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Abstract: Cinnamomum camphora is an excellent evergreen broad-leaved tree species with strong
stress tolerance, but its molecular character revelation as well as ecological and economic value
improvement were limited due to the lack of a genetic transformation system. To establish a simple
and efficient transient transformation system for uncovering the molecular mechanism of plant
tolerating stresses and promoting the selective breeding of good varieties, the infection method,
co-cultivation time, infection solution concentration, and growth density of Agrobacterium tumefa-
ciens containing green fluorescent protein (GFP)-based calmodulin protein 3 gene (GCaMP3) were
identified by monitoring the fluorescence emitted from GCaMP3 bound to Ca2+. Meanwhile, the
transient transformation effects were evaluated via cytoplasmic Ca2+ concentration variations at
high temperatures of 35 ◦C and 40 ◦C. When C. camphora leaves were infected with A. tumefaciens
containing GCaMP3 via injection and soaking, no significant difference was detected in the flu-
orescence intensity over 48 h, indicating that the two infection methods had the same transient
transformation efficiency. By prolonging the co-cultivation time, the fluorescence intensity gradually
increased, reached its strongest at the 48th h, and then gradually declined. For the infection solution
concentration, an OD600 of 0.7 led to the strongest fluorescence intensity, with an increase of 42.2%,
13.7%, 4.2%, and 14.2%, respectively, compared to that at OD600 of 0.5, 0.6, 0.8, and 0.9. When A.
tumefaciens growth density OD600 was 0.5–0.7, the strongest fluorescence intensity was detected after
transient transformation. Combining these optimum conditions, GCaMP3 was transferred into C.
camphora, which indicated the variations in cytoplasmic Ca2+ concentration at high temperatures,
with the fluorescence intensity at 35 ◦C and 40 ◦C increasing by 12.6% and 30.6%, respectively, in
contrast to that at 28 ◦C. Therefore, it should be an efficient transient transformation system for C.
camphora, with A. tumefaciens growth density OD600 of 0.5–0.7, infection solution concentration OD600

of 0.7, and co-cultivation time of 48 h by using both injection and soak infection methods, which is
beneficial for uncovering the Ca2+ signal transduction in the plant tolerating stresses and promoting
its molecular biology development and selective breeding of good varieties.

Keywords: Agrobacterium tumefaciens; cytoplasmic Ca2+; GCaMP3; high temperature; infection method

1. Introduction

Stable plant genetic transformation is a technology that can transfer exogenous genes
into receptors via different methods to obtain transgenic plants, which plays an important
role in gene function identification and genetic breeding. This technology mainly depends
on the plant regeneration ability and gene introduction efficiency [1]. To date, it has been
successfully applied to many herbs and crops, such as Miscanthus sinensis, wheat (Triticum
aestivum), soybean (Glycine max), and cabbage (Brassica oleracea) [1–4]. In contrast to these
plants, this technology is rarely applied to woody plants, except for Populus, due to its high
heterozygosity and long breeding time [5,6].

Forests 2023, 14, 1872. https://doi.org/10.3390/f14091872 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f14091872
https://doi.org/10.3390/f14091872
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0003-3476-3893
https://doi.org/10.3390/f14091872
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f14091872?type=check_update&version=1


Forests 2023, 14, 1872 2 of 12

Compared to stable genetic transformation, transient transformation exhibits a number
of advantages, such as short periods, high efficiency, labor, and saving time [7]. There
are many types of transient transformation, including Agrobacterium-mediated gene trans-
formation, particle bombardment, electroporation, and poly-ethylene glycol-mediated
transformation [8,9]. Particle bombardment can transfer exogenous genes into a broad
range of plant species, but it requires expensive and special equipment [10]. For electropo-
ration and poly-ethylene glycol-mediated transformation, high-vitality protoplasts are used
as the receptors for exogenous genes. However, protoplast isolation is complicated, and it
is hard to obtain a stable yield [11]. As an alternative approach, Agrobacterium-mediated
gene transformation is widely used in transient assays with several advantages, such as
straightforward operation, low cost, and easily obtaining transformation materials [12,13].
This technology was first developed in tobacco (Nicotiana tabacum) [14] and further ap-
plied to Arabidopsis thaliana, rice (Oryza sativa), tomato (Solanum lycopersicum), etc. [15–17].
However, its application in woody plants is slower than that in herbs. In recent years,
many efforts were made to improve Agrobacterium-mediated gene transformation efficiency,
which promoted its application in woody plants, such as Populus, apple (Malus pumila), tea
plants (Camellia sinensis), and Citrus [18–21].

Cinnamomum camphora (L.) Presl. belongs to the genus Cinnamomum in Lauraceae,
which is an excellent evergreen broad-leaved tree species with strong stress tolerance in
subtropical regions. It not only exhibits ecological value by being used as landscaping
tree species but also exhibits great economic value by extracting essential oil and using it
as furniture material [22,23]. This species exhibits extensive genetic diversity, and simple
sequence repeat (SSR) markers [24], expressed sequence tag-simple sequence repeat (EST-
SSR) markers [25], and genome-wide single-nucleotide polymorphism (SNP) [26] have
been developed for diversity analysis. However, research on other molecular biology
aspects (especially stress tolerance) of the plant is very slow, which limits the improvement
of the plant’s ecological and economic value due to genetic breeding without transgenic
assistance. Although a cold resistance gene is transferred to the embryogenic calluses of
C. camphora, a large number of calluses are false positives, resulting in transgenic calluses
not being screened out [27]. C. camphora contained lots of phenols and oxidases, which
caused serious browning problems during the culturing of transgenic calluses [28]. Then,
it is hard to identify gene functions by using a stable genetic transformation method in
plants. Transient transformation is a powerful tool for analyzing the gene expression in
the original species, but it has not been established in C. camphora until now. This is not
beneficial for promoting the research on C. camphora molecular biology, although plant
genome sequencing has already been completed [29].

Green fluorescent protein (GFP)-based calmodulin protein 3 (GCaMP3) contains a
circularly permutated enhanced GFP flanked by calmodulin (CaM) and myosin light-
chain kinase (M13), which shows green fluorescence in the absence of Ca2+ [30]. To date,
this Ca2+ reporter gene GCaMP3 has been used to uncover Ca2+ signal transduction in
several herbs, such as A. thaliana and duckweed [31,32]. To establish a simple and efficient
Agrobacterium-mediated transient transformation system in C. camphora by using GCaMP3 as
the reporter gene, we identified the infection method, co-cultivation time, infection solution
concentration and growth density of Agrobacterium tumefaciens GV3101 containing GCaMP3
during transient transformation process in this study. To the best of our knowledge, this is
the first report of a transient transformation protocol in plants, which is not only beneficial
for promoting the research on Ca2+ signal transduction in C. camphora tolerating stresses but
also beneficial for promoting plant molecular biology development and selective breeding
of good varieties.

2. Materials and Methods
2.1. Plant Material

Three-year-old C. camphora seedlings with a height of 80 cm were kept in an illumi-
nation incubator, and the regime was 16 h light at 28 ◦C and 8 h dark at 25 ◦C, with a
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light intensity of 200 µmol·m−2·s−1. The relative humidity was 65 ± 5%. After adapta-
tion for 15 days, the 3rd to 5th healthy leaves from the top were used for the transient
transformation.

2.2. Preparation for Infection Solution

A. tumefaciens GV3101 containing GCaMP3 was provided by Dr. Lin Yang at Tianjin
Normal University, China, and the structure of GCaMP3 plasmid is described in detail by
Ren et al. [31]. The bacterium was activated 3 times on a Luria–Bertani (LB) solid plate
containing 50 mg·L−1 kanamycin, 25 mg·L−1 rifampicin, and 25 mg·L−1 streptomycin at
28 ◦C. A single colony was randomly selected and kept in a 10 mL LB liquid medium with
the same antibiotics at 28 ◦C for 18 h. Then, 1 mL of bacterial solution was transferred
into a 20 mL of fresh LB liquid medium, and its OD value was recorded every 2 h to
draw the growth curve. When the cell density reached a given concentration, they were
harvested by centrifugation at 5000× g and used to prepare the infection solution by
resuspending them in a solution containing 5 g·L−1 of sucrose, 0.04% of silwet-77, and
0.1 M of 2-morpholinoethanesulfonic acid (MES). After that, the infection solution was
used for injection and soak infection (Figure 1), which are the two main methods used in
Agrobacterium-mediated transient transformation.
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Figure 1. Experimental procedure of transient transformation in C. camphora leaves infected with A.
tumefaciens via injection and soak infection.

2.3. Infection Methods
2.3.1. Injection Infection

C. camphora leaves were washed twice with sterile water, and the cuticle on the lower
surfaces of the leaves was scraped off using a syringe needle without damaging the lower
epidermis. The above A. tumefaciens in the logarithmic phase with an OD600 of 0.7 was
used to prepare the infection solution, and the solution concentration was indicated by
the bacterial cell concentration with an OD600 of 0.8. The infection solution was injected
into the leaves through the scraped area by using a syringe without a needle, and the color
around the injection site became dark. Then, the infected leaves were covered with a piece
of silver paper to maintain darkness, and the plant was kept in an illumination incubator
under normal culture conditions. After 12, 24, and 48 h, the fluorescence intensity and
GCaMP3 gene in the infected leaves were detected.

2.3.2. Soak Infection

C. camphora leaves were washed with sterile water and the cuticle was scraped off
using a blade without damaging the lower epidermis. The infection solution was prepared
following the injection method, and the scraped leaves were soaked in the solution for
20 min [31]. After being covered with a piece of silver paper, the plant was kept in an
illumination incubator under normal culture conditions, and the fluorescence intensity and
GCaMP3 gene in the infected leaves were detected after 12, 24, and 48 h.
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2.4. Determination of Optimum Co-Cultivation Time, Infection Solution Concentration, and A.
tumefaciens Growth Density

To determine the optimum co-cultivation time, an OD600 infection solution concentra-
tion of 0.6 was prepared with the A. tumefaciens OD600 growth density of 0.7. After the soak
infection step, C. camphora was kept in an illumination incubator under normal culture
conditions, and the fluorescence intensity was measured after 12, 24, 48, 60, and 72 h.

To determine the optimum infection solution concentration, the A. tumefaciens OD600
growth density of 0.6 was used to prepare the infection solution, with the OD600 concentra-
tion of 0.5, 0.6, 0.7, 0.8, and 0.9, respectively. After the soak infection step, C. camphora was
kept in an illumination incubator for 48 h, and the fluorescence intensity was measured.

To determine the optimum growth density of A. tumefaciens, the OD600 infection
solution concentration of 0.7 was separately prepared using the bacterium at OD600 growth
densities of 0.3, 0.5, 0.7, 0.9, and 1.1. After the soak infection step, C. camphora was kept in
an illumination incubator for 48 h, and the fluorescence intensity was measured.

2.5. Assay of Cytoplasmic Ca2+ Concentration under High Temperature

To evaluate the actual effects of the transient transformation protocol, the OD600 A.
tumefaciens with a growth density of 0.5 was used to prepare the infection solution, with
an OD600 concentration of 0.7. This solution was used to infect C. camphora leaves via
soaking, and then the plants were kept in three illumination incubators under normal
culture conditions for 48 h, with 4 plants in each incubator. For high-temperature treatment,
the temperature in the two illumination incubators was separately increased to 35 ◦C and
40 ◦C for 30 min, while the temperature in the other illumination incubator was maintained
at 28 ◦C as the control. Then, the fluorescence intensity was detected, which indicated the
cytoplasmic Ca2+ concentration.

2.6. PCR Analysis

The genomic DNA from C. camphora leaves was extracted following the cetyltrimethy-
lammonium bromide (CTAB) method [33] using a DNA extraction kit (Beijing Kulaibo Tech-
nology Co., Ltd., Beijing, China). Polymerase chain reaction (PCR) was carried out using a
PCR amplification kit (Takara Biotechnology Co., Ltd., Beijing, China). The cloning system
contained 1.25 U Taq polymerase, 100 ng DNA, and 20 µM primers (forward primer: 5′-
ATGGGTTCTCATCATCATCATCAT-3′, reverse primer: 5′-TCACTTCGCTGTCATCATTTG
TA-3′). The amplification procedure was as follows: 94 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C
for 90 s. After 30 cycles, the amplified PCR fragments were analyzed via electrophoresis on
a 1.5% agarose gel.

2.7. Fluorescence Intensity Measurement

In the successfully infected leaf cells, the expressed protein GCaMP3 bound to cyto-
plasmic Ca2+ and showed green fluorescence. This fluorescence was observed by using
a fluorescence microscope (Olympus BX51, Olympus Corporation, Tokyo, Japan) at an
excitation wavelength of 488 nm and an emission wavelength of 507 nm. The fluorescence
intensity was analyzed using ImageJ (1.50i) software.

2.8. Statistical Analyses

At least 4 seedlings were used in each treatment, with each as a biological replicate, and
3 leaves were infected in a seedling, with each as a technological replicate. The statistical
analyses among the treatments with significant differences at p < 0.05 were carried out by
using Origin 8.0 according to the Tukey test in one-way analysis of variance (ANOVA).

3. Results and Discussion
3.1. Effects of Infection Methods on the Transformation Efficiency

In the cells, GCaMP3 is mainly located in the cytoplasm, which combines with Ca2+ to
produce a green fluorescence [31,32]. When A. thaliana and duckweed were transformed
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with GCaMP3 using A. tumefaciens GV3101, green fluorescence was observed in the cells
and veins [31,32]. Similar results were also observed in the present study. When C. camphora
leaves were transformed with GCaMP3 by injection and soak infection, green fluorescence
was detected after 12 h, and the fluorescence intensity gradually increased by prolonging
the co-cultivation time (Figure 2A). During the 48 h, there were no significant differences
in the fluorescence intensity between the two infection methods (Figure 2B). However,
no fluorescence was detected in the leaves infected with A. tumefaciens GV3101 with an
empty vector using the two infection methods (Supplementary Figure S1). After PCR
amplification using specific primers, the products of GCaMP3 (1321 bp) showed bright
electrophoretic bands during co-cultivation for 12, 24, and 48 h after injection and soak
infection (Figure 2C). These results indicate that GCaMP3 was successfully transferred into
C. camphora leaf cells and the two infection methods had the same transformation efficiency.
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Figure 2. Transformation effects of injection and soak infection on C. camphora leaves. (A) Fluorescence
images; (B) fluorescence intensity; (C) PCR results of GCaMP3 gene in C. camphora leaves. M: DNA
marker. 0 h: Before infection. At each time point, different lowercase letters indicate significant
differences (p < 0.05) according to the Tukey test in one-way ANOVA. Means ± SE (n = 4).

Infiltration is the process of substances penetrating from the surface into the depth of
plant tissues, which is specially applied in transient transformation mediated by Agrobac-
terium [34]. This process can be spontaneously performed under normal atmospheric
pressure or forcedly performed by generating a pressure difference between the lamina
surface and the inside of the leaves. In transient transformation, spontaneous infiltration is
considered to be a less efficient manner than forced infiltration [35,36]. In this study, spon-
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taneous infiltration and forced infiltration were carried out by soak infection and injection
infection, respectively, but no difference was detected in the infection effects between the
two methods (Figure 2). Compared to injection infection, there was a large leaf area in
contact with A. tumefaciens during soak infection, which should result in many bacterial
cells entering C. camphora leaves to improve infection efficiency. C. camphora produces
an abundance of phenolic compounds [37,38], which can facilitate the expression of vir
genes in A. tumefaciens to promote the transfer of T-DNA into the leaf cells [39,40]. During
soak infection, the large contact area of C. camphora leaves might provide more phenolic
compounds to promote the transfer of GCaMP3 into leaf cells, resulting in a high transient
transformation efficiency.

3.2. Effects of Co-Cultivation Time on the Transformation Efficiency

When C. camphora was infected with A. tumefaciens via soak infection and co-cultivated
at 28 ◦C, green fluorescence was detected at the 12th h, and its intensity gradually increased
by prolonging the co-cultivation time. The strongest fluorescence intensity was detected
at the 48th h, after which it gradually declined with increasing co-cultivation time, and it
disappeared at the 72nd h (Figure 3).
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Figure 3. Effects of co-cultivation time on the transformation efficiency of A. tumefaciens containing
GCaMP3 in C. camphora leaves. (A–F) The fluorescence images after co-cultivation for 0, 12, 24, 48,
60 and 72 h, respectively. (G) Fluorescence intensity. Different lowercase letters indicate significant
differences (p < 0.05) according to the Tukey test in one-way ANOVA. Means ± SE (n ≥ 4).

The expression of exogenous genes is usually detected within 12 h after transient trans-
formation, and the expression levels gradually increase by prolonging the co-cultivation
time due to the gradual increase in exogenous genes entering the plant cells. However, the
exogenous genes only exist for a short time, usually 3–5 days, in plant cells, as they are
lost when the cells are divided [41,42]. In the present study, the fluorescence intensity in C.
camphora disappeared after 72 h (Figure 3), which may have been caused by the loss of the
GCaMP3 gene during plant cell division.

The optimum expression time varies in different plants. When pineapple (Ananas
comosus) calluses and Chinese birch (Betula platyphylla) leaves were transformed with GFP
using A. tumefaciens, the strongest fluorescence intensity was detected on the third day of
co-cultivation [43,44]. For apricot (Armeniaca vulgaris) calluses, the strongest fluorescence
intensity was detected on the fourth day [45]. When avocado (Persea americana) callus was
transformed with EGFP (enhanced green fluorescent gene) and DsRed (red fluorescent
gene) using particle bombardment, the maximum fluorescence intensity was detected at the
24th and 72nd h, respectively, suggesting that the exogenous genes might also affect their
expression in plant cells [46]. In this study, the strongest fluorescence intensity was detected
at the 48th h, indicating that this should be the optimum co-cultivation time (Figure 3).
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3.3. Effects of Infection Solution Concentration on the Transformation Efficiency

When C. camphora leaves were infected with A. tumefaciens at an OD600 infection
solution concentration of 0.5, 0.6, 0.7, 0.8, and 0.9, the fluorescence intensity gradually
increased with increasing concentration and reached the highest level at a concentration of
0.7. At this concentration, the fluorescence intensity increased by 42.2% (p < 0.05), 13.7%
(p < 0.05), 4.2%, and 14.2% (p < 0.05), respectively, compared to that at OD600 of 0.5, 0.6, 0.8
and 0.9 (Figure 4).
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When OD600 infection concentration was 0.2 and 0.6, A. tumefaciens showed maximum
transient transformation efficiency in sweetgum (Liquidambar formosana) and Quercus robur,
respectively [47,48]. For P. davidiana × P. bollena, the maximum transient transformation
efficiency was detected at A. tumefaciens OD600 concentration of 0.8 [49]. These results
indicate that the receptor plants need specific Agrobacterium concentrations to obtain the
maximum transformation efficiency due to their different sensitivity to the bacterium [50].
High concentrations of Agrobacterium always lower the transient transformation efficiency,
as a high density of Agrobacterium may result in inhibition of the recipient cell respiration
and even cause death of the bacterial cells for their competition [51,52]. This may be the
reason for the low transformation efficiency of high infection concentration (especially
OD600 of 0.9) in C. camphora, and OD600 of 0.7 may be the optimum infection concentration
for high A. tumefaciens numbers and low adverse effects (Figure 4).

3.4. Effects of A. tumefaciens Growth Density on the Transformation Efficiency

Agrobacterium growth undergoes four growth stages, including lag phase, logarithmic
phase, stationary phase, and decline phase [53]. The logarithmic phase is considered the
most vigorous period for Agrobacterium, and the bacterium in this period is always used to
transfer exogenous genes to plants [54]. For A. rhizogenes R1000, the logarithmic phase was
at OD600 = 0.8–1.0 [55]. A. tumefaciens EHA105 and LBA4404 started to enter the logarithmic
phase at 0.3 and 0.5, and ended at 2.4 and 2.7, respectively [56,57]. In the present study, A.
tumefaciens GV3101 was in the logarithmic phase at an OD600 of 0.5–1.5 (Figure 5A). This
indicates that different Agrobacterium species and strains have different growth rates.
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Agrobacterium is not suitable for gene transformation during the lag phase due to its
low activity. However, it has very high activity in the middle and later logarithmic phases
and is still not suitable for gene transformation, as the bacterium produces more toxins
to disrupt the plant’s physiological functions and even cause cell death [58,59]. When C.
camphora was infected with the infection solution (OD600 of 0.7) separately prepared using
A. tumefaciens GV3101 with OD600 growth densities of 0.3, 0.5, 0.7, 0.9, and 1.1, the strongest
fluorescence intensity was detected at OD600 of 0.5 and 0.7 without significant differences
between them (Figure 5B). At an OD600 growth density of 0.5–0.7, A. tumefaciens GV3101
was in the early logarithmic phase (Figure 5A) and exhibited the strongest infection activity
to C. camphora, which might be caused by the bacterium’s high activity and low toxicity to
the plant.

In spinach (Spinacia oleracea), A. tumefaciens GV2260 with an OD600 concentration of 1.0
was the optimum growth density for transient transformation [60]. The highest transient
transformation efficiency was found in Paeonia lactiflor callus and seedlings infected with A.
tumefaciens EHA105 with OD600 of 0.6 and 1.2, respectively [61,62]. In the present study,
the optimum OD600 growth density of A. tumefaciens GV3101 was 0.5–0.7 (Figure 5B). This
might be caused by differences in the Agrobacterium strains and/or acceptor plants.

3.5. Effects of High Temperature on the Fluorescence Intensity

Ca2+ serves an important signaling function in plants that tolerate high temperatures,
and it immediately accumulates in the cytoplasm when plants undergo heat shock; e.g.,
the cytoplasmic Ca2+ concentration in A. thaliana reached its first peak after heat shock for
10 s, and the second peak after 60 s [63]. Under high temperatures at 37 ◦C for 30 min,
a considerable Ca2+ influx was detected in rice root cells, with a remarkable increase
in cytoplasmic Ca2+ concentration [64]. In Ganoderma lucidum, a 2.5-fold increase in the
cytoplasmic Ca2+ concentration was found when the plant was treated at a high temperature
of 42 ◦C for 20 min [65].

Combining the optimum transient transformation conditions that were obtained, C.
camphor leaves were infected with A. tumefaciens containing GCaMP3 with a bacterial OD600
growth density of 0.5, an OD600 infection solution concentration of 0.7 and a co-cultivation
time of 48 h using soak infection. Compared to the control at 28 ◦C, the fluorescence
intensity increased by 12.6% (p < 0.05) and 30.6% (p < 0.05) under high temperatures
of 35 ◦C and 40 ◦C, respectively, indicating that the quantities of Ca2+ that entered the
cytoplasm gradually increased with increasing temperature (Figure 6). This was consistent
with the cytoplasmic Ca2+ concentration increase under high temperatures in previous
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studies [63–65], suggesting that this transient transformation system is efficient and can be
applied to C. camphor.
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4. Conclusions

When GCaMP3 was transferred to C. camphora leaves using A. tumefaciens through in-
jection infection and soak infection, no significant differences were detected in the transient
transformation efficiency between the two methods. During the transformation process, the
optimum A. tumefaciens growth density, infection solution concentration and co-cultivation
time were OD600 of 0.5–0.7, OD600 of 0.7, and 48 h, respectively. This transient transfor-
mation protocol combined with these optimum conditions exhibited effective effects that
were indicated by the cytoplasmic Ca2+ variations in C. camphora under high temperatures,
with a gradual increase in the fluorescence intensity with increasing temperature. This
demonstrates that the protocol is suitable for the transient transformation of C. camphora,
which is not only used to uncover the Ca2+ signal transduction in C. camphora tolerating
stresses but also utilized in plant molecular biology research, promoting selective breeding
of good varieties.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f14091872/s1, Figure S1: Transformation effects of A. tumefaciens
with empty vector and GCaMP3 on C. camphora during 48 h. When C. camphora was infected by A.
tumefaciens GV3101 with empty vector (growth density OD600 of 0.5, infection concentration OD600
of 0.7) by using injection and soak infection methods, no fluorescence was detected during 48-h
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co-cultivation. However, the fluorescence intensity in C. camphora infected by A. tumefaciens with
GCaMP3 gradually enhanced with prolonging the co-cultivation time.
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