algorithm based on the use of an ensemble
of decision trees, each of which has a very low classification quality. The algorithm is
applied to classification, regression, and clustering tasks [61].

This method is actively employed to perform the task of fire hazard mapping [32,34–
39,62] (Table 1).

Table 1. Examples of the accuracy score using the Random Forest method.

Territory Accuracy

Yunnan Province (China) [32] 84.36
European Mediterranean region [34] 96.3

Global ecosystem [35] 78.33
China’s boreal forest, located in the Daxing’an

Mountains of Northeastern China [37] 70.1

Yunnan Province (China) [38] 88.3
Hunan Province (China) [39] 91.68

Ethiopia [62] 67.2

These works demonstrated that RF has high predictive accuracy and high robustness
to outliers and “noise” [63]. These factors conditioned its use for wildfire research [34].

The mentioned works differ in the period of consideration of fire data from 8 to
25 years, the volume, and the content of variables that are taken into account in the created
models. The authors of these papers note that the assessment of the importance of the
model factors varies depending on the part of the territory under consideration, since
climatic, environmental, and social factors differ from region to region. The same factors
can affect estimates in different ways, depending on the location and scale of the analysis.
For example, in Pakistan, precipitation, soil moisture, unemployment rate, livestock den-
sity, and density of local roads are important [8]; in the European Mediterranean region,
precipitation, soil moisture, road density, vegetation type [34]; in the Daxing’an Mountains,
forest type, and distances to railways. However, gross national product, unemployment,
and population density did not play a decisive role in the occurrence of fires [37]. The work
of [38] differs in the volume of factors under consideration; the model contains 42 variables,
where climatic factors describing average, maximum, and minimum values for a 10-day
period with data gradation for 6 and 24 h are taken into account. The identified main fac-
tors that influenced Yunnan wildfire occurrence were forest coverage ratio, month, season,
surface roughness, 10-day minimum of the 6 h maximum humidity, and 10-day maxima of
the 6 h average and maximum temperatures. Interesting conclusions were obtained in [62]
on the weak influence of climatic factors on the level of fire danger compared with human
influence on the environment.

Thus, the analysis of the work allows us to conclude that the value of each solution
consists not only in obtaining the results of the fire risk assessment but also in identifying
the causes of forest fires characteristic of the territories under consideration.
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Having summarized the results of using RF, we can formulate the following stages of
implementing the method for the task at hand:

(1) Selection (justification) of factors influencing the occurrence of a wildfire.
(2) Collection of data on fires and factors for a territory (class “fire”).
(3) Data generation to form the “absence of fire” class, taking into account spatial and

temporal criteria.
(4) Selection of parameters for the RF method (using recommendations from the litera-

ture).
(5) Application of the RF method. It is possible to change the method parameters.
(6) Analysis of the accuracy of the problem solution.
(7) Risk assessment.
(8) Visualization of the results of applying the method.
(9) Analysis of the results of applying the method depending on the seasonality and

territoriality of the fire.

2.2. Wildfire Susceptibility Mapping Using Random Forest
2.2.1. The Study Area

The study area is Irkutsk Oblast, located in Eastern Siberia between 51 and 65 parallels
of north latitude in the southeast of the Central Siberian Plateau along Lake Baikal. The
area of the region is 774,846 km2 (4.52% of the territory of Russia), the population is
2,357,134 people (2022), and the population density is 3.04 people per km2 (2022). The
territory is divided into taiga, forest-steppe, and South Siberian mountain zones. The lands
of the Forest Fund include 37 forest districts, 2 nature reserves, a national park, and about a
dozen reserves. The forest cover of the region is 82%, which is one of the highest indicators
in Russia. Coniferous species predominate in 76% of the forest area, while soft-leaved
species account for 19% [64].

The territory of Irkutsk Oblast is a region with a high level of fire hazards and high
growth rates of wildfires, against the backdrop of increasing atmospheric factors of climate
aridity in recent decades [64]. According to research data from 2001–2020 in Eastern Siberia,
a positive trend in air temperature (0.11 ◦C year−1) and a negative trend in precipitation
(–1.64 mm year−1) were observed in June [65]. The wildfire season in the region lasts, on
average, 174 days.

In recent years, there has been an increase in the area of wildfires in the region
(Figure 1) [15]. In Russia, 70%–90% of all forest areas burned by fire are recorded in Siberia,
where the bulk of Russia’s boreal forests is concentrated, which plays an important role in
the absorption and sequestration of carbon [66].

Wildfires significantly changed the taiga forests of Central Siberia [64], leading to
a transformation of the landscapes of the Lake Baikal drainage basin and a decrease in
forest reserves [67]. Over the course of a number of years, during wildfires in the region,
distinctive signs of deterioration in the health of people in the smoky zone were detected.
This demonstrates an increase in the values of the following indicators: the number of
requests for medical help in connection with respiratory diseases by 6.5%; the number of
exacerbations of chronic bronchitis by 4.2%; and bronchial asthma by 5.2% [66].

The largest areas of wildfires on average over 10 years have been recorded in the
Katangsky, Kirensky, Mamsko-Chuysky, Bodaibinsky, Bokhansky, Ust-Kutsky, and Chun-
sky districts [67]. This fact is confirmed by the statistics from recent years (Figure 2).
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Researchers highlight that significant forest cover, complex orography, and differences
in climatic, plant, and socio-economic indicators of mountain, foothill, and lowland areas
have a complex impact on the formation of conditions on which the frequency, intensity,
and prevalence of forest fires in Irkutsk Oblast depend. It was revealed that meteorological
conditions favorable for the occurrence and spread of wildfires are most often observed
in May–June and August–September. The areas most prone to wildfires due to weather
and climatic factors are the northern regions and the coast of Lake Baikal, where the
environmental protection zones are located [68].

Representatives of the Ministry of Emergency Situations point out that 70%–80% of
wildfires occur due to the “human factor” [69], because the accessibility of forest areas is
quite high both for loggers and for the population as a whole. The second important cause
of wildfires is lightning discharges (on average, 29%) that result in large-scale forest burns
in hard-to-reach areas with no ground protection [70].

This work will examine and take into account the main factors describing the causes
of wildfires in the entire territory of Irkutsk Oblast.
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2.2.2. Data

A digital terrain map at a scale of 1:200,000 is used as an electronic topographic basis.
The main thematic layers are vector layers obtained from various institutions.

The study uses data on 45,000 thermal hotspots identified by analyzing satellite
imagery from 2017 to 2020. This information is used as input. A thermal point is a
significant (when compared to neighboring points) increase in temperature on the Earth’s
surface, recorded at the time of the satellite’s passage. The thermal point is recorded by the
satellite in the form of polygonal type objects (a set of quadrangles).

Information about thermal points is generated using software and hardware, which
includes a satellite telemetry receiving unit. The complex consists of a data receiving station
from NOAA satellites of the Alisa-SC series produced by Scanex LLC (Moscow, Russia)



Forests 2024, 15, 170 8 of 27

and specialized software tools for receiving satellite telemetry. At the moment, the satellite
complex receives and decrypts data from the AVHRR device of the NOAA18 and NOAA19
satellites. The visibility zone of the Alisa–SK satellite complex extends from the Urals in
the west to the Far East in the east of the Russian Federation, which ensures monitoring of
fire hazardous conditions throughout Irkutsk Oblast.

The first stage of the monitoring system is the direct reception of data from the
NOAA satellite through the Alisa–SK satellite complex. Afterwards, several stages of data
processing are carried out (demodulation, synchronization, decoding, etc.). At the final
stage, the FirePro program (Institute of Solar-Terrestrial Physics of the Siberian Branch of
the Russian Academy of Sciences, Irkutsk, Russia) [71] is used to perform the analysis and
identify thermal points (Figure 3). The data obtained automatically are further corrected by
the operator to reduce possible errors in the algorithm and are stored in the database that
provided the information for this study.
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Figure 3. A map of Irkutsk Oblast displaying thermal points for 2017–2020.

The data on thermal points contain information about the date, area, and time of their
discovery.

A thermal point can indicate not only a wildfire but also a garbage fire, a man-made
process, or a man-made fire. For this reason, the data set is cleaned based on the data on
the boundaries of settlements and man-made objects.

Thermal points can be recorded 3–4 times a day, so it is necessary to process and merge
information about thermal points characterizing the same fire, taking into account time and
coordinate parameters. Further processing uses data on the first (in terms of time) thermal
point obtained by the merging algorithm. This fusion resulted in a dataset of 9001 wildfire
records for the period March–November 2017–2020. Data on thermal points were obtained
from the Institute of Solar and Earth Physics SB RAS [72] (Table 2).
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Table 2. The data on thermal points.

Index Initial Date Day
Number Initial Day Initial

Decade Month Year Lat Lon

0 9 August 2017 221 221 22 8 2017 58.29611 104.35694

1 12 August 2020 222 1320 22 8 2020 57.87000 108.04694

2 5 May 2020 123 1221 12 5 2020 56.17500 97.71500

3 25 September 2018 268 633 26 9 2018 57.87389 101.20306

4 30 June 2018 181 546 18 6 2018 58.89611 116.01306

In Irkutsk Oblast, each forestry operation is divided into forest areas and blocks. Data
on forestry and forest blocks were obtained from the state forest inventory materials.

In studies on wildfires, the following groups of factors influencing the occurrence of
fires are defined: meteorological, topographic, characteristics of vegetation, and human
activity (social factors) [14,25,58].

The significance of meteorological factors in the occurrence and development of wild-
fires is well known; therefore, in all works, they are assessed as fire hazard factors, and this
assessment can be expressed in the form of special indicators. In this study, meteorological
data were obtained from the Federal State Budgetary Institution “Irkutsk Department of Hy-
drometeorology and Environmental Protection” [73]. The selected average daily indicators
describe air temperature, atmospheric pressure, relative humidity, wind direction (points),
wind speed (determined on the 12-point F. Beaufort scale: calm (0–0.2), quiet (0.3–1.5), light
(1.6– 3.3), light (3.4–5.4), moderate (5.5–7.9), fresh (8.0–10.7), heavy (10.8–13.8)), amount of
precipitation (light rain (0.0–2), rain (3–14), heavy rain (15–49), very heavy rain (more than
50)), and weather phenomena (thunderstorm, fog, rain, haze, snow, cloudy, drizzle, dust,
hail) (Table 3). Maps in Figure 4 show average monthly weather indicators.
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Figure 4. Maps of average monthly weather indicators for 2017–2020: (a) maximum temperature in
June; (b) maximum temperature in July; (c) maximum temperature in August; (d) precipitation in
June; (e) precipitation in July; (f) precipitation in August.

Table 3. The data on weather indicators.

Index
Weather
Station
Index

Daily
Average

Wind
Speed

Daily
Average

Air
Pressure

Daily
Precipitation

Daily
Average

Temperature

Daily
Average
Relative
Wetness

Horizontal
Sight
Range

Weather
Events

0 30,127 0.625 748.7375 0.00 19.2750 73.625 19.75 haze
1 30,230 0.750 754.8875 0.00 18.6375 65.375 25.00 storm
2 29,594 5.500 755.5500 0.15 10.6375 48.875 45.00 rain
3 30,210 3.500 759.1000 0.25 11.1875 79.000 20.00 rain
4 30,069 0.875 755.3000 4.00 16.2000 80.375 41.75 cloudy

Topographic data describe the relief of the territory. In our study, altitude, aspect, and
slope are taken into account. To collect information on altitude, we used data from the
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WorldClim resource [74] and the Institute of Geography of the SB RAS [75]. The digital
elevation model of the QGIS analysis tools [76] helped generate slope and aspect maps
(Figure 5). The aspect values are divided into eight categories in accordance with the criteria
given in Table 4. Selected data on the relief are in Table 5.
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Table 4. Categories of the “aspect” variable.

Aspect Azimuth (◦)

North 337.5~22.5
Northeast 22.5~67.5

East 67.5~112.5
Southeast 112.5~157.5

South 157.5~202.5
Southwest 202.5~247.5

West 247.5~292.5
Northwest 292.5~337.5
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Table 5. Selected of data on the relief.

Index Aspect Slope Elevation

0 230.516327 3.406513 510.0
1 157.435410 2.461879 350.0
2 168.702484 1.773175 314.0
3 309.590942 1.614365 492.0
4 88.886177 3.588046 819.0

The vegetation of the territory is described according to forest regulations, in particular,
data on forest seed zones: the territory is divided into relatively homogeneous parts
according to natural factors that determine the formation of populations of a certain
genotypic composition in the process of evolution. It is done, in particular, for pine, spruce,
larch, and cedar (Irkutsk Oblast has 19 such zones) (Figure 6) (Table 6).
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Table 6. Selected data on the forest zones.

Index Zones of Evolution

0 pine-18, spruce-10, lurch-10, cedar-6
1 pine-16, spruce-12, lurch-11, cedar-7
2 pine-16, spruce-11, lurch-8, cedar-5
3 pine-16, spruce-9, lurch-10, cedar-6
4 pine-18, spruce-10, lurch-10, cedar-9

Additionally, we take into account the Earth surface type as an indicator obtained by
machine learning methods for the territory in question. The classification of Earth surface
types is based on a convolutional neural network of the ResNet-50 architecture. The neural
network was trained on labeled satellite images of the Irkutsk Oblast and the Republic of
Buryatia during the summer period of 2018–2020, information on spectral indices (NDVI
and LBP), and image texture in the form of local binary templates. As a result, we obtained
the data on 11 surface classes: water, clouds, residential zones, mixed forest, coniferous
forest, deciduous forest, open forest, bare rock, clearings, pasture, and agricultural land.
The classification results are presented at https://geos.icc.ru/remotesensing (accessed on
27 August 2023) (Figure 7) [77].
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Figure 7. Vegetation (surface) classes of Irkutsk Oblast.

The data on the water system of Irkutsk Oblast (Figure 8), roads, and railways were
provided by the Institute of Geography of SB RAS [75] (Table 7).

Table 7. Selected data on the vegetation classes and the distance to rivers.

Index Vegetation Distance to Rivers

0 13.0 2.694398
1 11.0 10.831042
2 12.0 20.520019
3 13.0 22.165932
4 6.0 33.092805

https://geos.icc.ru/remotesensing
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Social factors include distances to populated areas, roads, and railways (Figure 9). For
factors that account for distances, an interval measurement scale was selected: 0–2; 2–5;
5–10; 10–20; 20–50; more than 50 km (Table 8).
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Figure 9. A map of distances to roads and settlements in Irkutsk Oblast: (a) A map of distances to
roads. (b) A map of distances to settlements.
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Table 8. Selected data on the distance to roads and settlements.

Index Distance to Roads Distance to Settlements

0 87.405866 87.737006
1 6.679721 7.532349
2 12.783439 12.380512
3 69.071455 70.777155
4 4.500935 50.845274

Thus, our study describes wildfires in Irkutsk Oblast by topographic and climatic
indicators, as well as by the type of vegetation comprising the land cover and distances to
natural and anthropogenic objects (Table 9).

Table 9. Model variables.

Variable Type Variable Name Code Unit

Topographic Elevation elevation m
Slope slope degree

Aspect aspect degree

Land cover Vegetation cover vegetation classes of land cover
The distance to river distance_to_river km

Climatic Daily precipitation RRR mm
Daily average temperature T ◦C
Daily average wind speed FF m/s
Daily average air pressure P mm Hg

Daily average relative
wetness U %

Horizontal sight range VV km
Daily weather events WW_code category

Social The distance to road and
railway distance_to_road km

The distance to settlement distance_to_set km

3. Results

The fire hazard mapping approach implies building a spatial model of fire hazards
using remote sensing data or data from various agencies that provide monitoring and fire
management depending on landscape, climatic, and anthropogenic factors [14].

Currently, machine learning methods that are most often used to perform this task
demonstrate greater accuracy. The Random Forest (RF) method is recognized as an effective
method in many works.

RF is a popular machine learning algorithm proposed by Breiman in 2001 [61]. It is
based on the traditional decision tree method and is capable of analyzing and assessing the
relative importance of input factors with high classification accuracy, computation speed,
and robustness to outliers [39].

The RF method is implemented using the Python programming language of the Sckit-
learn module. The input data are presented in the form of CSV (Comma-Separated Values)
files.

3.1. Data Preparation and Processing

Wildfire prediction is considered as a classification problem, where the dependent
variable has two values: “fire” and “no fire”. The available wildfire data belong to the
first class. To build the second class, “absence of fire”, random points were generated in
the territory under consideration; the randomness was determined in time and space. To
determine the randomness of the location, two approaches were explored: dividing the
territory into sectors 50 by 50 km and introducing a buffer zone for locating the fire. The
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generated event coordinates were located outside of the buffer zone around fires of 5 km
in size, outside populated areas and man-made objects. The number of generated points
for each area corresponded to the number of fires in that area. As a result, the following
numbers of representatives from each class were used for the study: “fire”—9001, “no
fire”—9001 (Figure 10).
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Figure 10. Historical fires, “fire” points, and generated “no fire” points with a distance of 5 km from
the fires.

While selecting the time parameter, the following variables were considered: year,
season (spring–summer, summer–autumn), month (from March to November), decade,
and day. No-fire time points were generated for dates in the wildfire season when the
number of fires was less than 10.

At the next stage, we added data on factors influencing the fire occurrence to the
obtained points. Due to the fact that the factor (WW_code) describing the weather is
categorical, the data set covered 27,522 records, since each record contained all possible
unique categories of current weather that occurred for the day in question. Thus, the ratio
of records for the classes “fire” and “no fire” was 44% to 56%.

3.2. Multicollinearity and Correlation

The evaluation of the correlation [78] between the model variables showed a strong
linear dependence between distances to the road (distance_to_road) and settlements (dis-
tance_to_set) (0.82), slope and elevation (0.66), temperature (T), and barometric pressure
(P) (−0.68) (Figure 11).
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As a result of this evaluation, we eliminated the variables of barometric pressure (P),
distance to settlements (distance_to_set), and slope from the study. Since the correlation
values of these variables are modulo more than 0.6, this means that they are not independent
and reflect the same information; therefore, when using them, the model will be retrained.

The next stage was to assess the collinearity of the available fire factors for the territory
under consideration. Multicollinearity in regression analysis occurs when two or more
independent variables are so highly correlated with each other that they do not provide
independent information in the regression model. One way to detect multicollinearity is to
use a metric known as the variance inflation factor (VIF), which measures the strength of
the correlation between independent variables in a regression model. A VIF value of 1 is
considered to indicate that there is no correlation between the given independent variable
and any other independent variables in the model. A value greater than 5 indicates a
potentially strong correlation, in which case the coefficient estimates and p-values in the
regression output are likely to be unreliable. In this study, the parameters for building a
wildfire risk classification model were selected as a result of a collinearity assessment. They
are presented in Tables 10 and 11 [73].

Table 10. Results of assessing collinearity of all model variables.

Variable Description VIF

T daily average temperature 2.259900
Ff daily average wind speed 1.248514

RRR daily precipitation slope 1.186837
VV horizontal sight range 1.107968
U daily average relative wetness 1.693530
P barometric pressure 2.125026

WW_code daily weather events 1.200167

distance_to_road the distance to road and
railway 3.118877

distance_to_river the distance to river 1.036912
distance_to_set the distance to settlement 3.218824

elevation elevation 1.881964
slope slope 1.856331
aspect aspect 1.011978

vegetation vegetation cover 1.102114
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Table 11. Results of assessing collinearity of the independent model variables.

Variable Description VIF

T daily average temperature 1.132697
Ff daily average wind speed 1.199376

RRR daily precipitation slope 1.173968
VV horizontal sight range 1.105191
U daily average relative wetness 1.646322

WW_code daily weather events 1.180479
distance_to_road the distance to road and railway 1.122223
distance_to_river the distance to river 1.027408

elevation elevation 1.101271
aspect aspect 1.006388

vegetation vegetation cover 1.093775

Thus, the results confirm the independence of the model variables.

3.3. Classification

To train the model, the data were divided into training and test samples in a ratio of
70% and 30%, respectively. Moreover, in each sample, the classes were balanced and had a
ratio identical to that of the original set, namely, 44% to 56%.

Two important parameters affect the performance of RF: the number of trees in the
forest and the number of random variables per the split node. Using the Randomized-
SearchCV() method and the input data (a Random Forest Classifier model with default
parameters, number of iterations, and number of cross-validations), the hyper param-
eters of the model were optimized and selected. In our work, the following parame-
ters were used: number of trees (n_estimators)—600, number of values in a tree node
(min_samples_leaf)—2, minimum number of samples required to split an internal node
(min_samples_split)—23, maximum tree depth (max_depth)—15.

Tables 12 and 13 show the importance of the classification factors delivered by the RF
method.

Table 12. The importance of all variables (factors) of the model.

Variable Description Gini-Importance

T daily average temperature 0.177997
distance_to_set the distance to settlement 0.147473

distance_to_road the distance to road and
railway 0.119130

WW_code daily weather events 0.096867
vegetation vegetation cover 0.087858

U daily average relative wetness 0.087460
elevation elevation 0.060333

VV horizontal sight range 0.052372
RRR daily precipitation 0.046682

P barometric pressure 0.036404
slope slope 0.028554

distance_to_river the distance to river 0.021861
Ff daily average wind speed 0.020577

aspect aspect 0.016433
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Table 13. The importance of the independent variables (factors) of the model.

Variable Description Gini-Importance

T daily average temperature 0.201188
distance_to_road the distance to road and railway 0.200019

WW_code daily weather events 0.120854
vegetation vegetation cover 0.119191

U daily average relative wetness 0.097161
elevation elevation 0.078460

VV horizontal sight range 0.061406
RRR daily precipitation 0.044311

distance_to_river the distance to river 0.030183
Ff daily average wind speed 0.025377

aspect aspect 0.021849

The most important factors that influence the occurrence of a wildfire are climatic
factors (especially the average daily temperature and current weather), social factors (dis-
tance to populated areas, roads), and the class of vegetation cover. Topographic indicators,
humidity, precipitation, and distance to water bodies have less influence in the final model.

The average probability of a wildfire occurrence (belonging to the “fire” class) by
month is reflected in the graph (Figure 12) and shows dynamics similar to those of the
actual number of wildfires.
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Figure 12. Comparison of the probability and number of wildfires by month.

The distribution of the classes “fire” and “no fire” by climatic categorical variables
is shown in Figure 13. The graphs show the values of weather conditions that can cause
wildfires. To a greater extent, wildfires were recorded at temperatures above 0 ◦C; a
positive trend in temperature and the number of wildfires was observed, especially in the
temperature range of more than 20 ◦C. Wildfires are more closely associated with such
weather phenomena as haze, fog, thunderstorms, and dust, lack of precipitation, and lower
relative humidity, which characterize dry climatic conditions and the occurrence of possible
causes of wildfires, for example, dry thunderstorms.
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Figure 14 shows the frequency of occurrence of the classes “fire” and “no fire” accord-
ing to the characteristics of land cover vegetation, distance to roads, and relief height. The
distribution of forest fires by vegetation class showed a higher frequency of occurrence in
fields and open forest areas. A large proportion of wildfires were also characterized by a
distance of less than 5 km from roads and a lower relief height. The distance to populated
areas followed the distribution of distances to roads. The height of the relief was also
associated with settlements and roads; they were located in lowlands. The nature of the
distribution of wildfires, taking into account social factors, may indicate an anthropogenic
cause of fires.

To build the fire hazard maps of Irkutsk Oblast using QGIS software (ver.3.34.2) [76],
we made a grid of points with a distance of 1 km. For each point, the necessary values of
input factors are determined, and the probability of belonging to the “fire” class is obtained
using the developed model, which is further referred to as the “risk” field. For these points,
interpolation is set using the “risk” attribute, where the cell area is 150 × 150 km. Next,
a reclassification method was applied, as a result of which each final cell of the map is
classified into five categories [79]: I—very high (probability 0.8–1), II—high (probability
0.6–0.8), III—medium (probability 0.4–0.6), IV—low (probability 0.2–0.4), V—very low
(probability 0–0.2), representing the fire hazard class. The results obtained for assessing
susceptibility to wildfires using the Random Forest model are shown in Figure 15. A low
value (blue) represents areas with the least likelihood of wildfires, while values with a very
high value (red) represent areas with the highest likelihood of wildfires.
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0.4–0.6, low—probability 0.2–0.4, very low—probability 0–0.2.
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The algorithms and software of our study can be found in [80].

3.4. Model Performance Evaluation

The effectiveness of the wildfire risk prediction model was assessed based on the
following metrics: accuracy, f1-score, and AUC (Table 14).

Table 14. Results of assessing the accuracy of the model.

Metrics Value

Accuracy 0.89
F1-score 0.88

AUC 0.96

The ROC curve shows the relationship between the proportion of correct predictions
(True Positive Rate) and the proportion of erroneous predictions (False Positive Rate)
(Figure 16).
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Table 15 presents an error matrix that shows the distribution for the actual and pre-
dicted “fire” and “no fire” classes.

Table 15. Classification error matrix.

Predicted
Actual “No Fire” “Fire”

“no fire” 4332 (93%), TN 1 312 (7%), FP
“fire” 534 (15%), FN 3079 (85%), TP

1 TN—true negatives, FN—false negatives, FP—false positives, TP—true positives.

4. Discussion and Conclusions

The present study employed the Random Forest machine learning method to address
the problem of mapping the fire hazards in the territory of Irkutsk Oblast using meteoro-
logical factors, data on relief and vegetation, and social factors. The novelty of the research
is the analysis of the most complete set of factors influencing the occurrence of wildfires,
coverage of the entire territory of Irkutsk Oblast, and comparison of the results using
case-based reasoning and RF methods. We developed and justified algorithmic foundations
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of the methodology and information technology for the wildfire prediction in a certain
territory, taking into account its individual characteristics.

To apply machine learning methods, an analysis of the factors influencing the wildfire
occurrence was carried out. Collinearity was assessed, and, as a result, the atmospheric
pressure, distance to settlements, and slope variables were excluded from the model. It was
revealed that the climatic factors are most significant, especially the average daily tempera-
ture and the current weather, including thunderstorm activity, social factors (distance to
roads), as well as the class of vegetation cover.

As part of the study, we carried out a wildfire risk analysis using case-based reasoning
(CBR) [22,81] and RF methods.

The accuracy evaluation of the CBR method used the ratio of high-risk events (P) to
all events (N) as a quantitative estimate for the prediction of accuracy (Accuracy) [81]:

Accuracy = ∑P/N, (1)

where P = 1 if the number of cases with similarity assessment in the interval [0.8, 1] > 0,
and P = 0 if the number of cases with similarity assessment in the interval [0.8, 1] = 0.

For the reviewed forest districts, the value of the prediction accuracy estimation on
the developed case bases was 0.874.

The RF method allowed us to achieve the following accuracy scores: accuracy of 0.89,
F1-score of 0.88, and AUC of 0.96.

At this stage, both methods show good results. Figure 17 shows a visualization of
the results of applying the listed methods to build risk maps for the Kazachinsko-Lensky
municipality for the fire-hazardous period June–August 2020. The created maps are the
result of a preliminary forecast and can become the basis for the formation of control actions.
In the future, during the fire-hazardous period, when receiving short-term forecast data on
weather conditions, the results of the risk assessment should be clarified.
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high—probability 0.8–1, high—probability 0.6–0.8, medium—probability 0.4–0.6, low—probability
0.2–0.4, very low—probability 0–0.2.
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The CBR method is recommended to be used at the initial (preliminary) stage of
research to identify areas most at risk of wildfires, especially when there are not enough
data and preliminary research on the selection of important factors influencing the wildfire
occurrence has not been carried out. The CBR assessment by the method is more “rough”,
as can be observed in Figure 17a, where there are no classes low and very low. As data
on the territory accumulate, it will be possible to use other machine learning methods, in
particular, RF and neural networks, especially their combination in the form of ensembles.

In the future, we plan to study additional factors to include in the model and obtain a
more accurate solution, in particular, winter snowiness, holidays, gross domestic product,
and more accurate data on thunderstorms. Subsequent research also implies building and
training models that take into account individual characteristics of forest districts.

The results of the risk mapping of the territory showed that the southern most densely
populated territories of the region, as well as territories located along the roads, are most at
risk of wildfires, which confirmed the statement of government authorities that the human
factor is the main cause of wildfires. However, it is necessary to clarify the model and detail
the factors in which human activities (agriculture, woodworking, hunting, and fishing) are
decisive.

The approach developed will become the basis for creating a wildfire prediction infor-
mation technology designed for both scientific research and management. It is proposed,
within the framework of the technology, to implement the functions of risk assessment in
the territories of forest blocks, forest districts, municipalities, and other territorial structures.
Wildfire risk maps will provide government authorities with additional information for
making decisions on measures to reduce the risk and mitigate the consequences of wildfires.
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