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Abstract: Disentangling the underlying processes of plant adaptations to multiple abiotic stressors is
crucial regarding promissory species for the restoration of riparian ecosystems prone to suffering
extreme flood and drought events in the context of global climate change and human activities.
Distylium chinense is a dominant evergreen shrub, distributed in the riparian areas of the Yangtze
River in China. Here, one field study and five controlled experiments (Control, CK; single drought, D;
single flooding, FF; from drought to recovery to full flooding, D-R-FF; from full flooding to recovery
to drought, FF-R-D) were conducted. More hypertrophied lenticels, adventitious roots, and the
increased stem-base hypertrophy of D. chinense were observed under the D-R-FF condition compared
with FF and FF-R-D. Interestingly, the increase of the net photosynthetic rate (Pn) coincidentally
occurred with the increase of heme degradation by heme oxygenase (r = 0.608, p = 0.003). Pn of
D. chinense in D-R-FF was about twice as much as that in FF-R-D. The enhanced photosynthetic
performance was functionally coupled with the adequate water supply to promote the tolerance
of D. chinense to alternate drought–flooding condition compared with no any flooding condition.
The accumulation of soluble sugar was highest under D, followed by FF-R-D, FF and D-R-FF, which
showed that soluble sugar accumulation over the drought period could trigger the recovery growth of
flooded plants in later flooding. These data provided the first insights into the tolerance mechanisms
by a suite of morphological alterations and physiological adaptations, especially in the enhanced
photosynthetic performance of D. chinense under alternating drought and flooding stresses. So,
D. chinense could be considered as a prominent shrub species in the restoration practices of wetlands,
riparian areas, and other flood-prone forests.

Keywords: Distylium chinense; alternate drought and flooding; single drought or flooding; morphological
alterations; photosynthetic responses

1. Introduction

Irrespective of the international consensus about the importance of wetlands and
riparian areas for ecosystem health and the maintenance of biodiversity, wetlands and
riparian areas are being destroyed faster than any other terrestrial ecosystem in the context
of global climate change and human activities [1]. About half of this area has been lost,
converted, or degraded in the last century. Among the main factors related to wetland
degradation are the clearing of vegetation, agriculture, ranching, and industrial usage, as
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well as environmental problems caused by global climate change and hydropower dam
construction [1–4]. Every year, the flood–drought–flood cycle repeats itself. As a result, the
riparian ecosystem is facing unprecedented alternating floods and drought risks, which
may exacerbate the adverse impacts caused by droughts or floods [5,6]. Hydrological
dynamics (e.g., the frequency and duration of flooding or droughts) have significant effects
on riparian vegetation. Particularly, the repeating drought and flooding stresses could
extirpate the native riparian plants and alter the vegetation patterns [7–9]. Consequently,
the re-vegetation of these natural ecosystems experiencing alternate drought and flooding
stresses is an important issue to be addressed, and the identification of species able to
help in that process becomes essential. Therefore, it is crucial to understand the distinct
morphological, physiological, and ecological adaptations of native shrubs not only under a
single drought or flooding period but also under alternate drought and flooding stresses
for restoration efforts in degraded riparian ecosystems.

Plants experiencing different hydrological conditions could respond to various regime
variations through morphological, physiological, and ecological adaptations that help
them cope with such variations [10–13]. Plant populations from different positions are
subjected to various regimes of flooding and drought, both of which may also occur in the
same growing season. Flooding and submergence pose considerable challenges for plant
growth and survival [14]. During flooding, the transmission of gases such as O2, CO2, and
ethylene into the water is relatively slow. Cellular O2 levels are reduced, inhibiting aerobic
respiration [15,16]. But, within limits imposed by flooding depth, duration, timing, and
intensity, they can, in some tolerant species, be overcome by appropriate combinations of
growth, morphological, and eco-physiological attributes or adaptations [15,17–19]. The
flood-tolerant species respond to flooding by morphological changes such as the develop-
ment of intercellular spaces in lenticels, an increase in stem-base growth, the formation of
adventitious roots, and aerenchyma development [15,20,21]. The photosynthetic rate and
stomatal conductance of flooded seedlings also were lowered with an increase in flooding
depth. The recovery of the reduced photosynthetic rate and stomatal conductance oc-
curred simultaneously with the advancement of adventitious root formation in the flooded
seedlings [20].

Flooding reduces water absorption and stomatal conductance, causing flooding-
sensitive plants to wilt in a similar way to drought [22]. And water shortages are getting
worse due to the increased evapotranspiration, precipitating more frequent and intense
drought events and inhibiting the growth of plant shoots and roots and their photosynthesis,
ultimately resulting in plant death [23]. Various plant species and populations have highly
varying drought tolerances, acclimatization rates, and acute drought responses [24–26].
Under moderate and severe drought stress, the accumulation of soluble sugar is medi-
ated by osmoprotection in plants to reduce stress damage [27]. Aside from alterations in
photosynthetic responses and the accumulation of soluble sugar, drought triggers a range
of different cellular interactions; for example, it changes the entire plant transcriptome
and metabolome [28,29]. Therefore, the search for general adaptive syndromes evolved
by plants to tolerate multiple co-occurring or subsequent abiotic stressors is of uttermost
importance to foresee species responses to current and future climatic change.

Distylium chinense (Fr.) Diels is an evergreen and native shrub that belongs to the
genus Distylium of Hamamelidaceae [30]. This genus is found in China, Indonesia (Java
and Sumatra), Northeast India (Assam), Japan (Ryukyu Islands), Korea, and Malaysia,
particularly distributed in the riparian areas and wetlands of China’s Yangtze River [4,30].
Its seedling survival rate reached more than 90% at an altitude of 175 m in the Three Gorges
reservoir area of China [21]. In addition, this species frequently grows as a charming
ornamental shrub that is found in parks, green spaces, and around lakes, and it is cultivated
as a potted flowering plant for its beautiful red inflorescences, or as a hedge and ground
cover plant for landscaping [4], which showed that D. chinense has great ornamental value
and great social and economic benefits.
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However, due to the construction of hydroelectric projects like the Three Gorges
Dam and other anthropogenic activities such as overharvesting and excavating, the wild
populations of D. chinense are in steep decline [4]. And it was classified as endangered
according to China’s Higher Plants Red List (CHPRL). Today, the search for alternative
species capable of tolerating multiple stresses such as alternate drought and flooding is one
of the main objectives in protecting and conserving the ecosystem biodiversity in the face
of global climate change and intensified human activities. Previous studies have mainly
concentrated on the morphological and photosynthetic responses to a single flooding
event [17,21]. General patterns and mechanisms describing this species’ adaptations to
tolerate multiple abiotic stressors such as alternate drought and flooding stresses remain
poorly understood. Therefore, it is imperative to obtain knowledge on the growth, morpho-
logical, and physiological adaptative responses of D. chinense to the alternate hydrological
conditions (D-R-FF and FF-R-D) to provide information on how to use this species for
restoration and reconstruction programs of the degraded riparian ecosystem. The following
three hypotheses were examined:

(1) D. chinense exhibits differences in growth, morphological, and physiological activity
alterations under alternate hydrological regimes (D-R-FF and FF-R-D) compared with
single drought and flooding events.

(2) The enhanced photosynthetic performance was functionally coupled with the ad-
equate water supply to promote the tolerance of D. chinense to alternate drought–
flooding condition. Drought in the early stage could promote the tolerance of
D. chinense to flooding in the later stage.

(3) More hypertrophied lenticels and adventitious root occurrence may be attributed to
the enhanced heme oxygenase (HO) activities of D. chinense seedlings. It may be a
vital adaptation to the D-R-FF hydrological regime.

2. Materials and Methods
2.1. Experimental Materials

D. chinense (Figure 1A–D) is a perennial shrub of the Distylium genus of the Hamamel-
idaceae family. Adventitious branches from deep-seated rhizomes generate dense colonies.
It can reach a height of 0.8 to 1.2 m and has a large root system. Leaf blade is elliptic to
oblanceolate, 2–4 cm long, 1–1.2 cm wide, both surfaces glabrous, base broadly cuneate,
margin entire or with two or three teeth on each side near apex, apex subacute; lateral
veins five per side, reticulate veins obscure on both surfaces; petiole is densely lepidote
and 1.5–2 mm long; lateral veins five per side. It germinates seeds in the autumn and
blooms in the early spring [30]. D. chinense of the population is a perennial shrub with
adventitious branches that emerge from deep-seated rhizomes to produce dense colonies.
It has a well-developed root system and is considered an ideal protective shrub species
along riparian areas [30].

D. chinense seedlings (about 15 cm in height) were gathered and transported to Yichang,
Hubei Province, China, in soft-walled containers to lessen root loss throughout excavation
and transport. The soil–sand mixture contains 30% yellow-brown soil, 30% coarse-grained
sand (1–2.2 mm), 30% fine-grained sand (0.7–1.22 mm), and 10% perlite. It also has a soil
bulk density of 1.38 g cm−3.

The seeds were placed into plastic containers that measured 17.5 cm wide by 15 cm
high for all the seedlings. The plants were kept in well-aerated soil conditions and allowed
to grow outdoors for at least 6 months with one seedling in each container before the
soil-flooding treatments began. Every other day, tap water was used for irrigation. We
only used seedlings with robust roots. The experiments were conducted in ecological
experimental station of China Three Gorges University, Yichang city, Hubei province, China
(111◦18′ E, 30◦43′ N, 133 m).
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Basic environmental information on sampling sites and geographic distribution map is 
shown in Table 1 and Figure 2. Under DF condition, seasonal floods occurred from May 
to September and quickly increased from 5 cm to 100 cm. The submerging duration was 
no more than 30 days. Furthermore, natural precipitation and agriculture drainage are 
responsible for variations in water levels. Between September and April of the following 
year, dry soil layers can be found. In both sampling sites, D. chinense was the dominant 
species at both sampling sites (Site 1 and Site 2). Three fixed quadrats (5 m × 5 m) were 
randomly located within each site. We used a portable photosynthesis system (Li-6400, 
LI-COR, Lincoln, NE, USA) under PAR near the light-saturation region (1200 mol m−2 s−1) 

Figure 1. The photos display normal leaves (A), branches (B), flowers (C)and seeds (D) of D. chinense,
and its growth is particularly vigorous in riparian areas.

2.2. Sampling Sites and Field Studies

We selected two 20 m × 20 m sampling sites (Site 1 and Site 2) (111◦23′ E, 30◦53′ N,
212.91 m; 111◦48′ E, 30◦45′ N, 130.15 m) that experienced alternate drought–flooding condi-
tion (DF) and no any flooding condition (NF) during the growing season, respectively. Basic
environmental information on sampling sites and geographic distribution map is shown in
Table 1 and Figure 2. Under DF condition, seasonal floods occurred from May to September
and quickly increased from 5 cm to 100 cm. The submerging duration was no more than
30 days. Furthermore, natural precipitation and agriculture drainage are responsible for
variations in water levels. Between September and April of the following year, dry soil
layers can be found. In both sampling sites, D. chinense was the dominant species at both
sampling sites (Site 1 and Site 2). Three fixed quadrats (5 m × 5 m) were randomly located
within each site. We used a portable photosynthesis system (Li-6400, LI-COR, Lincoln,
NE, USA) under PAR near the light-saturation region (1200 mol m−2 s−1) with controlled
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CO2 concentration to measure net photosynthetic rate (Pn), stomatal conductance (Gs),
intercellular CO2 concentration (Ci), transpiration rate (Tr), and CO2 concentration of the
air (Ca) of the third fully expanded leaf from the shoot tip. The measurement periods from
9:00–11:00 a.m. had a controlled CO2 concentration of 380 umol CO2 mol−1. Leaf tempera-
ture was 20 ◦C and relative humidity 60%–70% every two hours (five times within a day).
All measurements of the field were repeated three times. The water-use efficiency (WUE)
and stomatal-limiting value (Ls) were calculated according to the following formulas:

WUE = Pn
Tr

Ls = 1 − Ci
Ca

Table 1. Basic environmental information of sampling sites (Site 1 and Site 2). Values are means ± SE,
n = 3.

Latitude and Longitude Soil Water
Content (%) Air Humidity (%) Light Intensity/µmol·m−2 S−1 Air Temperature (◦C)

Site 1 111◦23′ E, 30◦53′ N, 212.91 m 30.37 ± 0.73 82.00 ± 1.73 1417.7 ± 55.0 25.00 ± 0.58
Site 2 111◦48′ E, 30◦45′ N, 130.15 m 21.40 ± 0.59 55.33 ± 1.33 1343.3 ± 17.8 30.67 ± 0.88
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Figure 2. Sampling sites (Site 1 and Site 2) of field photosynthesis of D. chinense.

2.3. Experimental Design

One-year-old D. chinense seedlings were transplanted into plastic containers (with
3.5 kg soil, 17 cm diameter). All the seedlings were cultivated in the same environment.
Outdoor studies were undertaken after a 6-month acclimatization period under regular con-
ditions of well-watered and well-drained soil. Before starting the treatments, seedlings of
D. chinense had a mean height of 17.5 ± 1.2 cm and a mean stem diameter of 2.82 ± 0.3 mm.
Among these seedlings, a total of 146 seedlings with uniform size and development were
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chosen and divided into two groups of 50 seedlings at random. One group was separated
into three subgroups of 16 plants, each of which was subjected to different floods of varying
depths (roots, partial, and full submergence). The other group, which was watered and
well-drained, was treated as non-flooded (Drought and CK). Experiments were arranged in
a randomized complete block design with five replications. In this controlled experiments,
all the seedlings were submitted to five treatments: (1) 25 seedlings daily watering and un-
flooded as a control (Unflooded, CK); (2) 25 seedlings with drought (D) treatments (topsoil:
0–10 cm depth, continuous drought with no watering for 28 days with 8.33 ± 3% of the final
soil water content; (3) 16 seedlings flooded (RF) at 1 cm above the ground level (GL) for
28 days; (4) 16 seedlings partially flooded (PF) at 12 cm above the GL for 28 days; and
(5) 16 seedlings fully flooded (FF) under 1.2 m of deep water for 28 days. After 6 weeks
(28 days for these single stresses and a recovery period of 2 weeks each), two different
alternative treatments (ALs) for 2 weeks were established: 16 seedlings from drought
to recovery to full flooding (D-R-FF) and 16 seedlings from full flooding to recovery to
drought (FF-R-D). All the plants were grown under identical conditions and received regu-
lar care, such as weeding. The physio–chemical parameters of soil and tap water are shown
in Table 2.

Table 2. The physio–chemical parameters of the soil and floodwater. Values are means ± SE, n = 5.

Temperature (◦C) pH EC/mS cm−1 Soil Water
Content/%

Organic
Matter/mg kg−1 TN/mg g−1 TP/mg g−1

Soil 13.51 ± 0.27 6.67 ± 0.07 0.87 ± 0.12 32.37 ± 1.45 22.42 ± 0.46 2.08 ± 0.15 0.86 ± 0.07
Floodwater 14.32 ± 0.33 7.27 ± 0.08 0.46 ± 0.04 - - 0.64 ± 0.24 0.05 ± 0.00

The position of each plant was rotated randomly every week to reduce the effect of
location. At the same time, to fully simulate the low-light-intensity environment caused
by the turbidity of the water in the reservoir’s water-leveling zone, a layer of a neutral
shade cloth was laid above the pool. All plants were not fertilized during the experiment.
The species’ morphological characteristics were observed during 28 days after the initial
flooding/drought. The plant height, epicormic shoots, and adventitious roots growing on
stems and stocks were counted. At the end of the flooding/drought, 50 seedlings were cho-
sen at random to count the number of adventitious roots and lenticels on stems, as well as
measure plant height and stem diameter with a measuring tape and a digital vernier caliper,
respectively. Then, the seedlings were harvested, separated into leaves, stems, epicormic
shoots, roots, and adventitious roots, and their dry weights were determined separately
after 48 h of drying at 80 degrees. After the recovery period, two different alternative
treatments (ALs) were established for D-R-FF and FF-R-D, respectively. Morphological
characteristics, photosynthetic rate, heme oxygenase activity, chlorophyll content, soluble
sugar content, and soil concentrations of total nitrogen (TN) and total phosphorus (TP) were
shown in the following experiments. Figure 3 presents the experimental design drawing.

2.4. Measurement of Growth Parameters

Seedling height was measured on the main stem, from the base to the apex with a
ruler. Stem diameter was measured using a digital caliper positioned at the base of the
main stem. The growth in height and diameter was calculated as the difference between
both dates of measurements. During the treatments, per plant, the adventitious roots and
stem lenticels that were visible above the soil’s surface were counted. Before and after the
drought or flooding incidents, all the seedling shoots were counted. Plants that had fresh
leaves at the conclusion of the recovery time were considered to be alive and to have begun
to grow once again. Otherwise, they were regarded as having perished.
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Figure 3. Experimental design drawing. The treatments of D, RF, FF, and PF were the single stress
each for 28 days: CK (control), D (drought), RF (root flooded), FF (fully flooded), PF (partially
flooded); D-R (drought recovery) and FF-R (flooding recovery) were 2 weeks recovery period; D-R-FF
and FF-R-D were alternate drought and flooding stresses for 2 weeks respectively.

2.5. Measurement of Chlorophyll Content

Chlorophyll content (Chl) was measured on Day 1 before starting, as well as on Day 28
after flooding/drought and on recovery and alternate days. Measurements were applied on
mature leaves (from the second to fifth node from shoot apices on the stem) in each of the
five replicate plants. The samples were then identified using a UV-1200 ultraviolet-visible
spectrophotometer. The mean value was obtained to calculate the photosynthetic pigment
content per unit of fresh weight of leaf [31].

2.6. Measurement of Photosynthesis Parameters

With a portable photosynthesis system (Li-6400), photosynthetic parameters were
measured on each period. The well-expanded, matured, and developed leaves were chosen
at the second to fifth node from shoot apices from 9:00 to 11:00 a.m. to minimize noon
photosynthetic depression. To ensure the leaves acclimate to the ambient conditions inside
the leaf cuvette, the photosynthetic apparatus worked for 20 min before the measurements.
The following variables must be present: leaf temperature (Tl), atmosphere temperature
(Ta), Ca, Gs, Tr, Ci, Pn, and other photosynthetic parameters. It was determined what their
average values were based on the CO2 concentration in the air for Ca and Ci, as well as Ls
for photosynthesis [32–35]. All measurements were repeated five times.

2.7. Extraction and Determination of Soluble Sugar

Soluble sugar content was measured in leaves at the beginning and end of each
duration treatment, as well as two-week alternate intervals. Fifty milligrams of the dried
leaf samples were weighed, 6 mg of 80% ethanol were added, it was extracted at 80 ◦C
for 30 min, centrifuged at 3000 rpm for 5 min, and then transferred to a water bath at a
constant temperature of 85 ◦C. In order to evaporate the ethanol until it measures 2–3 mL,
it was transferred into a 50 mL volumetric flask, the volume was diluted with distilled
water, and 1 mL of the liquid supernatant was drawn, while 5 mL of anthrone reagent
were added to mix and boiled within 10 min. The procedures above yielded soluble sugar.
Then, after cooling down, 3 mL of pure water were poured into the soluble sugar sediments
and placed into the pot water (100 ◦C) for 15 min. After boiling, 2 mL of perchloric acid
(9.2 mol/L) were added for each of them. It was centrifuged three times, and then 50 mL of
pure water were added. A 1 mL solution was then mixed with 5 mL of anthrone solution
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and then placed in boiling water for 10 min. The content of soluble sugar and starch was
determined by determining the absorbance at 625 nm with a spectrophotometer as the
previous calculation data.

2.8. Data Processing

Standard error (SE) and arithmetic means were used to calculate the values of plant
morphological characteristics. All statistical analyses were undertaken in RStudio4.2.2.
To identify the various periods in chlorophyll concentration, soluble sugar content, the
concentration of heme oxygenase and photosynthetic characteristics of leaves, and soil
environmental factors, one-way analysis of variance (ANOVA) was performed.

3. Results
3.1. Field Studies: Photosynthetic Responses

DF and NF of photosynthetic parameters are shown in Figure 4A–E. Pn, Gs, Ci, Tr,
and WUE in DF were significantly higher than those in NF, respectively (p < 0.05). Pn
in DF was 52.8% higher than that in NF, reaching 14.067 µmol·m−2·s−1 on average; Gs
in DF was 27.59% higher than that in NF; Tr in DF was 14.14% higher than that in NF;
WUE in DF was 30.74% higher than that in NF, reaching 6.258 µmol·mol−1 on average.
Ci in NF was 25.5% lower than that in DF. As shown in Figure 5, under the DF condition,
Pn was positively associated with Gs (r = 1, p < 0.01), Tr (r = 0.88, p < 0.001), and WUE
(r = 0.89, p < 0.001). However, there existed a negative correlation between Pn and Ci
(r = −0.49, p < 0.01). And the correlation between Ci and Gs in DF was negatively significant
(r = −0.48, p < 0.01). In contrast, the correlation between Ci and Gs in NF was strongly
positive (r = 0.98, p < 0.01). WUE was negatively associated with Gs (r = −0.98, p < 0.01)
in NF. The correlations between Gs and Tr in DF (r = 0.89 p < 0.01) and NF (r = 1 p < 0.01)
were both significantly positive, respectively.

3.2. Morphological Variations and Plant Growth under Single Drought, Flooding, and Alternate
Drought and Flooding Stresses

In relation to its morphology under single-stress treatments, a slight increase (FF > D
> CK) in stem diameter was accompanied by the development of hypertrophied lenticels
(D > FF > CK) at the stem base (Table 3). The primary roots of all flooded seedlings became
black, some of which even decayed to death with prolonged flooding. And adventitious
roots and stem lenticels occurred significantly in the FF seedlings with prolonged flooding.
However, all the flooded seedlings’ stem lenticels vanished shortly after soil draining
(recovery). Similarly, adventitious roots and stem lenticels of drought seedlings occurred
significantly compared with fully flooded seedlings (D > FF). In addition, more hyper-
trophied lenticels and adventitious roots occurred significantly in the D-R-FF treatment,
compared with CK, FF, and FF-R-D (Table 3; Figure 6). The roots of the drowned seedlings
in the D-R-FF of roots became black, and the blades of the FF-R-D shrank (Figure 6).

Table 3. ANOVA analysis of D. chinense different drought and flooding treatments on morphological
variations and plant growth. Values are means ± SE, n = 5. CK (control); D (drought); FF (fully
flooded); D-R-FF (from drought to recovery to full flooding); and FF-R-D (from full flooding to
recovery to drought). Various lower-case letters indicate statistically significant variations (p < 0.05).

Treatments Plant-Height
Increment (cm)

Stem-Diameter
Increment (cm)

Number of
Adventitious Roots

Number of Stem
Lenticels

Number of
Epicormic Shoots

CK 4.37 ± 0.21 b 0.13 ± 0.02 c 0.00 ± 0.00 c 0.00 ± 0.00 c 8.74 ± 0.56 a
D 2.05 ± 0.19 d 0.22 ± 0.04 e 8.20 ± 0.84 b 22.40 ± 1.82 a 5.80 ± 1.92 c
FF 1.47 ± 0.34 c 0.25 ± 0.07 c 5.20 ± 0.45 b 16.00 ± 2.12 a 4.60 ± 1.14 b
FF-R-D 0.86 ± 0.22 c 0.22 ± 0.04 c 4.60 ± 0.55 b 19.20 ± 1.79 a 1.20 ± 0.84 c
D-R-FF 1.89 ± 0.12 d 0.32 ± 0.07 e 13.40 ± 1.34 b 24.20 ± 1.10 a 6.40 ± 0.89 c
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 Figure 4. Effects of drought–flooding condition (DF) and no any flooding condition (NF) on pho-
tosynthetic characteristics of D. chinense. Values are means ± SE, n = 3. Various lower-case letters
indicate statistically significant variations (p < 0.05). Photosynthetic parameters were measured from
population distribution sites in Three Gorges Reservoir area, China. The habitat of D. chinense on Site
1 is drought–flooding (DF) condition, Site 2 is no flooding (NF) condition. (A) Pn “net photosynthetic
rate”; (B) Ci “intercellular CO2 concentration”; (C) Gs “stomatal conductance”; (D) Tr “transpiration
rate”; (E) WUE “water-use efficiency”.
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Figure 5. Correlation of drought–flooding condition (DF) and no any flooding condition (NF) on
photosynthetic parameters of D. chinense. Pn “net photosynthetic rate”; Gs “stomatal conductance”; Ci
“intercellular CO2 concentration”; Tr “transpiration rate”; WUE “water-use efficiency” (“***” p < 0.001,
“**” p < 0.01, “*” p < 0.05).

Regarding D. chinense seedling growth, a significant difference was observed at
28 days after single stresses. D and FF had an increase in plant height and epicormic
shoots, respectively (D > FF). And after alternate treatments, plant height and epicormic
shoots significantly increased in the D-R-FF, compared with FF and FF-R-D (Table 3). As
also shown in Table 3, under alternate conditions, plant height and epicormic shoots in the
FF-R-D almost stopped growing compared with the D-R-FF.

3.3. Effects of Single and Alternate Drought and Flooding Stresses on Chlorophyll Content

Our findings revealed that the content of Chl a, Chl b, and Chl (a + b) in the D-R-FF
was significantly higher than FF and alternating FF-R-D (Figure 7). And multiple abiotic
regimes had substantial impacts on leaf Chl a (Figure 7A), Chl b (Figure 7B), Chl (a + b)
(Figure 7C), and their ratio (Chl a/Chl b) (Figure 7D). The content of Chl a in the FF-R
was 15.14% less than that in the D-R (Figure 7A). And the content of Chl b in the FF-R was
32.07% less than that in the D-R (Figure 7B). The content of Chl a in the FF-R-D was 8.45%
less than that in the D-R-FF (Figure 7A). And the content of Chl b in the FF-R-D was 20.15%
less than that in the D-R-FF (Figure 7B). It was obvious that the content of Chl a, Chl b,
and Chl (a + b) in the D-R-FF was higher than that in the FF-R-D (Figure 7A–C), while Chl
a/Chl b content was 13.56% less than that in the FF-R-D (Figure 7D).
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Figure 7. Distribution of D. chinense seedlings on changes of Chl components: Chl a (A), Chl b (B), Chl
(a + b) (C), and Chl a/Chl b (D). CK (control); D (drought); FF (fully flooded); D-R (drought-recovery),
and FF-R (flooding-recovery); D-R-FF and FF-R-D were alternate drought and flooding stresses.
Colors indicate different Chl components and counts.
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3.4. Effects of Single and Alternate Drought and Flooding Stresses on Photosynthesis

Our findings revealed that Pn in the condition of FF was higher than that in D (Figure 8).
And D. chinense had a good recovery on photosynthetic capacity after drought or flooding
(the D-R and the FF-R). However, the subsequent flooding treatment (D-R-FF) and drought
treatment (FF-R-D) had a distinction on Pn between each other, and Pn of the D-R-FF
was about twice as much as the FF-R-D on average value. The results showed that the
photosynthetic rate of D decreased to the lowest level after the single stress, followed by
the FF-R-D. However, Pn in the D-R-FF has a relatively higher photosynthetic rate than
in single stresses (D and FF) and alternating FF-R-D. Therefore, it could be demonstrated
that D. chinense had extremely great plant resilience facing alternate drought and flooding
stresses, especially in the D-R-FF (Figure 8). In addition, during the subsequent 2-week
recovery period, the Pn of the D-R and the FF-R showed a much faster recovery, respectively.
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Figure 8. Seven different treatments on net photosynthetic rate (Pn) with D. chinense seedlings
presented. CK (control); D (drought); FF (fully flooded); D-R (drought-recovery) and FF-R (flooding-
recovery); D-R-FF (from drought to recovery to full flooding) and FF-R-D (from full flooding to
recovery to drought). The central line in the box plots represents the median value. The lower and
upper box limits correspond to the net photosynthetic rate threshold.

3.5. Correlation of Heme Oxygenase and Net Photosynthetic Rate about Different
Hydrological Regimes

Linear regression analysis showed that the relationship between those hydrological
regimes (D, FF-R-D, FF, D-R-FF) of Pn and HO was positively significant (r = 0.608, p = 0.003)
(Figure 9). The increase in Pn was due to the increased heme degradation by HO. Pn in the
D-R-FF exerted a relatively higher photosynthetic rate than in FF, followed by FF-R-D and
D (D-R-FF > FF > FF-R-D > D), which was consistent with the degradation trend of each
hydrological regime of heme by HO (D-R-FF > FF > FF-R-D > D).

3.6. Effects of Single and Alternate Drought and Flooding Stresses on Soluble Sugar Content

The accumulation of soluble sugar was the highest under drought stress. And after
the recovery period, the soluble sugar content of D. chinense decreased. Our alternate stress
experiment revealed that the D-R-FF (CK→D→D-R→D-R-FF) pathway (Figure 10A) was a
process of continual decline in soluble sugar content (from 16.279 mg/g to 6.354 mg/g on
average), maintaining the normal intracellular metabolism of seedlings (Figure 10A). Under
such stress conditions, the metabolism of soluble sugar is a dynamic process that may in-
volve simultaneous degrading and synthetic reactions. However, the FF-R-D (CK→FF→FF-
R→FF-R-D) pathway (Figure 10B) did not clearly perform such a regular process. This
indicated that D. chinense seedlings resisted drought stress by accumulating more soluble
sugar, and that subsequent flooding may substantially help to alleviate alternate stress.
Moreover, the soluble sugar content was the lowest in the D-R-FF (6.354 mg/g), followed
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by FF (6.655 mg/g). This indicated that D. chinense seedlings were less sensitive to the
D-R-FF hydrological condition compared with alternating FF-R-D and single FF and D.
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Figure 10. The soluble sugar content of D. chinense leaves. (A) An alternate stress pathway: from
drought to recovery to full flooding. (B) Another alternate stress pathway: from full flooding to
recovery to drought. CK (control), D (drought), FF (fully flooded), D-R (drought-recovery), FF-R
(flooding-recovery), and two types of alternate drought and flooding stresses of D-R-FF and FF-R-D
are also presented. Single stress with drought and flooding each for 28 days. The colored dots
indicate different soluble sugar content. The median line in box plots represents the median value.
A threshold is represented by the box’s lower and upper boundaries. Significant differences in the
average soluble sugar are indicated by an asterisk (*). (Tukey’s HSD test, “**” p < 0.01, “*” p < 0.05).
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3.7. Effects of Single and Alternate Drought and Flooding Stresses on Soil Nitrogen and
Phosphorus Releasing

Single drought and flooding stresses, as well as alternate drought and flooding stresses,
had nearly similar concentration distributions of TN but had significant influences on TP.
TP in the D (1.894 mg/g) was higher than that in D-R-FF (1.298 mg/g), followed by FF
(1.069 mg/g) and FF-R-D (0.802 mg/g) on average, which showed that P releasing in the
soil is significantly affected by different hydrological conditions, while N releasing was not
significantly affected by different hydrological conditions (Figure 11).
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4. Discussion
4.1. Growth, Morphological Adaptations of D. chinense to Drought–Recovery–Flooding
Hydrological Condition

Flooding and submergence pose considerable challenges for plant growth and survival.
But, within limits imposed by flooding depth, duration, timing, and intensity, they can, in
some species, be overcome by appropriate combinations of growth, morphological, and
biochemical and physiological attributes or adaptations [18,20]. In the present study, flood-
ing stimulated many kinds of visible changes in stem portions of flooded seedlings around
water levels. In a few days after the initiation of flooding, hypertrophic lenticels began to
appear on submerged portions of the stem. One of the normal morphological adaptations
of flood-tolerant woody plants is the formation of hypertrophied lenticels, which are the
important pathway of gas exchanges between atmosphere and internal tissues in stems and
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roots, as well as the oxidation of the rhizosphere [36–38]. Hypertrophied lenticels having
abundant intercellular spaces in flooded plants enhance gas diffusion by thermo-osmotic
activity [39] and contribute oxygen supply to submerged roots [20,38]. In our experiments,
after the drought–recovery treatment, these seedlings were then submitted to flooding
(D-R-FF). Numerous adventitious roots began to develop on submerged stems about 20
days after the initiation of flooding. More adventitious roots, as well as hypertrophied
lenticels of D. chinense at the stem base in the D-R-FF, were observed than those of the FF-R-
D. Furthermore, it has been shown that morphological alterations in hydraulic conductivity
induced by flooding could exacerbate the susceptibility to drought [40]. Wetland plants
use adventitious roots as one of their main adaptation mechanisms to replace existing
root systems that have been damaged or whose function has been harmed by stressful
circumstances [41–43]. And the rapid development of epicormic shoots in flooding envi-
ronments would provide a substantial advantage to D. chinense species for survival under
D-R-FF compared with FF-R-D and FF treatments. Therefore, the early drought stress
could facilitate morphological adaptations of D. chinense to the later flooding under D-R-FF
hydrological condition by more adventitious roots, hypertrophied lenticels, and the stem
base compared with the single flooding treatment.

As is generally known in plants, HO degrades free heme released from heme proteins
with the generation of ferrous iron (Fe2+), biliverdin IXα (BV-IXα), and carbon monoxide
(CO) [44]. CO has been demonstrated to regulate root branching [39,45]. In general, CO
in organisms is derived from the degradation of heme whose reaction is strongly acute
under drought conditions. And CO induces the formation of more adventitious roots and
increases the content of osmoregulatory substances in the plant, enhancing plant adaptation
to drought stress [46–48]. Our data showed that more adventitious roots and stem lenticels
of drought seedlings occurred significantly compared with fully flooded seedlings. The for-
mation of more adventitious roots and stem hypertrophic lenticels, as well as an increase in
stem-base growth of D. chinense seedlings, was observed under D-R-FF treatment (Table 3),
which occurred coincidently with enhanced HO activities of D. chinense seedlings, with the
high CO generation occurring under the adverse environments. It has been shown that the
inducible responses of CsHO1 expression preceded the adventitious root formation [49].
Furthermore, HO induction would be beneficial for adventitious rooting by enhancing the
release of CO, a signaling molecular responsible for the adventitious root development [49].
In this present study, it was plausible that more hypertrophied lenticels and adventitious
root occurrence may be attributed to the high CO generation due to its regulating a vari-
ety of physiological processes under the D-R-FF hydrological regime, which may be an
important adaptation of D. chinense to alternate drought and flooding stresses.

4.2. Accumulation of Soluble Sugar of D. chinense to Drought–Recovery–Flooding
Hydrological Condition

Soluble sugar is an important osmoregulatory substance enabling plants to tolerate
stress over a long period of time and making a major contribution to cellular osmoregula-
tion [50]. It also acts as a vital signal in the plant developmental regulation and is highly
sensitive to environmental stresses [51–53]. However, plant water status is also affected
by the accumulation of solutes, e.g., amino acid and soluble sugar, which are involved in
the plant metabolism and growth [54]. The accumulation of soluble sugar has long been
considered a mechanism for tolerating water stress in some studies [55–58]. For example, a
2-month drought stress experiment triggered a significant increase in the number of soluble
sugars in leaves of drought-tolerant Quercus pubescens Willd [59]. Similarly, in this study,
D. chinense seedlings accumulated substantial soluble sugars during D treatment (Figure 10),
which would be hydrolyzed and utilized to promote the tolerance of D. chinense seedlings
to later flooding.
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4.3. Enhanced Photosynthesis of D. chinense to Drought–Recovery–Flooding
Hydrological Condition

The maintenance of relatively high photosynthesis is an important adaptation for flood-
tolerant species in aquatic environments. But flood-intolerant species have displayed an
appreciable drop in photosynthesis, falling to only 5–25% of unflooded controls [17,60,61].
In this study, the Pn of D. chinense seedlings in the D-R-FF was higher than that in the
FF (Figure 8). And Pn maintained 1.916 µmol m−2 s−1 on average value after 28 days
of drought. Subsequently, the Pn of D. chinense under the D-R-FF treatment was about
twice as much as the FF-R-D treatment (Figure 8). It is thus assumed that the maintenance
of relatively high Pn is also an important adaptation for D. chinense under the D-R-FF
hydrological condition.

In the present study, the increase of Pn occurred coincidently alongside the incremental
increase of heme degradation by HO (Figure 9). It is generally known that the role of HO
in higher plants is, so far, tightly associated with the pathway leading to phytochrome
chromophore metabolism [62,63]. The phytochrome chromophore will increase with in-
creasing BV-IXα derived from the oxidative cleavage of heme by the enzyme HO [64].
The degradation of heme leading to the generation of BV-IXα is a biosynthetic process in
photosynthetic organisms [65]. It had been shown that gene expression related to HO was
sufficiently active in higher plants to supply for normal photomorphogenesis [64,65]. In
this study, higher HO activity exerted a continuous influence on Pn, triggering a positively
photomorphogenic response. Pn was higher in the D-R-FF condition than in the FF-R-D
due to the higher heme degradation by HO.

Usually, photosynthetic capacity is closely associated with Gs [66,67]. Gs is tightly
linked to water vapour pressure difference (VPD) and balances the water supply to
seedlings above and below ground. A higher Gs generally occurs when water VPD is
lower and the water loss via transpiration is less limited by the substrate’s water content
under other similar conditions [66]. In this present study, the high Gs in DF may increase
gas exchange rates and result in a greater CO2 inflow. Hence, plants assimilate more
photosynthates for growth [68], and then they can rapidly adapt to the later inundation
environments. Alterations in Gs would affect leaf water potential by changing Tr [67].
This study confirms a significantly positive relationship between Gs and Tr (Figure 5).
Transpiration is the process of water movement through a plant and its evaporation from
aerial parts, which determines the amount of water a plant consumes [69]. Additionally,
a strong increase in WUE can be caused by a reduction of Gs (rather than an increase
of Pn) in response to rising temperature or reduced soil moisture, leading to a stomatal
closure as a physiological response to stress [70]. It is typically observed in trees growing in
semi-arid regions [71] but also occurs in temperate forests experiencing drying trends [72].
As our data showed, under the NF condition, WUE was also negatively associated with
Gs (r = −0.98, p < 0.01). The above photosynthetic parameters (Figure 4) and correlation
analysis (Figure 5) suggested that D. chinense could not only supply adequate water for
Gs to enhance Tr in response to DF condition, which is functionally coupled with the
enhanced photosynthesis and higher WUE, but also maximize WUE in the NF condition
and minimize water loss through transpiration.

According to Farquhar and Sharkey [67], a decline in Pn would be mainly attributed
to the stomatal limitation only if both Pn and Ci decline with the increase of Ls. On the
contrary, if Ci has a contrary change trend to that of Pn with the decline of Ls, the decline
of photosynthesis rate should be attributed to non-stomatal factors, namely, a decline in
photosynthetic activity of mesophyll cells, e.g., lower mesophyll carboxylation efficiency,
reduced ribulose-1,5-bisphosphate (RuBP) regeneration, or a reduced amount of functional
Rubisco, etc. In the present study, Ci follows a different trend of Pn as Ls decreases (DF,
Ls = 0.48; NF, Ls = 0.61). This decline in DF on the photosynthesis rate could be attributed
to non-stomatal factors. Meanwhile, the formation of more hypertrophied lenticels and
adventitious roots and shoot elongation contributed to the gas exchange between internal
tissues and the atmosphere, enhancing internal oxygen supply and contributing to photo-
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synthetic electron transports, photophosphorylation, and RuBP regeneration [17], which
could help restore the reduced photosynthetic rate and stomatal conductance [67].

Chlorophyll content has been shown to be closely linked to a plant’s tolerance to
stress. Plant chlorophyll concentration varies under stress, triggering early leaf chlorosis,
senescence, and abscission [73]. The photosynthetic rate is enhanced with the increase of
chlorophyll content only under low-light intensity. Chl a binds more to the photosystem
reaction center, while Chl b binds mainly to light-harvesting complexes (LHCs) [74]. Chl b
absorbs light energy at wavelengths between 470 and 650 nm, while Chl a cannot effectively
absorb light energy in this range. Higher plants use Chl b extensively to absorb light energy
over a wider spectrum, which is a crucial component of LHC absorbing, transferring light
energy, and maintaining the stability of LHCII to adapt to different situations [75]. The
value of Chl a/Chl b was reported to be used as a measurement of the proportion of LHCs
and reaction centers (RCs) in thylakoids [76]. In this study, the content of Chl b in the
D-R-FF was 18.63% more than that in single FF. And Chl a/Chl b in the D-R-FF was 9.86%
less than that in single FF. Similarly, the content of Chl b in the FF-R-D was 20.15% less
than that in the D-R-FF (Figure 7B). And Chl a/Chl b in the D-R-FF was 13.56% less than
that in the FF-R-D. It could be speculated that Chl b is more stable on LHCs in the D-R-FF
hydrological condition, which could assist in sustaining a higher photosynthetic rate.

4.4. Soil Nitrogen and Phosphorus Releasing of D. chinense to Drought–Recovery–Flooding Condition

Woodward et al. [77] found long-term enrichment or no changes in soil N contents
after repeated drying–wetting cycles. Ye et al. [78] found no changes in soil N contents
after repeated drying–wetting cycles, which can affect the forms of N rather than N loss or
accumulation. Similarly, our results suggested that repeated drying–wetting cycles had
no significant impacts on soil TN of D. chinense (Figure 11), which reinforced that TN in
the soil may be not sensitive to alternate drought and flooding stresses [79]. Repeated
drying–wetting cycles were likely a vital controlling influence for the temporal dynamics of
P in the riparian zone [78,80]. In our experiments, the later flooding in the D-R-FF treatment
could promote the release of P (D-R-FF > FF > FF-R-D) (Figure 11). And P is also one of the
essential nutrients for plant growth and development. Therefore, in the present study, the
results showed that soil P was a decisive factor that determined the seedling growth and
tolerance of D. chinense and was the principal factor in evaluating the endurance capacity
of D. chinense under alternate drought and flooding stresses, However, it will be further
studied how to release soil P and promote P absorption of D. chinense under the alternate
drought and flooding stresses.

5. Conclusions

This study presented several interesting findings:

(1) Distylium chinense triggered a suite of growth, morphological alterations, and en-
hanced photo–physiological responses under alternate hydrological conditions and
single drought and flooding. The early drought stress could facilitate the tolerance of
Distylium chinense to the later flooding stress by growth, morphological adaptations,
and higher photosynthesis.

(2) Heme oxygenase degrades free heme released with the generation of carbon monoxide,
which may induce the formation of more adventitious roots, enhancing Distylium
chinense adaptation to early drought stress.

(3) The increase of net photosynthetic rate due to the increased heme degradation by
heme oxygenase in the D-R-FF. And net photosynthetic rate was higher in the D-R-FF
than in the FF, followed by alternating FF-R-D and D.

(4) Distylium chinense could supply adequate water for stomatal conductance to enhance
transpiration rate in response to drought–flooding conditions, which is functionally
coupled with enhanced photosynthesis and higher water-use efficiency.

(5) Intercellular CO2 concentration follows a different trend of the net photosynthetic
rate as the stomatal limiting value decreases (DF, Ls = 0.48; NF, Ls = 0.61). This
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decline in the alternate drought–flooding condition on the photosynthesis rate could
be attributed to non-stomatal factors.

(6) The soluble sugar accumulation during the prolonged drought period promoted the
tolerance of Distylium chinense to later flooding. The higher chlorophyll b content to
absorb more light energy could assist in maintaining a higher level of photosynthesis
in the D-R-FF hydrological condition. Total phosphorus availability via soil has been
assumed to be a reaction mechanism to affect the above- and below-ground nutrition
supply of Distylium chinense seedlings.

These findings will advance our understanding of better adaptations of Distylium
chinense to alternating D-R-FF treatment compared with alternating FF-R-D and single
drought and flooding. Therefore, our results provided basic information about terrestrial
wetland plant resilience to managers for the in-situ conservation of Distylium chinense
and ecological restoration in the hydro-fluctuation zones, wetland ecosystems, and other
flood-prone forests where drought–flooding events often occur.
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