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Abstract: Cadmium (Cd) is one of the most common toxic heavy metal elements in soil pollution,
which can be continuously enriched in the food chain and eventually threaten human health. Phy-
toremediation, which is using plants to transfer heavy metal elements from soils, is a promising
solution for the remediation of heavy metal-contaminated soils. In this study, we evaluated whether
Cunninghamia lanceolata (Lambert) Hooker (Chinese fir), a widely planted timber tree worldwide,
had the potential to remediate Cd-contaminated soils through 90 days pot of experiments with
different Cd concentration soils (0, 5, 10, 20, 50, 100 mg kg−1). C. lanceolata did not show obvious
toxic symptoms in Cd-contaminated soils, although Cd inhibited plant growth and decreased net
photosynthetic rate slightly. The activities of antioxidant enzymes increased significantly under Cd
stress, indicating that C. lanceolata had a strong self-regulation ability and can tolerate Cd stress.
The Cd bioconcentration factor (Cd concentration in plant divided by Cd concentration in soil) of
C. lanceolata were greater than 1 at all Cd concentrations, indicating that C. lanceolata had a strong
ability to absorb Cd, although Cd was mainly accumulated in roots. Our results indicated that C.
lanceolata had a strong tolerance and phytostabilization ability of Cd. Considering the wide distribu-
tion worldwide, large biomass, and rapid growth of C. lanceolata, it could be a promising candidate
for phytoremediation of Cd-contaminated soils.

Keywords: Cunninghamia lanceolata; Cd-contaminated soils; phytostabilization; phytoremediation;
antioxidant enzymes

1. Introduction

With the process of industrialization and urbanization, the problem of heavy metal
contamination in soils is becoming more and more serious [1,2]. Cadmium (Cd), which
has high toxicity, large solubility in water, high mobility in the soil replacement system,
and can be continuously enriched in the food chain, is one of the most hazardous heavy
metals in the environment [3,4]. Once consumed by human beings, Cd will lead to chronic
toxicity and pose a serious threat to human health, such as disrupting calcium metabolism,
leading to hypercalciuria and the formation of kidney stones [5–7]. Cadmium pollution has
become a worldwide problem that affects resources for food and drinking water mainly in
Asia and Africa.

Phytoremediation is the use of plants to extract, sequester, and/or detoxify heavy
metal elements and is a promising solution for the remediation of heavy metal contam-
inated soils due to its low cost, environmental friendliness, ease of operation, and wide
applicability [8,9]. Phytoremediation can be divided into two main types, phytoextrac-
tion and phytostabilization. Phytoextraction refers to the uptake of soil heavy metals
through the below-ground of the plant and accumulation in the above-ground, which is
then collected and disposed of as hazardous waste or incinerated to recover the metals [10].
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While phytostabilization reduces the mobility and bioavailability of heavy metals in the
soil by immobilizing the metals at the plant rhizosphere through chelation (binding and
adsorption) processes. The purpose of phytostabilization is to stabilize heavy metals and
reduce the risk to human health and the environment, rather than remove heavy metals
from polluted soil [11].

Plants used in phytoextraction that can accumulate high concentrations of heavy
metals in the aboveground parts are called hyperaccumulators [12]. So far, hundreds of
heavy metal hyperaccumulators have been identified, but most of them are herbaceous
plants [13,14]. Although herbaceous plant species can accumulate high concentration of
heavy metals, the total amount of heavy metals they can accumulate is limited due to
their low biomass [15]. Furthermore, their low economic value and ease of entry into the
food chain by livestock and poultry limited their application [16,17]. Fast-growing woody
plants, which have the advantages of rapid growth, large biomass, well-developed roots,
high tolerance to heavy metal stress, extensive uptake of different heavy metals, and do
not enter the food chain of human beings [18,19], have the potential for phytostabiliza-
tion of contaminated soil. In recent years, fast-growing woody plants such as Populus
deltoides W.Bartram ex Marshall [20] and Salix viminalis L. [21] have been reported to be
used for phytostabilization of heavy metal contaminated soil, but compared with herba-
ceous hyperaccumulators, there are few woody plants have been identified and applied
for phytostabilization, indicating an area with significant potential for further research
and application.

Cunninghamia lanceolata (Lambert) Hooker (Chinese fir), which is an evergreen sub-
tropical conifer species with high timber yield, excellent timber quality, and rapid growth,
accounted for 6.1% of the total global plantation area by 2015 [22]. In China, Chinese fir
is the most widely planted species, with an area of 9.87 million hectares, accounting for
1/4 of the total plantation area in China [23,24]. Previous studies have found that Chinese
fir could grow in heavy metal contaminated sites and have a good ability to develop and
adapt under these conditions [25,26]. Given the wide distribution, substantial biomass, and
rapid growth exhibited by C. lanceolata, these properties have attracted considerable interest
in the remediation of contaminated soils. However, the tolerance and accumulation of Cd
in C. lanceolata have been scarcely publicly reported. The aims of this study are: (1) estimate
the Cd tolerance of C. lanceolata; (2) measure the accumulation ability of Cd in different
C. lanceolata organs; (3) evaluate the feasibility of C. lanceolata for the remediation of Cd
contaminated soils. The results will provide some theoretical basis and data reference for
the further application of phytoremediation in cadmium-contaminated areas.

2. Materials and Methods
2.1. Plant Management and Growth Conditions

The experiment was conducted at the teaching and research station of Sichuan Agri-
cultural University. Its geographical coordinates are 103◦51′29′′ E and 30◦42′18′′ N.

C. lanceolata seedlings were collected from the State-owned Forest Farm in Hongya
County, Sichuan Province of China. Healthy seedlings with similar size at 1 year were
selected and transplanted into the pots filled with nutrient-rich soil (1 seedling per pot) for
60 days of acclimatization. Seedlings were irrigated every 2–3 days and soil moisture was
monitored using a HH2 soil moisture meter (ML2x, GBR) to maintain field water holding
capacity at 80% of the saturated soil water capacity. Add 4 g of NPK compound fertilizers
(15% N, 15% P2O5, 15% K2O) to each pot every 20 days to promote seedling growth.

The planting substrate was yellow soil collected from the same forest farm. Its chemical
properties (5 replicates) were pH 5.75 ± 0.32, total nitrogen 4.62 ± 0.24 g kg−1, total potassium
15.63 ± 0.75 g kg−1, total phosphorus 1.45 ± 0.17 g kg−1, cadmium 0.36 ± 0.04 mg kg−1. The
planting container was a polyethylene plastic pot with four drainage holes drilled in the
bottom, 25 cm diameter at the top, 20 cm diameter at the bottom, 23 cm high, and the dry
weight of the substrate in each pot was 10 kg.
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2.2. Experimental Design

0, 10, 20, 50, and 100 mg Cd kg−1 (supplied as CdCl2 2.5H2O aqueous solution, the
mass was calculated based on the molecular weights and the dry weight of the soil, then
add enough water to dissolve it completely) were added to the soils, respectively. After the
addition of cadmium solution, the substrate was thoroughly mixed to ensure homogeneity
and kept in equilibrium for 30 days. After 60 days of acclimatization, seedlings were
transplanted into the soil with a Cd concentration gradient. Five replicates were established
for each treatment, and all treated plants were placed in a greenhouse. Water management
as above, stop fertilizer application. Place a plastic tray at the bottom of the pot to collect
any cadmium solution that may have leaked and pour it back into the soil. Once every half
a month, the positions of each treatment in the greenhouse were randomly exchanged.

Height and ground diameter of all seedlings were measured before Cd treatment,
and index measurement was carried out 90 d after Cd application. LI-6800 portable
photosynthesis system (LI-COR Inc., Lincoln, NE, USA) was used to measure gas exchange
parameters. Leaves from seedlings were picked, sealed, and labeled, then placed in
ice boxes and brought back to the laboratory for determination of chlorophyll content,
physiological, and biochemical properties. Thereafter, seedling height and diameter were
measured, followed by the harvest of seedlings for determination of cadmium content in
organs of leaves, stems, and roots.

2.3. Determination of Plant Physiological and Biochemical Indices
2.3.1. Growth Traits

Seedling height (0.01 cm) was determined using a tape, and basal diameter (0.01 mm)
was determined with a vernier caliper. Leaves, stems, and roots of seedlings were harvested,
washed, and then dried at 80 ◦C to constant weight. Dry weights were measured for each
organ.

2.3.2. Photosynthetic Parameters

Photosynthetic pigments content: the sampled leaves were wiped clean, cut, and
immersed in an extract of 80% (v/v) acetone to extract photosynthetic pigments, and
the mixture was placed in the dark and left for more than 24 h until the leaves were
completely white [27]. Light absorbance was measured at 663, 645, and 470 nm using a
spectrophotometer (UV-4802H, UNICO Inc. Shanghai, China), and the chlorophyll a (Chl
a), chlorophyll b (Chl b), and carotenoid (car) contents were calculated as described by [28]:

Ca = 12.71 × A663 − 2.59 × A645

Cb = 22.88 × A645 − 4.67 × A663

Cc = (1000 × A470 − 3.27 × Ca − 104 × Cb)/229

where Ca, Cb, and Cc represent the contents of chlorophyll a, chlorophyll b, and carotenoid,
respectively, and A663, A645, and A470 represent the absorbances of the corresponding
wavelength.

Gas exchange parameters: the gas exchange parameters were measured using a LI-
6800 portable photosynthesis system. The CO2 concentration was set at 400 µmol mol−1,
the leaf chamber temperature at 30 ◦C, the relative humidity at 60%, and the photosynthetic
active radiation (PAR) at 800 µmol m−2 s−1. The net photosynthetic rate (Pn), transpiration
rate (Tr), stomatal conductance (Gs), and intercellular CO2 concentration (Ci) of the middle
part of the second fully expanded leaves were measured between 9:00 and 11:30 AM. Three
plants were randomly selected for each treatment, and three leaves were determined for
each plant.

Chlorophyll fluorescence: the same LI-6800 portable photosynthesis system was
adopted for measurement, and the settings and leaf sampling were the same as above.
The sampled leaves were dark adapted for 1 h and then the minimal fluorescence level
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(F0) and maximum fluorescence level (Fm) were measured. Afterward, the actinic light
was turned on and photo-activated until the fluorescence parameter was stable, and then
the steady-state fluorescence (Fs), minimum fluorescence level in a light-adapted state
(F0’), and maximum fluorescence level in a light-adapted state (Fm’) were measured. The
following parameters were also measured or calculated simultaneously, Fv/F0: the ratio of
photochemical to non-photochemical processes in PSII, Fv/Fm: the maximum photochemi-
cal efficiency of PSII, Fv’/Fm’: the effective quantum yield, ΦPSII: the actual quantum yield,
ETR: the electron transfer rate, qP: the photochemical quenching coefficient, and NPQ: the
non-photochemical quenching coefficient [29,30].

2.3.3. Determination of Antioxidant Parameters

0.3 g of fresh leaves were washed, cut, and ground in a mortar thoroughly with
liquid nitrogen. The ground leaves were then homogenized with 10 mL phosphate buffer,
followed by centrifugation at 10,000 r/min for 15 min at 4 ◦C, the supernatant was collected
as the test sample. SOD was tested by evaluating the inhibition of nitro blue tetrazolium
reduction [31]. One unit of SOD activity was considered as the amount of SOD activity that
inhibits 50% of nitro blue tetrazolium in the photoreduction reaction (at 560 nm). CAT was
assessed by measuring the reduction in H2O2 [32], and one unit of CAT activity was defined
as a reduction of 0.1 units per minute at 240 nm. POD was assayed by the oxidation of
guaiacol under H2O2 (at 470 nm) [33]. All antioxidant enzymatic activities were presented
as U g−1 fresh weight (FW). The H2O2 content was determined using a method based on
the formation of colored [TiO(H2O2)]2+ complexes (specific absorption peak of 410 nm) by
H2O2 and titanium ions [34]. Free proline (Pro) was extracted with sulfosalicylic acid and
determined by acidic ninhydrin colorimetric assay [35]. Determination of malondialdehyde
(MDA) and soluble sugar content (SS) by heated colorimetric method using thiobarbituric
acid [36]. The content or activities of all the above parameters were measured according to
kit instructions (Jiancheng Bioengineering, Nanjing, China).

2.3.4. Concentration of Cd

The dried plant and soil samples (0.3 g) were crushed, ground, and passed through
1 mm sieve. These samples were then digested with 10 mL mixture of HNO3/HClO4 (4:1,
v/v) at 170 ◦C [37], and the volume was brought to 50 mL with deionized water. The Cd
contents in plant and soil were determined using a NexION 1000G ICP-mass spectrometer
(Perkin Elmer Inc. Waltham, MA, USA). For quality assurance/control, the measured Cd
values were verified using the GBW07603 (GSV-2; plants twigs and leaves) and GBW07428
(GSS-14; Sichuan basin soil) from the Center of National Standard Reference Materials of
China (CNSRMC).

2.3.5. Calculation Formula

The root/shoot ratio was calculated according to the equations [38]: root/shoot
ratio = Broot/Bshoot, where Broot and Bshoot was the root biomass and shoot biomass. The
phytoextraction ability was determined using the translocation factor (TF) and the biocon-
centration factor (BCF) according to the equations [39]: TF = Cshoot/Croot, BCF = Cshoot/Csoil
or Croot/Csoil, where Cshoot, Croot, and Csoil was Cd concentration (mg kg−1) in the shoot,
root, and soil, respectively.

2.4. Statistical Analysis

Significant differences between groups were determined by one-way analysis of
variance (ANOVA) with Duncan’s test, which was carried out using SPSS 27 (IBM Inc.,
Chicago, IL, USA), and means and standard errors were also calculated using SPSS 27.
Using Origin 2022 (Origin Lab Inc., Northampton, MA, USA) for correlation analysis and
graph drawing.
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3. Results
3.1. The Growth and Cd Tolerance of C. lanceolata

In this study, we found that the total biomass and Pn (net photosynthetic rate) of C.
lanceolata decreased with the increase of Cd concentration in soil, while the activities of
antioxidant enzymes SOD (superoxide dismutase), POD (peroxidase), and CAT (catalase)
increased (Figure 1).
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Figure 1. Main tolerance parameters of Cunninghamia lanceolata (Lambert) Hooker seedlings at
different soil Cd concentrations. Error bars show the standard error of the mean values (n = 5).

Specifically, the addition of Cd significantly inhibited the height, basal diameter, and
biomass of C. lanceolata (p < 0.05), while the effect was slight when Cd concentration was low
(Table 1). For example, plant height was not significantly affected when the concentration of
Cd was less than 10 mg kg−1. Cd had no significant effect on the growth of basal diameter
when the concentration of Cd was less than 50 mg kg−1. Both root and shoot biomass
were reduced by Cd stress, but the biomass of any given organs was not significantly
influenced when the Cd concentration was less than 20 mg kg−1, which indicated that low
concentrations of Cd had a slight effect on the growth of C. lanceolata.

Chlorophyll content (chlorophyll a, chlorophyll b) and Pn decreased significantly with
the increase of Cd (Table 2). When the Cd concentration of soil was more than 50 mg kg−1,
the contents of chlorophyll a, chlorophyll b, and total chlorophyll were significantly reduced.
Gs, Tr, and ΦPSII also decreased significantly with the increase of Cd, while Ci, Fv/Fm, and
Fv’/Fm’ did not change significantly (Table 2).

H2O2 increased significantly with the increase of soil Cd concentration (p < 0.05), and
H2O2 content was 2.18 times higher than that of the control when soil Cd concentration was
100 mg kg−1 (Table 3). As a product of lipid peroxidation, the content of MDA increased
slightly with the aggravation of Cd stress, however, there was no significant effect on the
content of MDA when the soil Cd content was lower than 50 mg kg−1. Similarly, to the
antioxidant enzymes (SOD, POD, and CAT), the contents of proline and soluble sugar were
also increased with the increase of Cd concentrations (Table 3).
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Table 1. Growth of Cunninghamia lanceolata (Lambert) Hooker seedlings at different soil Cd concentrations.

Concentration
of Cd

mg kg−1

Net Growth in
Plant Height

cm

Net Growth in
Basal Diameter

mm

Root Biomass
g plant−1

Leaf Biomass
g plant−1

Stem Biomass
g plant−1

Shoot Biomass
g plant−1

Total Biomass
g plant−1

0 46.46 ± 1.50 a 6.36 ± 0.26 a 33.59 ± 6.51 a 27.73 ± 2.00 a 23.41 ± 1.25 a 51.13 ± 3.24 a 84.73 ± 6.03 a
5 42.45 ± 5.05 ab 6.04 ± 0.56 a 25.41 ± 2.16 ab 25.19 ± 2.61 ab 21.93 ± 2.94 a 47.12 ± 4.93 a 72.53 ± 4.57 b

10 37.54 ± 4.24 abc 5.74 ± 0.56 ab 23.96 ± 3.71 ab 23.47 ± 1.10 ab 19.35 ± 1.71 ab 42.82 ± 2.68 abc 66.79 ± 4.16 bc
20 35.10 ± 1.07 bc 5.68 ± 0.52 ab 25.36 ± 1.44 ab 25.03 ± 1.34 ab 19.61 ± 1.33 ab 44.64 ± 2.08 ab 70.00 ± 2.27 b
50 30.20 ± 4.15 c 5.35 ± 0.51 ab 20.43 ± 1.17 b 20.23 ± 1.22 b 15.28 ± 2.18 b 35.50 ± 2.77 bc 55.93 ± 2.82 cd

100 27.76 ± 1.56 c 4.17 ± 0.61 b 19.95 ± 1.98 b 20.53 ± 0.92 b 14.04 ± 0.96 b 34.57 ± 1.54 c 54.52 ± 2.43 d

Note: Data are presented as the mean values ± standard error (n = 5). Different lowercase letters indicate significant differences between treatments at p < 0.05.

Table 2. Photosynthetic parameters of Cunninghamia lanceolata (Lambert) Hooker seedlings at different soil Cd concentrations.

Concentration
of Cd in Soil

mg kg−1

Content of
Chl a

mg g−1

Content of
Chl b

mg g−1

Total Content of
Chlorophyll

mg g−1

Pn
µmol m−2 s−1

Tr
mmol m−2 s−1

Ci
µmol mol−1

Gs
mol m−2 s−1 Fv/Fm Fv’/Fm’ ΦPSII

0 0.986 ± 0.119 a 0.254 ± 0.039 a 1.239 ± 0.158 a 4.38 ± 0.22 a 1.29 ± 0.09 a 276.24 ± 7.67 a 0.07 ± 0.01 a 0.801 ± 0.016 a 0.494 ± 0.032 a 0.111 ± 0.020 a
5 0.943 ± 0.111 a 0.233 ± 0.028 ab 1.175 ± 0.139 a 3.47 ± 0.27 ab 0.89 ± 0.11 b 247.89 ± 9.08 a 0.04 ± 0.00 b 0.795 ± 0.010 a 0.465 ± 0.022 a 0.104 ± 0.008 a
10 0.779 ± 0.075 ab 0.190 ± 0.021 abc 0.969 ± 0.096 ab 3.36 ± 0.40 ab 0.70 ± 0.05 bc 236.21 ± 27.41 a 0.03 ± 0.00 bc 0.803 ± 0.011 a 0.468 ± 0.061 a 0.088 ± 0.006 a
20 0.745 ± 0.050 ab 0.178 ± 0.012 bc 0.923 ± 0.062 ab 2.65 ± 0.19 bc 0.57 ± 0.02 c 236.66 ± 30.87 a 0.02 ± 0.00 c 0.788 ± 0.006 a 0.460 ± 0.014 a 0.051 ± 0.005 b
50 0.651 ± 0.018 b 0.155 ± 0.008 c 0.806 ± 0.025 b 2.70 ± 0.37 bc 0.50 ± 0.05 c 233.02 ± 14.52 a 0.03 ± 0.00 c 0.799 ± 0.006 a 0.395 ± 0.009 a 0.042 ± 0.002 b

100 0.618 ± 0.039 b 0.151 ± 0.013 c 0.769 ± 0.049 b 2.23 ± 0.38 c 0.53 ± 0.05 c 225.51 ± 17.19 a 0.02 ± 0.00 c 0.786 ± 0.009 a 0.366 ± 0.068 a 0.046 ± 0.007 b

Note: Data are presented as the mean values ± standard error (n = 5). Different lowercase letters indicate significant differences between treatments at p < 0.05.

Table 3. The oxidative stress markers and antioxidant enzyme activities of Cunninghamia lanceolata (Lambert) Hooker seedlings at different soil Cd concentrations.

Concentration of Cd
mg kg−1

MDA
mmol g−1

H2O2
µmol g−1

POD
U g−1

CAT
U g−1

SOD
U g−1

Pro
µmol mol−1

SS
mmol g−1

0 0.05 ± 0.00 b 180.20 ± 10.54 c 330.51 ± 6.63 c 69.60 ± 0.31 c 1120.47 ± 60.41 d 0.85 ± 0.04 d 0.31 ± 0.03 c
5 0.06 ± 0.00 ab 238.31 ± 13.05 bc 369.54 ± 2.95 b 71.69 ± 0.58 c 1398.31 ± 111.52 c 0.86 ± 0.03 d 0.30 ± 0.02 bc

10 0.06 ± 0.00 ab 271.27 ± 18.11 bc 374.89 ± 0.52 b 73.47 ± 1.01 bc 1611.54 ± 22.44 bc 0.89 ± 0.02 cd 0.31 ± 0.03 bc
20 0.06 ± 0.00 ab 303.07 ± 35.92 ab 380.99 ± 1.86 b 76.90 ± 2.18 b 1727.08 ± 18.69 ab 0.97 ± 0.02 bc 0.31 ± 0.00 bc
50 0.06 ± 0.01 ab 329.47 ± 29.82 ab 400.34 ± 6.99 a 91.83 ± 2.47 a 1773.66 ± 5.47 ab 1.03 ± 0.03 b 0.37 ± 0.02 ab

100 0.07 ± 0.00 a 392.84 ± 21.67 a 406.53 ± 10.39 a 96.31 ± 0.41 a 1952.15 ± 111.35 a 1.18 ± 0.01 a 0.41 ± 0.01 a

Note: Data are presented as the mean values ± standard error (n = 5). Different lowercase letters indicate significant differences between treatments at p < 0.05.
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3.2. Cd Uptake and Accumulation Characteristics of C. lanceolata

The Cd contents in stems, leaves, roots, and shoots of C. lanceolata seedlings increased
significantly with the increase of soil Cd content, particularly when exceeding 20 mg kg−1.
The Cd contents in roots were much higher than those in other organs and the bioconcen-
tration factor (BCF) of C. lanceolata roots was 6.01–11.29 (Table 4, Figure 2). Under different
soil Cd concentrations, the bioconcentration factor (BCF) of C. lanceolata plants was lager
than 1 (2.47–4.77) and showed slight variation (Figure 2). The Cd accumulation amounts
in shoots and roots of C. lanceolata seedlings increased linearly with the increase of Cd
concentration in soil (r2 for shoots = 0.9364, r2 for roots = 0.9641; Figure 3). When the soil
Cd concentration reached 100 mg kg−1, the total Cd accumulation amount in shoots and
roots were 2.72 mg plant−1 and 19.34 mg plant−1, respectively (Figure 3). This study also
found that the translocation factor (TF) of C. lanceolata did not vary significantly with the
increase of Cd in soils (Table 4).
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Table 4. Cadmium accumulation characteristics on dry base of Cunninghamia lanceolata (Lambert) Hooker seedlings at different soil Cd concentrations.

Concentration
of Cd

mg kg−1 DW

Cd Content in Leaves
mg kg−1 DW

Cd Content in Stems
mg kg−1 DW

Cd Content in Roots
mg kg−1 DW

Cd Content in
Shoots

mg kg−1 DW

Remnant Cd
Content in Soil
mg kg−1 DW

Plant BCF Root BCF Shoot BCF TF

5 1.49 ± 0.22 c 4.18 ± 0.28 c 40.19 ± 4.47 c 2.71 ± 0.38 c 3.11 ± 0.20 d 3.34 ± 0.62 b 8.04 ± 0.89 b 0.54 ± 0.04 bc 0.07 ± 0.00 a
10 3.02 ± 0.26 c 10.20 ± 2.85 c 89.16 ± 4.74 c 6.18 ± 2.21 c 5.70 ± 0.36 d 3.52 ± 0.17 b 8.92 ± 0.47 ab 0.62 ± 0.13 bc 0.07 ± 0.01 a
20 7.88 ± 0.36 c 12.62 ± 1.18 c 120.29 ± 7.45 c 10.08 ± 1.25 c 11.38 ± 0.69 c 2.47 ± 0.02 b 6.01 ± 0.37 b 0.50 ± 0.04 c 0.08 ± 0.01 a
50 34.50 ± 4.88 b 88.85 ± 9.46 b 564.29 ± 67.32 b 58.34 ± 9.48 b 32.59 ± 2.67 b 4.77 ± 0.31 a 11.29 ± 1.35 a 1.17 ± 0.11 a 0.11 ± 0.01 a

100 51.19 ± 3.69 a 119.83 ± 10.86 a 832.64 ± 112.23 a 78.80 ± 10.17 a 65.35 ± 3.42 a 3.50 ± 0.44 b 8.33 ± 1.12 ab 0.79 ± 0.06 b 0.10 ± 0.02 a

Note: Data are presented as the mean values ± standard error (n = 5). Different lowercase letters indicate significant differences between treatments at p < 0.05.



Forests 2024, 15, 115 9 of 14

4. Discussion

Phytoremediation, the use of plants for environmental cleanup, has been accepted as a
cost-effective and environmentally friendly remediation strategy [40]. Cd is highly toxic to
plants and animals and is one of the most common metal elements that has contaminated
large areas of soils [4]. When the concentration of Cd in the soil exceeds 8 mg kg−1, growth
retardation and other toxic symptoms are easily observed in most plant species [41]. When
the concentration of Cd in soil reached 25 mg kg−1, the growth of most Cd accumulators
and hyperaccumulators decreased significantly [34,42], due to Cd destroying plant roots,
reducing the absorption of water and nutrients [43,44]. In this study, we found that although
the growth of C. lanceolata seedlings decreased under Cd stress, the seedlings did not show
obvious toxic symptoms during the experimental period (Supplementary Figure S1). In
addition, the root and shoot biomass showed some variations at soil Cd concentrations
from 0–20 mg kg−1, but not significantly, indicating that low concentrations of soil Cd did
not inhibit the growth of C. lanceolata too much.

The growth and development of plants are mainly modulated by photosynthesis
in plants [35]. Many studies have shown that Cd would accelerate the degradation of
chlorophyll, reduce stomatal opening, decrease electron transfer rate, and finally affect
photosynthetic capacity [9,34,45]. Although chlorophyll a, chlorophyll b, and Pn in C.
lanceolata leaves gradually decreased with the increase of soil Cd concentrations, the Pn
did not decrease significantly (Table 2) when the soil Cd concentrations were lower than
10 mg kg−1. In this study, the Gs, Tr, and Ci of C. lanceolata decreased significantly, and the
decrease of Gs, Tr, and Ci were other possible reasons that limited Pn (called stomatal factor
limitation) [46]. Similar results were found in Morus alba L. [34], Prosopis juliflora (Swartz)
DC. [47], and Sassafras tzumu (Hemsl.) Hemsl. [48]. The values of Fv/Fm in most plant
species are usually between 0.75 and 0.85 [49,50], which indicates a high photochemical
activity of PSII in C. lanceolata, Fv/Fm decreased slightly under Cd stress, but were all greater
than 0.80 and did not differ significantly between treatments. The results revealed that Cd
stress had a slight influence on photosynthetic apparatus and supported that the stomatal
factor was the main reason for the decrease in Pn. ΦPSII is the proportion of absorbed light
energy actually used for photochemistry, and qP indicates the proportion of PSII reaction
centers that are open [51]. The results showed that ΦPSII decreased significantly with the
increase of Cd concentration, indicating that less and less absorbed light energy was used
for photochemistry at the reaction center of PSII.

H2O2 is a potent signaling molecule with multiple roles in plant antioxidant defense,
such as causing systemic acquired resistance (SAR) and hypersensitive resistance (HR) to
improve their immunity [52]. In this study, the H2O2 content increased gradually with
the increase of Cd concentration, indicating that C. lanceolata seedlings improved their
resistance to Cd stress by inducing the production of H2O2. MDA is a representative
index to measure lipid peroxidation induced by oxidative stress [53]. Cd stress caused a
gradual increase of MDA content in C. lanceolata seedlings, but it was significantly higher
than the control only when the Cd concentration was 100 mg kg−1, indicating that low
concentrations of Cd did not cause oxidative stress on C. lanceolata seedlings.

Heavy metal stress will lead to the increase of ROS content such as superoxide anion
(O2−), which will cause oxidative damage to biomolecules like lipids, proteins, and nucleic
acids. Antioxidant enzymes, such as superoxide dismutase (SOD), peroxidase (POD), and
catalase (CAT), can be improved by excess ROS and facilitate the removal of ROS [54].
Among these enzymes, SOD serves as the first line of defense, which converts O2− into
H2O2 and O2; subsequently, H2O2 decomposes into H2O by the action of CAT, the main
H2O2 scavenging enzyme [55,56]. POD is considered to be the last line of defense for H2O2
removal [57]. SOD, CAT, and POD activity in C. lanceolata leaves increased gradually with
the increase of Cd concentration. Similar results were found in Salix matsudana Koidz. [58],
Populus× euramericana (Dode) Guinier [59], and Populus yunnanensis Dode [60]. The content
of proline and soluble sugar also increased significantly under Cd stress. Proline and soluble
sugar are important compatible solutes in osmoregulation, which enhances plant tolerance
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to heavy metal stress through different mechanisms such as cellular osmotic adjustment,
membrane integrity protection, quenching singlet oxygen atoms, metal chelation in the
cytoplasm, and protection of enzymes against denaturation [61,62]. The increases in proline
and soluble sugar indicated that Cd stress induced the synthesis of osmolytes in C. lanceolata
leaves to maintain osmotic balance and enhanced resistance to stress.

Except tolerance, absorption, and translocation abilities of metal elements are other
criteria for determine whether a plant species can be used in phytoremediation. BCF, which
describes the ability of plants for heavy elemental accumulation from the substrate, is an
important parameter for judging the phytoremediation potential of a given plant [63,64].
In our study, the BCF values of C. lanceolata were around 4, indicating that C. lanceolata has
a strong capacity for Cd uptake and accumulation, as previously reported Cd hyperaccu-
mulators usually had a value of BCF from 1.5–5, such as Populus deltoides [20] is 3.0, Youngia
japonica (L.) DC. [65] is 5.2, Juncus bufonius L. [38] is 3.9. TF, which assesses the ability of
plants to transfer heavy metals from roots to shoots, is another commonly used parameter
to evaluate the phytoremediation potential of a given plant [66,67]. In C. lanceolata, the
TF values under Cd stress ranged from 0.07–0.11, which implied that C. lanceolata has a
weak ability to transfer Cd from roots to shoots. However, lower TF values imply a low
shoots Cd content, which can prevent wildlife exposure and surface contamination, which
is one of the candidate plant criteria for phytostabilization [68]. Besides, Fan [69] and
Taamalli [70] hypothesized that plants restricted the translocation of Cd to the aboveground
parts to avoid damage to the aboveground parts and maintain normal plant growth. Yoon
et al. [71] found that most plants growing on a contaminated site in North Florida had high
BCF values but low TF values, but suggested that these plants still had high potential for
phytoremediation and could be considered as potential phytoremediation plants. Con-
sidering the high BCF and rapid growth of C. lanceolata, it still has great potential for Cd
phytoremediation.

The soil Cd concentrations in most polluted areas generally do not exceed 50 mg kg−1 [72,
73]. When the soil Cd concentration was below 50 mg kg−1, C. lanceolata seedlings did
not show significant biomass reduction or visible symptoms of toxicity as well as high
physiological and biochemical tolerance, allowed C. lanceolata to produce large amounts of
biomass and grow rapidly enough to establish vegetative cover in time at a specific location.
In the field, the huge canopy of C. lanceolata helps to reduce eolian dispersion, while the
dense and deep root system helps to prevent water erosion and leaching, which creates a
vegetative cap to achieving long-term stabilization of Cd-contaminated soil [23,68]. These
findings indicated that C. lanceolata is a promising candidate for phytostabilization of Cd-
contaminated soils, especially in non-severely contaminated soils with Cd concentrations
below 50 mg kg−1.

Our findings offer compelling evidence of Cd tolerance and accumulation in C. lanceo-
lata, suggesting its potential as a candidate for remediating Cd contaminated soils. However,
it is important to note some limitations in our study. Our study was carried out on pot
experiments, this can diminish susceptibility to environmental factors and experimental
errors, thereby enabling the acquisition of objectively reliable data that can be replicated
and compared. However, pot experiments may not fully replicate the intricate interactions
and dynamic factors present in natural flora environments. Consequently, future research
endeavors should extend beyond pot experiments to field studies in natural areas. Fur-
thermore, a more in-depth investigation into the physiological and genetic mechanisms
underlying the tolerance to and accumulation of Cd in C. lanceolata is warranted.

5. Conclusions

Cunninghamia lanceolata had high tolerance to Cd at physiological (e.g., photosynthe-
sis characteristics and chlorophyll fluorescence parameters) and biochemical levels (e.g.,
oxidative stress markers and antioxidant enzyme), with strong Cd accumulation (predomi-
nance in roots). Considering the wide distribution, fast growth, large biomass, and high
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economic value, we suggested that C. lanceolata could be a promising candidate for the
phytostabilization of Cd contaminated soils.
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