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Abstract: Mangrove forests are significant participants in coastal ecological environment systems.
For the development of protection strategies, it is crucial to automatically and accurately detect the
distribution and area of mangroves using satellite images. Although many deep-learning-based
mangrove detection and segmentation algorithms have made notable progress, the complex regional
structures and the great similarity between mangroves and the surrounding environment, as well as
the diversity of mangroves, render the task still challenging. To cover these issues, we propose a novel
deep-supervision-guided feature aggregation network for mangrove detection and segmentation
called MangroveSeg, which is based on a U-shaped structure with ResNet, combining an attention
mechanism and a multi-scale feature extraction framework. We also consider the detection and
segmentation of mangroves as camouflage detection problems for the improvement and enhancement
of accuracy. To determine more information from extracted feature maps in a hidden layer, a deep
supervision model is introduced in up-sampling to enhance feature representation. The spatial
attention mechanism with attention gates is utilized to highlight significant regions and suppress
task-independent feature responses. The feature fusion module can obtain multi-scale information by
binding each layer to the underlying information and update feature mappings. We validated our
framework for mangrove detection and segmentation using a satellite image dataset, which includes
4000 images comprising 256 × 256 pixels; we used 3002 for training and 998 for testing. The satellite
images dataset was obtained from the Dongzhaigang National Nature Reserve located in Haikou
City, Hainan Province, China. The proposed method achieved a 89.58% overall accuracy, 89.02%
precision, and 80.7% mIoU. We also used the trained MangroveSeg model to detect mangroves on
satellite images from other regions. We evaluated the statistical square measure of some mangrove
areas and found that the evaluation accuracy can reach 96% using MangroveSeg. The proposed
MangroveSeg model can automatically and accurately detect the distribution and area of mangroves
from satellite images, which provides a method for monitoring the ecological environment.

Keywords: mangrove detection; feature aggregation; unet; satellite image; deep supervision

1. Introduction

Mangrove forests can be found mainly in the southeast, south coasts, and bays with silt
deposits in China [1,2]. The mangrove ecosystem supports an incredible diversity of crea-
tures, including some species that are unique to mangrove forests and extremely important
to the coastal ecosystems they inhabit [3–7]. Physically, mangrove forests improve water
quality by filtering pollutants, mitigate climate change by storing carbon, reduce coastal
erosion, and act as a buffer zone between marine and terrestrial communities, protecting
coastlines from damaging floods, waves, and winds. However, mangrove ecosystems are
gradually degraded by human disturbance, such as the shift towards aquaculture and
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agriculture [8–10]. Traditional studies relied mainly on remote sensing images and used
low-altitude unmanned aerial vehicles to collect images or field surveys. However, field
surveys are difficult to conduct due to the distribution of mangroves in beach marshes [11].
It is relatively easy and reliable to effectively segment the area of mangrove distribution
from satellite remote sensing images, which are usually used to monitor the surface of the
Earth, especially with field surveys in the coastal ecosystem. Therefore, it is very significant
for remote image processing and analysis to have high requirements such as good accuracy,
high speed, and low algorithm cost. Both for the study of individual trees and mangrove
categories, low-altitude radar images have been used as the primary analysis objects, and a
large number of satellite images are used to monitor the growth areas of mangroves. From
the above research, it can be observed that satellite images play important roles for the
distribution and species monitoring of mangroves.

Pettorelli et al. [12] continuously tracked the use of remote sensing images for monitor-
ing forest area, plant growth, carbon cycle ecology, and other aspects. Valderrama Landeros
et al. [13] proposed an NDVI-based classifier to monitor mangrove forest species in Mexico.
Baloloy et al. [14] proposed a Mangrove Vegetation Index (MVI) using the near-infrared and
shortwave infrared and green bands of Sentinel-2 to enable rapid and accurate mapping
of mangroves. Liu et al. [15] classified four types of mangrove species in the Mai Po area
of Hong Kong and conducted research on the spatial distribution pattern of mangroves.
Wang et al. [16] released the first mangrove height and AGB map of Hainan Island and
demonstrated the feasibility of using drone LiDAR as a mangrove sampling tool to measure
the distribution of mangroves. However, it is difficult to achieve robust and generalized
performance for these studies of mangrove distribution due to various objective factors.
The selection of classification algorithms is primarily based on the intensity or texture
information of mangrove images.

Given the rapid development of machine learning, the current remote sensing image
processing algorithms are divided into two categories: unsupervised and supervised [17].
(1) Unsupervised algorithms: Taureau et al. [18] introduced the K-means algorithm for
analysis and research on mangrove distribution. Nagarajan et al. [19] focused on the com-
parison of machine learning algorithms for classifying mangrove species and presented the
potential of using random forests. Pourshamsi [20] completed tree height measurements
using machine learning algorithms. (2) Supervised algorithms: The authors of [17] men-
tioned that pattern recognition and computer vision have advantages for future mangrove
detection, especially in machine learning, and these technologies can provide improve-
ments in the future through new methods. Wang et al. [21] applied the faster R-CNN
network to segment individual rubber trees. Guillaume Lassalle et al. [22] employed a neu-
ral network and a Laplacian Gaussian filter to enhance the crown borders for the resulting
image. Since the U-Net [23] with a U-shaped structure has far-reaching influences benefit-
ing from a symmetric encoder–decoder mechanism with skip connections, which can be
built usingVGG [24], ResNet [25,26], or others, lots of methods based on U-Net have been
proposed promising good object detection and segmentation performance. Soni et al. [27]
modified the U-Net architecture based on DenseNet with long-range skip connections to
extract contextual information from satellite imagery utilizing a repetitive feature map
and reinforced the information propagation throughout the network. Chen Xu et al. [28]
brought out a semantic segmentation model that integrates multiple-scale features to extract
mangroves. Guo et al. [29] introduced a ME-Net semantic segmentation model. Lomeo
and Singh [30] designed a mangrove monitoring model for Southeast Asia, in which three
types of networks are used to extract mangrove distributions. Ulku et al. [31] tested various
multispectral remote sensing image and spectral bands using deep semantic segmentation
architectures, and it was concluded that combining different categories of multispectral
vegetation inDices into a single three-channel input and using state-of-the-art semantic seg-
mentation architectures can improve tree segmentation accuracy under certain conditions.
These studies demonstrate the advantages of deep learning frameworks in satellite image
processing and analysis. The deep supervision strategy can capture multi-level features
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by a set of auxiliary networks in the training stage for image segmentation tasks [32–34].
Deep supervision makes the trained model able to obtain the shapes and sizes of different
objects by progressively localizing and refining segmentation objects that can be used to
identify camouflaged targets [35]. Current studies generally focus on different classification
algorithms through the spectral, spatial, and texture characteristics of images using deep
learning methods.

However, it is difficult to solve the challenges of mangrove detection and segmentation
owing to the following issues:

(1) There are complex regional structures, great similarity between the mangroves and
the surrounding environment, and a diversity of mangroves, as shown in Figure 1, where
Figure 1a is a satellite image from MAPWORLD 2023 (https://www.tianditu.gov.cn/,
accessed on 12 November 2023). Figure 1b is the newest corresponding annotated data
obtained from the Global Mangrove Alliance (https://www.mangrovealliance.org/gma/,
accessed on 21 December 2023). This is suitable for tracking global mangrove extent and
change, and the accuracies of the individual gain and loss change classes were lower [36].
Since the surface characteristics of farmlands are similar to the mangroves in the B1 area,
there are a lot of obvious false detections in the annotated data as shown in the B2 area.
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Figure 1. The example of mangrove distribution in the northwest of Hainan Dongzhaigang National
Nature Reserve. (a) is the original satellite image, (b) is the corresponding annotated data for
mangroves, (c) is the enlarged view of corresponding marked area. (A1-A2, B1-B2, C1-C2) come
from (a,b).

(2) Accurate annotation data are difficult to obtain, as shown in Figure 1b. It can be
observed that there are obvious incorrect results for the annotation data, and some details
can be shown in the comparison images in Figure 1c.

(3) Since real-time annotation information is difficult to obtain, most analyses use a
certain point in time as a baseline to discuss data changes over several years.

https://www.tianditu.gov.cn/
https://www.mangrovealliance.org/gma/
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The aim of this study was to develop a high-precision and highly robust algorithm
for detecting and segmenting mangrove areas to address the above issues by employing
satellite images. We took the data from Hainan province in China as the basis data. We
approached the detection and segmentation issue of mangroves as a camouflage target
detection problem for the improvement and enhancement of accuracy. We proposed a deep-
supervision-guided feature aggregation network based on a U-shape structure with ResNet
as the backbone network for mangrove detection and segmentation. The construction of
the dataset was achieved through the utilization of QGIS software version 3.28 (QGIS is
released under the GPL Version 2 or any later version).

The significant contributions of this study can be summarized as follows:

• A novel deep-supervision-guided feature aggregation network called MangroveSeg
is proposed for mangrove detection and segmentation. This innovative network
constructs an encoder module inspired by the hybrid ResNet structure.

• The deep supervision model is introduced to further enhance the representation of
features, which mitigates the complexities associated with camouflage target detection
by integrating an attention mechanism and a multi-scale feature fusion framework to
effectively obtain both local and global features for enhancing feature representation.

• The novel learning-based mangrove detection model can be used to update the base-
lines over multi-year, (2015–2019) to 2023, periods for change detecting. The proposed
model can automatically and accurately detect the distribution and area of mangroves
from satellite images, which provides a way of achieving a mangrove monitoring
gateway for application at the global scale.

2. Materials

Our aim was to identify and segment the area of mangroves in order to monitor the
status of their ecological conservation. The dataset setup was carried out in two stages:
(1) preparation of the study area; and (2) acquisition, pre-processing of satellite images, and
ground truth annotation.

2.1. Study Area

Dongzhaigang National Nature Reserve is located in Yanfeng Town, Meilan Dis-
trict, Haikou City in the northeast part of Hainan Province. As Figure 2 shows, its geo-
graphical coordinates are 110◦32′~110◦37′ east longitude and 19◦51′~20◦1′ north latitude.
Dongzhaigang Mangrove Nature Reserve is rich in plant and animal resources, that is,
a treasure trove of species genes and resources. The Dongzhaigang mangrove reserves
are unique compared to other reserves as they comprise the most important ecosystem.
Therefore, the Dongzhaigang mangrove reserve was selected as the research object, with
the aim of evaluating the effectiveness and generalization of deep learning models in the
segmentation of mangrove distribution areas.

2.2. Dataset Acquisition and Ground Truth Annotation

The satellite images used in our research were gathered from the China National
Platform for Common Geospatial Information Service (https://www.tianditu.gov.cn/,
accessed on 12 November 2023) [37], and the 2023 version of MAPWORLD was used to
build the training dataset. The ground truth annotation was obtained from LIAO [38]
through a combination of remote images from the GaoFen-2 satellite and UAVs. The
GF-2 satellite is China’s inaugural civilian optical satellite, independently constructed and
possessing a spatial resolution exceeding 1 m, with sub-satellite points having a resolution
capability of 0.8 m. The satellite comes equipped with two high-resolution cameras: one
panchromatic, featuring a wavelength range of 0.45–0.90 µm, and another multi-spectral,
with wavelengths between 0.45 and 0.89 µm. The spatial resolution of the panchromatic
camera is 1 m, whereas the multi-spectral variant has a 4 m spatial resolution. The GF-2
satellite renews its observations every five days. In view of the combination with high
resolution and 4 bands (blue/green/red/near-red) for the multispectral and panchromatic

https://www.tianditu.gov.cn/
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images, the accuracy of the annotation is satisfactory and we take it as the ground truth as
shown in Figure 3.

Forests 2024, 15, x FOR PEER REVIEW 5 of 19 
 

 

 
Figure 2. Mangrove location diagram of Hainan Dongzhaigang National Nature Reserve. 

2.2. Dataset Acquisition and Ground Truth Annotation 
The satellite images used in our research were gathered from the China National 

Platform for Common Geospatial Information Service (https://www.tianditu.gov.cn/, accessed 
on 12 November 2023) [37], and the 2023 version of MAPWORLD was used to build the 
training dataset. The ground truth annotation was obtained from LIAO [38] through a 
combination of remote images from the GaoFen-2 satellite and UAVs. The GF-2 satellite is 
China’s inaugural civilian optical satellite, independently constructed and possessing a 
spatial resolution exceeding 1 m, with sub-satellite points having a resolution capability 
of 0.8 m. The satellite comes equipped with two high-resolution cameras: one 
panchromatic, featuring a wavelength range of 0.45–0.90 µm, and another multi-spectral, 
with wavelengths between 0.45 and 0.89 µm. The spatial resolution of the panchromatic 
camera is 1 m, whereas the multi-spectral variant has a 4 m spatial resolution. The GF-2 
satellite renews its observations every five days. In view of the combination with high 
resolution and 4 bands (blue/green/red/near-red) for the multispectral and panchromatic 
images, the accuracy of the annotation is satisfactory and we take it as the ground truth 
as shown in Figure 3. 

We utilized the labeled data from 2019 [38] as the ground truth, and our training data 
use satellite imagery data from 2023 to alleviate errors caused by data heterogeneity 
between 2019 and 2023 in consideration of the mangrove forests in this area not changing 
much. The satellite imagery is as shown in Figure 4, obtained from 2019 and 2023. (a) is 
the satellite imagery obtained from 2019, (b) is the satellite imagery obtained from 2023, 
and (c) is the ground truth annotation that still is more accurate than the others. Then, we 
used the trained model to monitor the distribution of mangrove forests in any area, and 
we evaluated the statistical square measure of some mangrove areas from Hainan Xinying 
Mangrove National Wetland Park via MangroveSeg. 

Figure 2. Mangrove location diagram of Hainan Dongzhaigang National Nature Reserve.

Forests 2024, 15, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 3. Hainan Dongzhaigang National Nature Reserve mangrove remote image (ground truth 
annotation marked as red). 

 
(a) (b) (c) 

Figure 4. The mangrove distribution statistical charts for northwest of Hainan Dongzhaigang 
National Nature Reserve Mangrove. (a) is the satellite remote sensing imagery obtained from 2019, 
(b) is the satellite remote sensing imagery obtained from 2023, (c) is ground truth annotation marked 
as red. 

Figure 3. Hainan Dongzhaigang National Nature Reserve mangrove remote image (ground truth
annotation marked as red).



Forests 2024, 15, 127 6 of 18

We utilized the labeled data from 2019 [38] as the ground truth, and our training
data use satellite imagery data from 2023 to alleviate errors caused by data heterogeneity
between 2019 and 2023 in consideration of the mangrove forests in this area not changing
much. The satellite imagery is as shown in Figure 4, obtained from 2019 and 2023. (a) is
the satellite imagery obtained from 2019, (b) is the satellite imagery obtained from 2023,
and (c) is the ground truth annotation that still is more accurate than the others. Then, we
used the trained model to monitor the distribution of mangrove forests in any area, and
we evaluated the statistical square measure of some mangrove areas from Hainan Xinying
Mangrove National Wetland Park via MangroveSeg.
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2.3. Data Pre-Processing

Due to the very large size of the acquired satellite remote sensing images, it is difficult
to directly perform calculations and analysis. Therefore, the software QGIS was used to
build the samples, including training samples and test samples with small size. In our study,
we set the image size as 256 × 256 for model training via QGIS. Also, the ground truth is
processed in a corresponding way to ensure a one-to-one match between the original image
block and the ground truth. The specific implementation process is as follows:

• The initial step was to integrate the satellite image layer into the QGIS program.
Subsequently, the truth label was imported as a new layer, and the locations of both
layers were fine-tuned.

• The next step comprised aligning the map layer with Dongzhaigang Nature Reserve.
The map scale of 5300:1 was utilized to divide the designated area. To generate the
required XYZ tiles, the Raster Tools module in the QGIS software was employed. The
tile size was set to 256 × 256 pixels, and the map layer’s zoom level was adjusted to
level 17. Following this, the satellite images and ground truth label image were then
exported based on the map layer.

• Finally, the produced image files were organized into a dataset, sorted based on their
file names. The dataset of the mangroves was divided into two parts, consisting of
4000 images, with 3002 for training and 998 for testing. Since the trained model can be
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used to monitor the distribution of mangrove forests in any area, we also evaluated the
statistical square measure of some mangrove areas from Hainan Xinying Mangrove
National Wetland Park as testing data.

3. Methods
3.1. The Proposed MangroveSeg Network

The aim of this study was to build a network for the detection and segmentation of
mangroves from remote sensing images. Given the characteristics of mangrove detection
and segmentation tasks, we considered the detection and segmentation of mangroves a
camouflage detection problem for the improvement and enhancement of accuracy. We
chose FAPNet [35] as the baseline network, as it has outstanding performance in the
detection of camouflage targets. On the other hand, in order to make the network more
suitable for detecting mangroves, we made some improvements to the proposed network
based on FAPNet [35]. Figure 5 shows the overall architecture of the new framework,
MangroveSeg, which is a deep-supervision-guided feature aggregation network. It is an
encode–decode model that includes two main parts: (1) Attention-based feature fusion
network: Firstly, ResNet-50 as the backbone network is introduced to extract features
from input data and generate feature mapping in each layer with different resolutions via
down-sampling. The outputs of each ResNet layer are the corresponding feature maps P1,
P2, P3, P4, and P5. Then, these features obtained from each layer are fed into an attention
module, which is designed to focus features from different layers with spatial information.
The feature fusion module undergoes feature decoupling to obtain the multi-scale fused
features FS1, FS2, FS3, FS4, and FS5. Since different layer scans cover more feature content,
the feature fusion module can obtain these features together from each layer and further
enhance the feature representation. (2) Feature conduction: The feature conduction model
is used to aggregate features from different layers as FSi and FSi+1, which are first added
together. Then, this is fed into a 3 × 3 convolutional layer for normalized feature maps,
the same framework as FAPNet [35]. (3) Deep supervision model: In the decoder, the deep
supervision upsamples the output maps from the last encoding layer and all decoding
layers to match the size of the label. The loss is calculated separately for each and combined
as the total model loss.

For deep supervision, the feature map OUTi comes from the fusion and conduction
of FSi and FSi+1, which come from the fusion of Pi and Pi+1. Finally, OUTi contains the
characteristics of the different depth feature maps layer i, layer i + 1, and layer i + 2, that
is, it contains the characteristics of the different sizes of receptive fields. In addition, the
ConvBlock is used to recalibrate the fused feature map in the channel dimension, and the
weight of the features is adaptively adjusted to adapt the importance of different depth
feature maps with the change in target scale. Then, the fused feature map can be more in
accordance with segmented targets of different scales.

3.1.1. Attention Block Module

To predict false positives (FPs) for small targets with large degrees of deformation
in traditional network structures is very difficult, so the usual practice is to locate first
and then segment. However, attention gates (AGs) can achieve this without training
multiple models and many additional parameters. AGs suppress feature responses in
unrelated background regions without clipping ROIs between networks. As shown in
Figure 6, attention gates are designed to highlight significant image regions and suppress
task-independent feature responses. Attention gate vectors contain contextual information
to prune low-level feature responses. In this paper, additive attention was chosen to
obtain the gating coefficient, as it performs better than multiplicative attention. Given
the number of trainable parameters and the computational complexity of AG, a spatial
support is unnecessary during linear transformation. The input feature map undergoes
dimensionality reduction by downsampling it to the gating signal’s dimension. The feature
map is then decoupled through a corresponding linear transformation and converted to
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a lower-dimensional space for gate operations. The outputs of each ResNet layer are the
corresponding feature maps P1, P2, P3, P4, and P5. Then, the attention module can obtain
Mi from Pi and Qi+1 via upsampled Mi+1, which is designed to focus the features of interest
of layers with the spatial information.
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3.1.2. Feature Fusion and Conduction Module

Since different layers can cover more feature content, the feature fusion module can
obtain these features together from each layer and further enhance the feature representa-
tion. To detect targets with different scales and receptive fields, feature maps of different
layers can be obtained from different layers. Therefore, we introduce a multi-scale feature
extraction and integration module (MFAM module) [35] that aggregates image features at
different scales. The extraction and integration of features are shown in Figure 7. First, the
input data generate different scale information after the convolutional kernel layer through
conv1 × 1, conv3 × 3, and conv5 × 5. Then, the different layers are concatenated by chan-
nel. This includes rich detailed localization information in the feature map. Feature maps
from the same resolution are fused by channel splicing to realize the fusion of semantic
and detailed information. The conv3 × 3 multiple results and conv5 × 5 are concatenated
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as the last input. Finally, the output splicing fusion using conv1 × 1 is concatenated to a
double reduction of the characteristic channel number. Then, the output FSi of the feature
fusion model is fed into the feature conduction module that has the same framework
with baseline network for feature propagation. The output FCi of the features conduction
module transfers to decoding for final output.
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3.1.3. Deep Supervision Module

The deep supervision strategy can obtain multi-level features in the training stage
of image segmentation tasks using a set of auxiliary networks. This strategy allows the
trained model to localize and refine segmentation objects, enabling it to obtain the shapes
and sizes of different objects.

The output features FCi are utilized to guide the object features in the decoder for
segmentation. These features are fused with multiple side-output features in the decoder,
and a fused feature map is made the same size as the ground truth map via upsampling.
By doing this, low-level information can be used to compensate for the information loss
of small samples in deeper layers, which have stronger feature extraction capabilities for
small targets.

Furthermore, we introduce multiple supervisions from both the side-output maps (i.e.,
Sn) and the ground-truth maps (i.e., Gs) as deep supervision information. To address the
category imbalance issue, Dice loss is used, while BCE loss is employed to mitigate the
uneven distribution of categories. The loss function Lseg is set up with the weighted Dice
loss LDice and weighted binary cross entropy (BCE) loss Lbce for each segmentation.

Lseg = λLDice + (1 − λ)Lbce (1)
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where λ is the weight, set to 0.66 in our experiment following the baseline setting. The
multiple supervision loss function is as follows:

Lms = ∑4
n=1 Lseg(Gs, Sn) (2)

Combining the boundary loss function and stable loss functions and multiple supervi-
sion loss, the overall loss function can be defined as follows:

Ltotal = Lseg(Gs, OUT1) + γLms (3)

where OUT1 denotes the final output. γ is the weight of the multiple supervisions loss
functions, set to 0.1 in our experiment.

3.2. Experimental Setting

MangroveSeg is implemented based on the environment configuration with Python
3.10 (Open source project of Python Software Foundation) and Pytorch 1.13.1 (Pytorch
open source project of The Linux Foundation). As for the hardware configuration of our
experiments, we carried out the experiments on one NVIDIA GeForce RTX 3060 with
12 GB memory in ThinkStation P350 made by Lenovo, Beijing, China. The configurations
are specified as follows: The image size and patch size input into the model were set as
256 × 256, the batch size was 4, the Adam optimizer was the initial learning rate of 0.0001,
the decay rate of learning rate per decay step was set to 0.1, and the max epoch for training
was 100.

3.3. Evaluation Criteria

The objective of mangrove segmentation is to utilize deep learning to detect individual
image pixels, classifying them into either mangrove or background categories. Following
the segmentation of the mangrove maps, four indexes were obtained: FP, FN, TP, and TN.
TP (true positives) signifies the correctly predicted pixels in the mangrove category, while
TN (true negatives) represents the correctly predicted pixels in the background category.
FN (false negatives) indicates the number of pixels incorrectly identified as the background
category, while FP (false positives) represents the number of pixels incorrectly identified as
the mangrove category. On the basis of these four basic indicators, accuracy (ACC), mIoU
(mean intersection over union), mPA (mean pixel accuracy), and Dice can be calculated.

The formulas are as below:

ACC = (TP + TN)/(TN + FP + TP + FN) (4)

mIoU =
1
n∑n

i=1
P
⋂

G
P
⋃

G
(5)

where P denotes prediction, G denotes ground truth, n is categories. The mIoU metric
measures the accuracy of pixel-wise classification in image segmentation tasks. It compares
the intersection area between the predicted segmentation mask and the ground truth
mask, divided by the union area of both masks. A higher mIoU value indicates better
segmentation accuracy. The mIoU is commonly used to assess the image segmentation
model, allowing the user to compare and evaluate the performance of different algorithms
or approaches.

The mPA metric calculates the overall accuracy of an image classification model by
considering correct positive numbers and negative classifications compared to the total
numbers. It is commonly used to evaluate the performance of image recognition algorithms.

PA = (TP + TN)/(TP + TN + FP + FN); mPA = sum(Pi)/n, n = 2 (6)

Dice =
(

2*
∣∣∣P⋂ G

∣∣∣)/(|P|+ |G|) (7)
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In image segmentation tasks, the Dice coefficient is commonly used to assess the
segmentation model performance. A higher Dice coefficient implies a better segmentation
result, indicating that the algorithm successfully captured the desired object in the image.
The accuracy, mPA and mIoU metrics were described by the confusion matrix of TP, TN,
FP and FN. The present experiment used these three metrics to evaluate the mangrove
segmentation model.

3.4. Result Analysis

As Figure 8 shows, the partial segmentation results of the proposed method and the
comparison method FAPNET [35], UNet [23], ATT-UNet [39], Unet++ [40] (also named
NestUnet) and U2Net [41] on the mangrove dataset. Judging from the results, the UNet,
ATT-UNet, and U2Net method basically obtain mangrove segmentation, but the detail
information is not better. FAPNET, NestUnet, and MangroveSeg perform better for the
details of the segmentation results in Figure 8. The feature map of different methods is
shown in Figure 9. MangroveSeg and FAPNET can distinguish the texture features of
different kinds of plants, and MangroveSeg can obtain clearer boundaries, especially in the
fourth row of Figure 9.
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(B) located at 12,307,912.5 E 2,270,707.2 N, (C) located at 12,311,336.6 E 2,265,062.7 N; (D) located at
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Figure 10a is the performance of the proposed method when verifying mangrove
segmentation in the test dataset. The MAE (mean absolute error) of our method seesaws
lower depending on Epoch number; before Epoch 40, the model MAE fluctuated greatly,
and it was relatively stable between Epoch 40 and Epoch 70, with a small range of MAE
fluctuations. As Figure 10b shows, most segmentation results are greater than 0.8 for the
Dice score. Additionally, these models have no specific requirements for the amount of
data. However, in order to ensure the robustness of the model and avoid overfitting issues,
the more training data, the better.
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Figure 10. MAE of the proposed method for mangrove segmentation.

The quantitative comparison of our model with other models in four evaluation met-
rics is shown in Table 1 by comparing the main index parameters and the average running
time of different segmentation methods. The results show that the time loss of UNet, ATT-
Unet, and other image segmentation methods is shorter, and the time loss in our method is
longer. The proposed method adopts the ResNet network architecture as the backbone and
adds feature attention and feature fusion modules to improve the performance. Compared
with the other methods, DAFNet has great advantages for performance in mIoU, mPA,
and ACC. MangroveSeg improves by 22.55% mIoU, by 9.76% mPA, and by 10.23% ACC
over the best model, FAPNET, in the list. It achieves considerable improvement in model
performance at a small time cost.
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Table 1. Quantitative comparison of our model with other models on four evaluation metrics. The
best results are highlighted in bold font.

Method mIoU% mPA% ACC% Parameters Time/Epoch

FAPNET [25] 65.85 81.1 81.26 27.1M 46S
UNet [28] 59.64 73.88 77.76 34.5M 35S

ATT-UNet [29] 59.27 73.71 75.6 41.4M 31S
UNet++ [30] 57.61 72.35 75.44 36.6M 32S
U2Net [31] 57.77 72.38 75.29 44.0M 36S

MangroveSeg (ours) 80.7 89.02 89.58 57.5M 48S

We used the trained model to test satellite images from other regions, as shown in
Figure 11, which shows the detection results for Hainan Xinying Mangrove National
Wetland Park via MangroveSeg. We evaluated the statistical square measure of some
mangrove areas, and the evaluation accuracy can reach 96% via MangroveSeg detection.
According to the results, MangroveSeg can be used to detect mangrove areas well.
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3.5. Ablation Study

In order to verify the performance of the network structure for the important compo-
nents, such as the attention block and feature fusion block, we compared them experimen-
tally in ablation experiments. As shown in Table 2, the comparison experiments include
the FAPNET model only, the FAPNET model with the Feature Fusion Block, the FAPNET
model with the Attention Block, the FAPNET model with the Attention Block and Feature
Fusion Block (i.e., adding both the Attention Block and Feature Fusion module). All results
come from our implementation, and the dataset is divided in the same way. The results
show that the Attention Block that combines with the Feature Fusion Block can effectively
improve the network performance for the prediction object.

Table 2. The indicator parameters of different ablation experiments. The best results are highlighted
in bold font.

Attention Block Feature Fusion Block mIoU% mPA% ACC% Recall%

65.85 81.1 81.26 81.1√
73.59 84.11 86.15 84.11√
70.14 81.46 85.68 81.46√ √
80.7 89.02 89.68 89.02

According to the result of ablation validation on the Mangrove dataset as shown in
Table 2, the model with the Feature Fusion Block module alone added to the original ResNet
backbone network structure can improve performance by 11% mIoU. Similarly, adding the
Attention Block module alone increases the performance by 6.5% mIoU compared to the
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original structure. Combining both modules results in a performance improvement of 22.5%
mIoU. These results suggest that the feature fusion module, with its multi-scale and multi-
level feature aggregation, significantly contributes to image segmentation. Additionally,
the Attention Block module effectively helps the network focus on specified target regions.
The interactions between these two modules in the network structure are also positive
and beneficial.

4. Discussion

This article’s main goal is to achieve the accurate analysis of changes in mangrove
via the proposed detection method. This paper proposes a MangroveSeg network for
mangrove detection. Experiments and an analysis show that the MangroveSeg model
is superior to most methods in terms of mIoU, mPA, ACC and recall. Additionally, a
novel learning-based mangrove detection model is proposed to update the baselines over
multi-year, (2015–2019) to 2023, periods for change detecting. The proposed model can
automatically and accurately detect the distribution and area of mangroves from satellite
remote sensing images, which provides a way of achieving a mangrove monitoring gateway
for application at the global scale.

4.1. Advances for Alleviating Challenging Issues

Due to complex regional structures, great similarity between mangroves and the sur-
rounding environment, and the diversity of mangroves, mangrove detection and segmen-
tation still are challenging. To address this issue, this paper proposes a novel MangroveSeg
network based on FAPNet [35], which has outstanding performance in the detection of
camouflage targets. The MangroveSeg network is built by a U-shaped structure with
ResNet combining an attention mechanism and multi-scale feature extraction framework
to obtain salient feature aggregation. We also considered the detection and segmentation
of mangroves as a camouflage detection problem to determine more information from
extracted feature maps in a hidden layer, and a deep supervision model is introduced
in downsampling for enhancing feature representation. The advantages of the proposed
method for alleviating challenging issues can be summarized as follows.

• This method improves the feature representation and contrast between mangroves
and the surroundings; therefore, the deep supervision model enables more accurate
segmentation. Figure 12 shows the testing results via MangroveSeg, in which it can
be observed that the unannotated mangroves in the annotated ground truth were
detected in the test result. The area marked in red demonstrates that the proposed
MangroveSeg network can effectively detect camouflaged mangrove areas from the
complex surrounding environment.

• The proposed MangroveSeg network can be directly used for change detection in
mangrove forests of certain areas during a specific period of time when the way of
obtaining regional data is the same as that for the training data. It can be retrained as
needed to adapt to data with different characteristics, which make change detection
unrestricted by using existing software.
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4.2. Limitations

A MangroveSeg network based on FAPNet [31] to obtain a mangrove segmentation
model using 3002 training images achieved 89.58% overall accuracy, 89.02% precision, and
80.7% mIoU for the testing data. Although the trained mangrove segmentation model can
automatically and accurately detect the distribution and area of mangroves from satellite
remote sensing images, there are still some limitations in application.

• The mangrove detection performance is greatly affected by data heterogeneity caused
by the phenology of this type of forest. When collecting data from detection areas, the
performance of the model cannot be guaranteed where there are significant differences
in weather, season, and other phenological conditions. How to improve the general-
ization ability of methods is a direction that needs to be continuously developed.

• When the terrain structure of the surface is complex and there are significant differences
in surface information, false detections may occur as shown in Figure 13 and marked
in red. Due to factors such as shadows and terrain, the texture information in satellite
images is complex, resulting in inaccurate mangrove detection.

• The MangroveSeg network runs on the Python development platform, which is
inconvenient for users, and it can be developed on a web platform for users to
approach conveniently.

• The MangroveSeg network only uses RGB images of visible light and does not fully
utilize multi-band data. In the future, we can explore the fusion of multi-band and
multi-scale data to further improve network performance.
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5. Conclusions

We propose a new mangrove segmentation network, MangroveSeg, which is based
on a U-shaped structure with ResNet combining an attention mechanism and multi-scale
feature extraction framework to obtain salient feature aggregation. We introduce a deep
supervision model in downsampling for enhancing feature representation to determine
the quality of hidden layer feature maps. The spatial attention mechanism with attention
gates is utilized to highlight important image areas and suppress task-irrelevant feature
responses. The feature fusion module aims to obtain multi-scale information by combining
each layer with semantic information and further obtain feature maps with sufficient details
and receptive fields. We considered the detection and segmentation of mangroves as a
camouflage detection problem to determine more information from extracted feature maps
in the hidden layer, and this method can effectively detect camouflaged mangrove areas
from the complex surrounding environment. The proposed MangroveSeg network can be
directly used for detecting changes in mangrove forests in certain areas during a specific
period of time when the method of obtaining regional data is the same as that of obtaining
training data. We validated the proposed MangroveSeg network on some mangrove remote
sensing datasets. The experimental results demonstrate that the proposed method has
robustness and effectiveness in mangrove detection and segmentation.

Therefore, the main contribution was the proposed methodology MangroveSeg for
mangrove detection and segmentation using satellite remote sensing imagery. Man-
groveSeg can be directly used for detecting changes in mangrove forests in certain areas
during a specific period of time when the method of obtaining regional data is the same
as that of obtaining training data. However, there are still some issues, for which we
propose the following improvement methods to obtain more accurate change detection for
the continuous monitoring of mangroves: (1) Multispectral images and LiDAR imagery
can provide more information to help identify and distinguish the surface of the Earth in
terms of semantics. (2) Smaller stride values for large images and multiscale images can
achieve better results, with high resolution providing richer texture information. (3) The
generalized model [42,43] for data heterogeneity issues can alleviate the false detection
caused by phenology and other factors.
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