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Abstract: Controlling and extinguishing spreading forest fires is a challenging task that often leads to
irreversible losses. Moreover, large-scale forest fires generate smoke and dust, causing environmental
pollution and posing potential threats to human life. In this study, we introduce a modified deep
convolutional neural network model (MDCNN) designed for the recognition and localization of fire
in video imagery, employing a deep learning-based recognition approach. We apply transfer learning
to refine the model and adapt it for the specific task of fire image recognition. To combat the issue
of imprecise detection of flame characteristics, which are prone to misidentification, we integrate a
deep CNN with an original feature fusion algorithm. We compile a diverse set of fire and non-fire
scenarios to construct a training dataset of flame images, which is then employed to calibrate the
model for enhanced flame detection accuracy. The proposed MDCNN model demonstrates a low
false alarm rate of 0.563%, a false positive rate of 12.7%, a false negative rate of 5.3%, and a recall rate
of 95.4%, and achieves an overall accuracy of 95.8%. The experimental results demonstrate that this
method significantly improves the accuracy of flame recognition. The achieved recognition results
indicate the model’s strong generalization ability.

Keywords: forest fire; deep learning; modified deep CNN; fire recognition; flame features

1. Introduction

China has relatively scarce forestry resources, with a domestic forest cover of 23.04%.
The per capita forest area is less than 0.16 hectares, and the per capita forest stock is
12.35 m3; both are lower than the global average. Advanced technologies such as comput-
ers, remote sensing, laser monitoring, radar communication, and satellite image monitoring
have improved the ability to monitor wildfires [1]. They have been combined with advanced
management concepts to greatly reduce the hidden dangers of forest fires. Nonetheless,
forest fires remain a huge challenge for forestry development because of their very high
threat and cost [2]. Once a forest fire spreads, it is difficult to control and extinguish, and
it causes irreversible losses. Large-scale forest fires produce smoke and dust that cause
considerable environmental pollution and may threaten human life. Protecting forest
vegetation from damage and ensuring the balance of the forest’s ecological environment
will help to safeguard the human living environment and promote economic and social
development. While forest fire monitoring and warning must be performed, reducing the
number of forest fires itself is very important. On the one hand, forest fire monitoring and
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warning is a type of early prediction of forest disasters that involves mathematical mod-
eling of historical forest fire data, forest environmental parameters, meteorological data,
etc., to predict the likelihood of forest fires occurring. On the other hand, the prediction,
prevention, and management of forest fires are key tasks in forest fire prevention. The
forest fire risk prediction system is an important tool for monitoring forest fires, assisting
in fire planning, and allocating fire extinguishing resources [3,4]. At present, using deep
learning to predict the risk of forest fires clearly shows promise. Deep learning is popular in
neural network modeling because of its strong self-learning and adaptive abilities and the
advantages offered by various convolutional neural networks (CNNs) and candidate area
algorithms [5,6]. Forest fire risk prediction includes identifying risks and measuring their
scale and frequency. Such prediction involves four stages: identification of hot areas, assess-
ment of forest fire sensitivity, classification of areas vulnerable to forest fire, and assessment
of possible forest fire risk [7,8]. Environmental factors such as terrain features, human
infrastructure, and meteorological forms have been identified as influencing parameters
that play an important role in constructing susceptibility models for forest fire risk [9–11].

Researchers worldwide have made significant advancements in forest fire risk pre-
diction technologies. For example, remote sensing and geographic information system
(GIS) learning models are used to assess the probability of forest fire risk and monitor the
susceptibility to forest fires [12–14]. Knowledge-based methods including fuzzy logic [15],
analytic hierarchy process (AHP) [16], and network analysis methods are also being used
for this purpose. Further, deep learning approaches such as random forest models and
logistic regression have been used for forest fire risk prediction [17]. Deep learning meth-
ods and artificial neural networks (ANNs) show potential for handling complex nonlinear
energy problems. To obtain repeatable and reliable results using deep learning algorithms,
sufficient training sample optimization parameters must be set to address robustness issues
in the effective extraction of complex upper-level features and input conversion in fire im-
ages [18]. At present, the management of forest fire prevention in small- and medium-sized
forest farms is not standardized. Further, automated monitoring and warning for forest
fires remain in the small-scale experimental stage, and large-scale applications will take
time to achieve [19,20]. The difficulties faced in achieving real-time monitoring and early
warning of forest fires are mainly reflected in the low accuracy of forest fire identification.

Mao et al. developed a system that uses ANNs to automatically identify fire smoke.
A high-resolution scanning radiometer has been used to determine where to cut off the
fire line in time to reduce the damage caused by forest fires. Another study developed a
fire spread simulator in which the neural network structure is optimized for calibration
on different terrains to help firefighters develop firefighting strategies [21,22]. Thach
et al. [23] established a GIS database and trained and verified a forest fire model by using a
combination of a support vector machine (SVM), receptive field, and multilayer perceptron
neural network algorithms. Classification accuracy and kappa statistics were used to
evaluate the model performance, and the experimental results showed that the model
has good performance. Vikram et al. [24] applied an SVM to propose a semisupervised
classification model that divides forest regions into different regions, including high activity,
medium activity, and low activity. The model showed good recognition performance for
forest fires, with an accuracy of 90%. Moayedi et al. [25] used a hybrid evolutionary
algorithm to build a forest fire prediction model. Three fuzzy element initiation methods
based on the combination of an adaptive neuro-fuzzy inference system, genetic algorithm,
particle swarm optimization, and differential evolution were used to generate a forest
fire sensitivity map of fire-prone areas. The results showed that the fire risk prediction
model can effectively predict the occurrence of forest fires. Peruzzi [26] constructed a
forest fire smoke recognition model for fire prediction by using a backpropagation neural
network. The experimental results showed that this method can solve the problem of
the large delay in forest fire risk prediction and effectively predict the forest fire risk.
Grari [27] proposed the smoke generative adversarial network framework to expand
training sample data and used a Gaussian–Bernoulli deep belief network to preprocess
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the sample data to remove noise from the image. The classification test loss rate of the
model was 0.25%. Upon using a deep belief network–convolutional neural network model,
the forest fire smoke recognition accuracy reached 98.52%. Nikhil et al. [28] proposed
a global forest fire risk estimation method and developed a monitoring system based
on fuzzy logic and fuzzy algebra. They applied the k-means clustering algorithm and
a density-based spatial clustering algorithm. Spatiotemporal data mining (STDM) was
used to conduct field experiments in Greece, and good predictions were obtained for forest
fire risk areas. Abdusalomov [29] used deep learning to establish a convolutional transfer
learning feature extraction network to improve the accuracy of forest fire classification
and designed a deep convolution and domain adaptive sample classification algorithm to
verify its effectiveness, with good experimental results. Overall, compared to traditional
machine learning algorithms, deep learning methods have better recognition performance
for images with complex backgrounds for which feature extraction is difficult.

The application of the You Only Look Once Version 8 (Yolov8) algorithm in forest fire
monitoring represents a significant advancement in the field [30]. As an object detection
algorithm grounded in deep learning methodologies, Yolov8 excels in swiftly and accurately
identifying objects within images. In the context of forest fire surveillance, it is adept at
detecting critical fire indicators such as flames and smoke. The integration of Yolov8 with
aerial drones or video surveillance infrastructure enables real-time monitoring of forest fires,
facilitating prompt alerts and strategic responses. However, its efficacy is predominantly
in close-range object recognition. Given the extensive detection range required for forest
fires, an enhanced convolutional neural network could augment recognition efficiency and
exhibit superior capabilities in analyzing a vast array of distant images, thus improving
overall detection performance.

In light of these challenges, this study has adopted the AlexNet deep convolutional
neural network model, recognizing its robust performance with small-scale datasets and
a reduced parameter count, particularly advantageous given the scarcity of extensive
datasets in forest fire monitoring tasks. The evaluation was performed using a dedicated
fire database. By leveraging an advanced deep convolutional neural network model
(MDCNN) and collecting forest canopy imagery via unmanned aerial vehicles or video
surveillance systems, we processed forest fire images and dissected complex features such
as smoke and flames to develop a fire recognition model aimed at forest fire surveillance
and early warning systems. The insights garnered from this research offer vital theoretical
and practical benchmarks for the future development of expansive forest fire monitoring
and alert frameworks.

2. Materials and Methods

In actual forest fire monitoring situations, many interferences are difficult to effectively
identify and are easily mistaken for flames. These include fallible flames (e.g., people
wearing red clothes in forest environments) and lighter flames (flames that do not cause
fires). To effectively eliminate such interference, more suitable features must be selected
for judgment.

2.1. Image Flame Features and Model Selection

A flame identified through a color model contains two types of objects. The first type
is the flame, which can be divided into two types of objects. One is a flame that can cause a
fire, and the other is a stable combustion material, including flames that can cause a fire
and flames that can burn stably, such as lighters, matches, and candles. Such objects cannot
be effectively recognized through color models. The second type is the recognition of
objects similar to flames, with a common feature being red or yellow colors similar to those
of flames. Such objects are difficult to recognize through color space models. Therefore,
identifying flames solely through color models is insufficient, making it necessary to further
identify fire flames through the extraction of other features.
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Image feature recognition is essentially the extraction of image features. The recogni-
tion accuracy is determined by how effectively appropriate features are extracted. Image
features are the basic attributes of an image, and images of different objects have their
own unique features. The differences in the attributes of different images can be used to
distinguish different objects. This article investigates flames, and their characteristics are
summarized as shown in Figure 1.
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Figure 1. Summary of flame characteristics.

As shown in Figure 1, image flame features can be divided into two categories, static
and dynamic, which are further subdivided into five major categories. Accurately identi-
fying flames is crucial for extracting flame features, and it is better to extract more flame
features. Extracting too few features makes it difficult to exclude objects similar to flames,
and extracting too many features makes feature fusion methods difficult and affects real-
time operation. Therefore, how to select flame features is an important issue to be addressed
in this study.

Numerous researchers have conducted extensive investigations on the selection of im-
age features following image segmentation processing [31]. Early studies mostly extracted
one or two features for recognition, such as analyzing the flame tip features, comparing the
differences between several interfering substances and flame tip features, and recognizing
them as a single recognition feature [32]. However, this method is too simple, and the
selected interfering substances are not representative. Color and flame frequency have been
selected as features for recognition. Although the accuracy has been greatly improved, the
selected interferences are clearly too few to be applicable to all flame interferences. Many
studies have found that identifying fire flames solely through a single feature often results
in unsatisfactory results and is prone to misjudgment [33].

Researchers have employed the fusion of multiple features to enhance accuracy, and
studies on the selection of multiple features require feature fusion. At present, feature fusion
algorithms include neural networks, Bayesian classifiers, and SVM. One study extracted five
commonly used features and developed an AHP-based feature fusion method; however,
the AHP method used relied too heavily on manual experience for analysis [34]. Another
study used a deep CNN for identification and achieved improved accuracy; however,
the picture size needed to be fixed when inputting the picture [35]. A study used a deep
CNN for recognition and achieved improved accuracy compared with that of traditional
methods; however, identifying the entire video input required considerable time in practical
applications [36]. A study used an SVM classifier to identify flames; however, different
features need to be selected as inputs to the classifier, and the selected features are subjective
and cannot be guaranteed to be the best features [37].

These feature- fusion algorithms have their advantages and disadvantages. Unlike
flame recognition, Bayesian methods need to determine parameters in advance; SVMs
are suitable for training small samples; and deep CNNs have strong learning ability,
high robustness to interference, and obvious advantages in the case of visual flames with
many interference sources and complex analysis [38]. Therefore, this study proposes a
fire recognition method based on the deep CNN model, in which complex preprocessing
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links are reduced and the whole fire identification process is integrated into a single deep
neural network that is convenient for training and optimization. In the identification
process, to solve the interference of similar fire scenarios in fire recognition, based on the
motion characteristics of flames, a new scheme is proposed to eliminate similar fire scene
interference caused by lighting based on the changes in frame coordinates before and after
the fire video. After comparing numerous deep learning open-source frameworks, the
Caffe framework was chosen for training and testing in this study.

2.2. Modified Deep CNN Model for Forest Fire Recognition

A CNN is a feedforward neural network with convolutional computation and a deep
structure. It is mainly divided into two parts: model training and model evaluation. For
fire video recognition, first, a large number of fire images is collected for model training,
a deep CNN is used to obtain a deeper expression of the fire characteristics, and a large
number of fire recognition models is obtained. Then, the test dataset is used to evaluate the
obtained models to find the optimal model. Finally, the optimal model is used to determine
whether the newly input photo contains flames. The fire video recognition flowchart is
shown in Figure 2.
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This study proposes a modified deep convolutional neural network model (MDCNN)
for recognizing and locating forest fire video images. In experiments, the softmax classi-
fication function is replaced with a sigmoid function suitable for binary classification to
construct a fire recognition model. A single deep neural network is used for image recogni-
tion; its positioning method is different from that of the sliding window method. In terms
of positioning, this model generates a series of default boxes on the pixels of the middle
layer feature map according to different proportions and sizes. In the model operation
process, the network generates scores based on existing target categories and generates
localization boxes based on the size of localization weights, which is more accurate in
matching object traits. At the same time, the recognition network combines feature maps
of different resolutions to handle objects of different sizes. The advantage of this network
is that it still has a high recognition speed while improving the fire recognition accuracy,
thus providing favorable conditions for forest fire recognition. It can also achieve high
accuracy for low-resolution inputs. The improved MDCNN model is more lightweight
and can effectively achieve the recognition of forest fire images, resulting in high detection
efficiency for forest fires.
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Common deep convolutional neural network models include LeNet, AlexNet, VG-
GNet, GoogLeNet, and ResNet [39]. Due to the focus of this study on image processing and
the initial capacity of the flame database being five thousand images, we have chosen to use
AlexNet for model training and final testing on the established flame database. AlexNet
is a classic deep convolutional neural network model that has a relatively small number
of parameters and performs well, particularly on small-scale databases. Therefore, it is
suitable for the requirements of this study.

The AlexNet network model consists of five convolutional layers, three pooling layers,
three fully connected layers, and a dropout layer added to prevent overfitting [40]. The
first and second convolutional layers have convolutional kernel sizes of 11 × 11 and
5 × 5, respectively. The next three convolutional layers all have convolutional kernel sizes
of 3 × 3. The specific parameters of the AlexNet network model are shown in Table 1,
where Conv1, Conv2, Conv3, Conv4, and Conv5 respectively represent the first to fifth
convolutional layers. Max-pool represents the maximum pooling layer. Fc1, Fc2, and Fc3
respectively represent the first, second, and third fully connected layers. A convolutional
kernel size is represented by (11 × 11, 1, 4, stride = 4). The input channel is 1, the output
channel is 4, and the step size is 4.

Table 1. AlexNet network model parameters.

Layer Name Kernel Size Stride Input Size

Conv1 11 × 11 4 224 × 224 × 3
Max-pool1 3 × 3 2 55 × 55 × 96

Conv2 5 × 5 1 27 × 27 × 96
Max-pool2 3 × 3 2 27 × 27 × 256

Conv3 3 × 3 1 13 × 13 × 256
Conv4 3 × 3 1 13 × 13 × 384
Conv5 3 × 3 1 13 × 13 × 384

Max-pool3 3 × 3 2 13 × 13 × 256
Fcl 2048 / 4096
Fc2 2048 / 4096
Fc3 1000 / 4096

(1) Input layer: The main task of the input layer is to preprocess the original image.
AlexNet requires an input size of 227 × 227. However, because the sample set in this
article was collected through different channels, the size of the sample images is not
consistent. Therefore, to reduce the computational complexity, all images were resized
to match the input size.

(2) Convolutional layer: Five convolutional layers are used in this study. The convo-
lutional layer is the most important part of the entire network, and its core is the
convolutional kernel (or filter). Convolutions have two attributes, size and depth, that
can be set manually. As the sample size in this article is self-established and small,
it is not suitable to adopt a high depth to prevent overfitting. Convolution reduces
the dimensionality while extracting images. Convolutional layers are used to extract
image features at a deeper level. After completing the convolution, functions are used
to correct the results. Commonly used correction functions include sigmoid, rectified
linear unit (ReLu), softplus, and tanh. Their function images are shown below:

In Figure 3, the gradient changes of the sigmoid and tanh functions are relatively
gentle in the saturation zone, approaching 0; this makes it easy to cause the gradient to
disappear, leading to a decrease in the rate of convergence. When many layers exist in
the network, gradient vanishing is one of the main problems in the process of correcting
convolution results. As shown in the figure, the ReLu function is a constant in the positive
saturation region and does not experience gradient vanishing. It also converges quickly,
and gradients can be found easily. Therefore, ReLu is used for correction in this study.
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(3) Pooling layer: The pooling layer is usually followed by the convolutional layer; it is
used to reduce the size of the matrix, preserve the main features while reducing the
parameters of the next layer, and reduce the computational complexity to prevent
overfitting. Max pooling and average pooling methods are used often. For image
recognition, the max pooling method can reduce the mean shift caused by convolu-
tional layer parameter errors. It can retain more texture information, which is also
important in image processing. The principle is shown in Figure 4.
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For the 2 × 2 window in the figure above, the largest number is selected as the value
of the output matrix. For example, the first matrix has a maximum value of 6, therefore, the
first value of the output matrix is 6.

(4) Fully connected layer: The fully connected layer correctly classifies images. To identify
whether the target is a flame, the fully connected layer is divided into two categories,
0 and 1, which respectively represent non-fire and fire source images. The number of
neurons input to the fully connected layer is greatly reduced through the processing
of convolutional and pooling layers. For example, in AlexNet, after processing an
image with a size of 227 × 227 and a color channel count of 3, the number of neurons
input into the fully connected layer is 4096. Finally, the output of softmax can be
determined based on the actual number of classification labels. In the fully connected
layer, a dropout mechanism randomly deletes some neurons; this can save time in
preventing the overfitting of contracts.

As shown in Figure 5, the input image has a width and height of 300 × 300 with
three channels. The network structure is VGG-16, where two convolutional layers are
modified from fully connected layers and four convolutional layers are added to obtain
more accurate feature maps for localization. This network recognizes fires using two
parts: the classification part that predicts whether the input image is a fire or non-fire
image and the category score and the positioning part that applies small convolutional
kernels to the feature response map. The offset of default boxes on different feature
maps is predicted. The input feature map size for detection and classifier 1 is 38 × 38;
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4 default boxes are present around each feature entity, and the number of default boxes is
38 × 4. The other default boxes are similar, and the final recognition position is obtained by
excluding redundant interference items through non-maximum suppression. The red box
in the image represents the identified forest fire image with flames.
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During the training process, it is necessary to set different hyperparameters, train
models with different hyperparameters, and select them to obtain the optimal solution to
the target problem. For this purpose, we trained a large number of models with different
parameters based on the training data and analysis of the training results; improved
the model by adjusting the learning rate, threshold, and other hyperparameters; and
finally used the model with the highest accuracy rate. We adopted the transfer learning
strategy. Because the pretraining model was trained on a large dataset and the weight of
each layer reflects the feature selection of image objects, we used the pretraining model
for initialization through a fine-tuning strategy to obtain better results. After running
100,000 fine-tuning iterations in the experiment, the final model was obtained, and it
showed high accuracy in recognizing forest fires.

2.3. Parameter Selection

Table 2 provides detailed information about the training environment parameters
utilized in this experiment, encompassing processor specifications, graphics card specifica-
tions, memory capacity, development environment, and other pertinent details.

Table 2. Training environment parameters.

Name Training Environment

CPU Inter® Xeon® Gold 6240@2.59 GHz
GPU NVIDIA GTX 3090@24 GB
RAM 128 GB

PyCharm version 2020.3.2
Python version 3.7.10
PyTorch version 1.6.0
CUDA version 11.1
cuDNN version 8.0.5
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The forest fire image dataset comprised images captured from fire videos published
online. Then, frame generation software Blender 4.0.1 (Blender, Amsterdam, The Nether-
lands) was used to process the frames and generate XML files. The training set was formed
by randomly selecting 90% of labeled images. The remaining 10% of images were used
as the test set. The training and test sets were converted to lmdb format, image width
and height were adjusted to 300 × 300, data augmentation methods including mirroring
and flipping were performed, and preprocessing and normalization were performed. The
solver parameter settings were as follows: weight attenuation, 0.0005; initial learning rate,
0.0001; learning rate change ratio, 0.1; and network impulse, 0.9.

(1) Selection of Number of Iterations

The dataset was trained, and the loss value of the sample function was recorded. As the
number of iterations increases, the total loss (train_loss) and localization loss (mbox_loss)
of network training gradually converge; specifically, they show a continuous decreasing
trend, approach a stable state, and stabilize after 3000 iterations. The loss function curves
of training are shown in Figure 6.

L(x, c, l, g) =
1
N
(Lcon f (x, c) + αLloc(x, l, g)) (1)
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Here, N is the number of matched real boxes, indicating whether the matched boxes
belong to a certain category, with values {0,1}; l is the prediction box; g is the true value;
and c is the confidence level of the selected target belonging to a certain category, and it is
used to adjust the weight relationship between classification and positioning.

In this paper, optimal fitting performance was achieved by conducting multiple
iterative experiments. Specifically, the iteration counts of 1000, 2000, and 3000 were found
to yield the best-fitting results. Therefore, in this study, the iteration counts were set as
1000, 2000, and 3000, respectively. In Figure 6, the left- and right-hand sides show the loss
curve and accuracy curve, respectively.

When the number of iterations is 1000 and 2000, as shown in Figures 6a and 6b,
respectively, the accuracy curve does not tend to stabilize owing to the insufficient number
of iterations. When the number of iterations is increased to 3000, as shown in Figure 6c,
the accuracy of both curves approaches 1, and the training accuracy tends to stabilize.
Figure 6a,b show that the loss curve does not converge owing to the insufficient number of
iterations; therefore, the number of iterations needs to be increased. However, Figure 6c
shows that the loss curve fluctuates only slightly when the number of iterations is 3000,
and the rate of convergence is faster than that when the number of iterations is 2000. The
proposed model generated with 3000 iterations was used in this study.

(2) Comparative experiments on different learning parameters

Among all parameter settings, the learning rate is one of the most important parame-
ters affecting the performance. The learning rate is a parameter that guides how to adjust
the network weight through the gradient of the loss function. The use of a lower learning
rate can catch any local minimum; however, it will affect the time performance, and more
time will be required for convergence. Therefore, selecting an appropriate learning rate
means that a shorter time is required to train the model. In this study, learning rates of
0.001, 0.005, and 0.01 were set for 2000 iterations.

The precision curve in Figure 7a shows that the rate of convergence of the yellow curve
with a learning rate of 0.01 is much larger than those of the blue curve with a learning rate
of 0.005 and the red curve with a learning rate of 0.001. Therefore, from the perspective of
accuracy, the learning rate is 0.01. Figure 7b shows that the red curve with a learning rate
of 0.001 does not converge, the yellow curve with a learning rate of 0.01 and the blue curve
with a learning rate of 0.005 converge, and the rate of convergence of the yellow curve is
higher. Therefore, from a loss perspective, the final learning rate is 0.01.
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3. Results and Discussion
3.1. Experimental Calculation and Result Analysis

To verify the accuracy of the proposed flame recognition model, an improved AlexNet
is used for training. The test depth is five layers, the number of iterations is 2500, and the
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learning rate is set to 0.01. The training sample images include 1000 fire source images and
1500 non-fire source images. The final test image number is 1000, including 400 fire source
images and 600 interference images. The main steps in training are as follows: establish a
training image set with samples as described above; select the main parameters of AlexNet,
including the number of iterations and learning rate; conduct training to obtain the training
model; and save the obtained training model for testing sample recognition. The training
images are mainly divided into the following categories, as shown in Table 3:

Table 3. Training image categories.

Image Category Description

Category 1 Outdoor fire source with large flames and thick smoke
Category 2 Fire source with large flames and less background interference
Category 5 Outdoor burning image (interference)
Category 6 Outdoor lighter image (interference)
Category 7 Evening sunset (interference)
Category 8 Picture of car lights (interference)

In the flame decision part, the model established by color saturation is not accurate
for object recognition with similar color saturation. Therefore, images with complex
backgrounds and similar colors to the test images in the dataset were extracted, and more
interference items were added for recognition. The experimental results are shown in
Table 4. Three approaches are compared in this article. The first is an improved RGB model
method that only uses color for recognition. The second is a method that adds sharp corner
features and color features for joint recognition. The third is a method in which SVMs are
used for feature extraction.

Table 4. Error rate of four methods for verification.

Image Source
Picture Information False Alarm Rate

Total Frames Flame Frames Literature [41] Literature [42] Literature [43] Proposed
Model

Interference term 315 0 2.64% 5.28% 15.9% 0%
Flame image 350 200 5.17% 17.3% 31.23% 0.563%

Video 1 800 364 17.6% 35.6% 46.53% 11.87%

The verification results show that the proposed model has the following advantages.
First, feature values do not need to be selected manually, thus reducing the impact of
human factors on accuracy. Second, this model can process a large amount of image data
at once, and its data processing speed is much higher than that of other models when
the model is trained in advance. Third, among interference items, some images similar
to flames (e.g., people wearing red clothes, fire extinguishers, etc.) cannot be effectively
excluded through color space models. Table 4 shows that these interference items are prone
to false positives. However, this model can effectively eliminate these interference items
while showing higher accuracy than those of other models. For images with flames that do
not cause a fire, such as candle and lighter flame images, the proposed model has a false
alarm rate of only 0.563%, which is significantly better than those of the other two models.

In response to the issue of false alarms caused by lighter flames, a large number of
lighter flames were added to the non-flame training samples for testing to reduce the
occurrence of false alarms. Outdoor smoke and other factors can also cause a high false
alarm rate, mainly owing to the similarity between smoke in forest environments and
smoke from forest fires. The images with high false alarm rates are as follows (Figure 8):
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Fire and non-fire images were selected from different scenarios to test the network
recognition effect. The recognition results are shown in Figure 9. For fire images, the
proposed model successfully achieved recognition and localization.
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Figure 9. Fire identification results for different scenarios.

In summary, the model can accurately identify flames in ordinary situations; how-
ever, the recognition accuracy decreases somewhat in complex situations. Further, the
recognition accuracy is greatly improved when the video quality is good. Overall, it offers
advantages compared to traditional methods. However, the system processing time is three
to five times longer than that of traditional methods.

The probability values and image status recognition of fire and non-fire image output
during the recognition and positioning processes using the proposed network are listed in
Table 5.

Table 5. Probability values of partial fire/non-fire images.

Picture Probability Value State

a 0.653 Fire
b 0.765 Fire
c 0.779 Fire
d 0.875 Fire
e 0.231 Non-fire
f 0.187 Non-fire
g 0.138 Non-fire
h 0.327 Non-fire

To evaluate the model’s performance, a test set comprising 3885 images was employed,
including 2500 fire images and 1385 non-fire images. The assessment of the model’s
effectiveness in recognition was conducted using key metrics such as accuracy, precision,
recall, and F1-Score. These measures provide a comprehensive understanding of the
model’s performance in distinguishing between fire and non-fire instances.
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(5)

The results outlined in Table 6 reflect the performance of various models, including
the MDCNN model, which exhibits the following evaluation metrics after computation:

- False Negative Rate (FNR): 5.3%
- False Positive Rate (FPR): 12.7%
- Recall Rate: 95.4%
- Accuracy Rate: 95.8%

These metrics indicate that the MDCNN model has a high ability to correctly identify
fire instances (high recall rate) and a high overall rate of correct predictions (high accuracy
rate). However, there is still room for improvement in reducing the rates of both false
negatives (missed fire detection) and false positives (incorrectly identified fires).

Table 6. Test results of MDCNN model and other models.

FPR FNR Recall Accuracy F1

MDCNN 12.7% 5.3% 95.4% 95.8% 92.5
CNN 9.7% 5.4% 92.7% 91.5 89.3

AlexNet 10.4% 5.4% 93.4% 92.7 90.4
VGGNet 7.9% 5.4% 85.9% 83.2 81.2

GoogLeNet 8.4% 5.4% 87.5% 85.5 82.7
ResNet 9.3% 5.4% 90.6% 87.4 84.5

The comparison of various deep convolutional neural network (CNN) models in
Figure 10 reveals the performance of each model in terms of accuracy for the task of forest
fire risk monitoring. The models assessed include CNN, AlexNet, VGGNet, GoogLeNet,
and ResNet, each with its own unique architectural features and complexity.

The MDCNN model showcases superior performance with an accuracy of 95.8%,
which is higher than the other models compared in the study. This high accuracy is
complemented by a recall rate of 95.4%, indicating the model’s effectiveness in correctly
identifying the positive cases (fire images). The false positive rate stands at 12.7%, and the
false negative rate at 5.3%, which are the instances where the model incorrectly identified
non-fire as fire and fire as non-fire, respectively.
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When compared to the AlexNet model, the MDCNN model’s accuracy exceeds it by
3.2%, demonstrating the improvements made by the MDCNN model in terms of hierarchi-
cal structure and possibly other optimizations that contribute to its enhanced performance
in forest fire detection tasks. This indicates that the MDCNN model is more reliable and
could be considered a more suitable option for real-world applications in forest fire risk
monitoring systems.

3.2. Anti- Interference Experiment

During the testing process, some images have brighter lighting. The distance between
the front and rear positioning boxes in the video is calculated based on the motion charac-
teristics of the fire. Only when the position coordinate is not 0 and the front–back frame
distance is not 0 can fire be determined. This method cleverly eliminates the impact of
static fire scenes on fire recognition. Two different video scenes were selected for testing.
The distance between the position coordinates of the test image and the previous frame is
shown in Table 7, and distance d is calculated as

d =

√
(x2min − x1min)

2 + (y2min − y1min)
2 +

√
(x2max − x1max)

2 + (y2max − y1max)
2 (6)

Table 7. Position coordinates and distance from previous test image.

Figures a b c d e f

(Xmin,ymin) 93,142 94,142 86,145 0 0 206.5
(Xmax,ymax) 367,198 374,196 385,204 0 0 473.92

d(px) 38.2 3.35 13.36 0 0 0

In Table 7, Figures a, b, and c are three consecutive frames of images with fire, and the
front–back frame distance is calculated based on their position coordinates. The interference
photo f outputs the corresponding position coordinates and the distance between the front
and rear frames. A distance of 0 between the current rear frames indicates a non-fire image.
Figures d and e are images without a fire, do not generate a positioning box, and have no
coordinate values, and the default distance is 0.

Using the proposed method for experiments, the model correctly recognizes static
fire scenes as non-fire scenes and can eliminate interference caused by static fire scenes.
In terms of evaluating the accuracy performance and generalization ability of the model,
different fire and non-fire scenarios were selected for recognition, which showed good
recognition performance and an accuracy of 95.8% on the self-built dataset.
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Finally, the constructed forest fire monitoring and early warning model will achieve
real-time monitoring of forest fires through cloud platforms. Figure 11 is an interface
diagram of real-time forest fire monitoring. When a forest fire occurs, corresponding alerts
will be triggered to remind staff to take timely actions.
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4. Conclusions

In this study, suspected flames undetected during forest fire surveillance were clas-
sified and their image features were extracted for improved recognition. Several feature
extraction methods were systematically analyzed and compared, with feature types being
manually set. Following the construction of the MDCNN network model, the optimal
learning rate and iteration number for precise flame detection were meticulously selected.
Training was conducted with an established set of flame image samples, leading to the
development of a robust training model. The model’s accuracy was then evaluated against
other models, with its superior performance underscoring the efficacy of the proposed
approach. The primary conclusions of this research are as follows:

(1) A forest fire recognition model was developed using a modified CNN network,
resulting in a highly accurate fire video image recognition model after extensive
training. The model’s accuracy and generalization capabilities were assessed using a
diverse set of fire and non-fire scenarios.

(2) To address recognition disruptions caused by scenes resembling fire, a method that
adjusts the coordinates of the bounding boxes between consecutive frames was imple-
mented. This approach effectively reduces static scenario interference and enhances
the recognition capabilities of the model.

(3) The model demonstrated commendable performance in flame detection, achieving
remarkable results across multiple metrics. Firstly, it achieved a remarkably low
false alarm rate of only 0.563%, indicating its ability to accurately classify non-flame
instances. Additionally, the model achieved a false positive rate of 12.7%, which
demonstrates its capability to minimize the occurrence of false detections. Moreover,
the false negative rate of 5.3% further showcases the model’s ability to effectively
identify and classify flame instances. Furthermore, the model achieved an impressive
recall rate of 95.4%, indicating its high sensitivity in detecting flames. This means
that the model successfully identified the vast majority of actual flame instances. The
overall accuracy rate of 95.8% further highlights the model’s reliability in accurately
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classifying both flame and non-flame instances. These outstanding results validate
the effectiveness of the proposed method in significantly augmenting the precision of
flame detection. Flame detection is a critical task that is typically susceptible to errors,
but the proposed method successfully mitigates these challenges, providing a reliable
and accurate solution.

Although high accuracy in identifying forest fires has been exhibited by the MD-
CNN model, opportunities for optimizing its recognition performance remain. Future
research will be focused on refining model parameters, minimizing model complexity,
and developing a more streamlined and effective model for forest fire recognition. We
will continue to improve the algorithm and utilize better hardware conditions to achieve
faster forest fire detection speed, enhancing the real-time accuracy of forest fire monitoring
and identification.
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