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Abstract: The development of stem heartwood and the factors that control it play an important
role in tree physiology, thereby impacting demographic and ecological processes of woody species.
We investigated the relationships of stem heartwood with site- and tree-level variables in Pinus
canariensis plantations. A total of 30 plots were sampled in the island of Gran Canaria, Spain, over
a large elevation range (995–1875 m) and on terrain with different slopes (4%–70%) and exposures.
The 15 pines closest to each plot center were measured and cored to quantify growth rates and the
size of heartwood, also known as “tea”. We used generalized linear mixed models (GLMMs) to
account for both fixed and random effects while evaluating the best predictors of heartwood presence.
Stem diameter was the variable most correlated with heartwood radius, and allowing for a random
slope and intercept of this relationship accounted for spatially related variability. Furthermore, the
GLMM model became more effective when the relationship between stem diameter and heartwood
was modeled using the presence/absence of the “tea” rather than its measured size. Other site- and
tree-level variables either were not statistically significant or improved the model relatively little.
Because stem heartwood affects both wood quality and the amount of carbon that trees can store, our
findings have implications for forest management and carbon-conscious policies.

Keywords: Pinus canariensis; Canary Island pine; tea; mixed-effects modeling; stem heartwood;
heartwood formation

1. Introduction

Xylogenesis, i.e., wood formation, is a complex process that involves cambium division,
growth, elongation and thickening of cell walls, and in the case of tracheids and vessels,
programmed cell death. The part of the xylem that contains living parenchyma cells with
storage substances is called sapwood [1]. As the tree grows, the xylem cells die, giving rise
to the formation of duramen or heartwood [2]. The sapwood performs important functions
in various processes, such as storage of carbohydrates in the parenchyma cells, transport
of water from the roots to the crown, and response to wounds, while the heartwood does
not play a visible physiological role [3–5]. Detection of the proportion of sapwood in total
stem biomass is necessary for large-scale assessments of respiration and transpiration of
woody plants [6].

The heartwood determines tree resistance to physical and biological stressors, ranging
from wind to insects, as well as multiple features of the wood (color, density, chemistry,
etc.) [7,8]. Trees regulate xylem formation and sapwood to heartwood conversion to
maintain efficient water transport as the tree height increases [9,10]. While heartwood
formation is an actively regulated stage in tree growth [11], the role of environmental factors
is still being debated, especially in connection with internal mechanisms, such as age and
loss of vitality of the parenchyma cells [12], toxic effects of polyphenols [13], high levels

Forests 2023, 14, 1719. https://doi.org/10.3390/f14091719 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f14091719
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0003-0651-104X
https://doi.org/10.3390/f14091719
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f14091719?type=check_update&version=1


Forests 2023, 14, 1719 2 of 14

of carbon dioxide [14], ethylene production [2], centripetal diffusion of growth-regulating
substances [15], secretion of hormones [16], and genetic factors [17].

Given that sapwood and heartwood are mutually complementary, one can also infer
heartwood formation processes from sapwood studies. For instance, it has been well estab-
lished that the sapwood basal area is directly related to leaf biomass and, consequently, to
crown size [18–20]. The pipe model theory [21] has been used to estimate leaf biomass and
sapwood production in tree species from both temperate [22–24] and tropical [25] climates
under the hypothesis that sapwood area is maintained to optimize tree development. If,
for example, leaf mass decreases because of high stand density, stem diameter growth
will be reduced and heartwood will form more slowly to compensate for the formation of
less sapwood.

For prediction purposes, stem diameter was among the first variables used to esti-
mate heartwood in pine species [26]. However, cambial age was soon added as a predic-
tor for heartwood in both conifers and angiosperms [16,27,28], together with diameter
growth rates [29]. While cambial age is not always a reliable predictor of heartwood
size in pine species [30], the beginning of heartwood formation (or duraminization) ap-
pears genetically controlled in terms of cambial age, with several pine species clustered
around 30 years [2,31,32]. In other pine species, heartwood formation begins earlier, from
~6 [28] to ~18 [6,33] years. A few angiosperms appear to form their heartwood at an even
younger cambial age, from ~5 years in Populus tremuloides Michx. [27] to 2–4 years in
Tectona grandis Linn F. [34].

Among pines whose duraminization begins around 30 years [35], Pinus canariensis C.
Sm. has been known since ancient times for its resinous, reddish-brown heartwood (called
“tea” in Spanish [36]), which allows for great durability and stability (Figures S1 and S2).
The economic significance of this pine for timber production was higher in the past, and
currently, the species is mostly important in an ecological (restoration/conservation) sense,
especially because Canary Island pine has a very limited endemic distribution, which was
greatly modified by human impacts [37]. In its natural range, the pine forest is usually
located between 800 and 2000 m elevation, although locally, the species can reach down
to 125 m and up to 2300 m in the Canary Islands [38]. Outside its natural distribution
area, Pinus canariensis has been used as an ornamental tree in regions with a Mediterranean
climate, where it has also occasionally been employed for reforestation projects, both for its
adaptation to wildfire and for its resistance to drought, but its low yields in comparison
with other pine species, such as Pinus radiata D. Don, makes its future uncertain [39].

The amount of “tea” (radius or volume) over the natural distribution of the species in
the Canary Islands was found to be directly related to stem age and rate of stem growth;
i.e., for a certain stem age, pines that grow more rapidly have greater heartwood diameter,
especially in their youth [35]. In stands located in the islands of Tenerife, La Palma, El
Hierro, and Gran Canaria, heartwood radius at breast height of Pinus canariensis was best
predicted by stem age, total size of the first 25 and 50 growth rings, and average climatic
conditions [40]. In Pinus radiata plantations, however, the amount of heartwood was found
to depend mostly on the earliest diameter growth, as summarized by the total size of the
first five growth rings [41].

In this study, we investigated the factors most related to heartwood radius at breast
height in plantations of Pinus canariensis that were established throughout the island of
Gran Canaria. Our objective was to build on previous research, which was conducted in
naturally seeded stands, and to test both tree- and stand-related variables in terms of their
“tea” relationships by employing state-of-the-art statistical models.

2. Materials and Methods
2.1. Study Area

Plantations of Pinus canariensis have been established since the 1950s throughout the
species range in Gran Canaria (Canary Islands, Spain; Figure 1), and some stands were
thinned in the late 1990s. Our 30 sample plots were located to capture the variability of
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terrain topography in plantations that had been thinned in 1995–1998 (13 plots) or not (17
plots), and all plots were in areas without tree pests or diseases. Plots were chosen so that
they were always more than 200 m from tracks or roads and more than 500 m from each
other. By selecting 15 trees per plot, a total of 450 trees were measured and cored using
standard tools to determine the extent of the heartwood.
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decreases at higher elevations and on slopes directly exposed to north-easterly trade 
winds [44]. Monthly average total precipitation and mean air temperature for a 
representative station (Figure S3) demonstrate limited seasonal differences in 
temperature, with August being the warmest month (mean of 21.1 °C) and January–
February the coolest ones (mean of 12.4 °C). 

Wet conditions are confined to the winter season (December–February), with 
monthly total precipitation being highest in December (38 mm) and lowest in June–
August (6 mm per month). Annual averages are 16.5 °C for mean air temperature and 245 
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Consejo Insular de Aguas de Gran Canaria, maximum average annual rainfall in the 
island of Gran Canaria reaches 950 mm in areas where trade winds interact with 
topography to generate an almost continuous presence of clouds (“mar de nubes”; 

Figure 1. Repeated photographs of the “Monumento natural del Roque Nublo”, Gran Canaria,
Spain (the island location is shown by a red asterisk in the map on the right), showing the effective
reforestation between 1960 and 2011 obtained by planting the endemic Pinus canariensis (photo credit:
Fondo para la Etnografía y el Desarrollo de la Artesanía Canaria—FEDAC).

The climate of the Canary Islands is characterized by cool trade winds and cold surface
waters [42], which create moderately temperate conditions during the warm season on land,
despite the low latitude of the islands (~28◦ N). In winter, the Azores anticyclone changes
location, and the frequency of trade wind days decreases to about half of the total [43].
Large-scale climatic processes are translated into precipitation and temperature regimes
on land that are heavily influenced by topography, especially elevation and exposure [43].
Overall, precipitation increases and air temperature decreases at higher elevations and
on slopes directly exposed to north-easterly trade winds [44]. Monthly average total
precipitation and mean air temperature for a representative station (Figure S3) demonstrate
limited seasonal differences in temperature, with August being the warmest month (mean
of 21.1 ◦C) and January–February the coolest ones (mean of 12.4 ◦C).

Wet conditions are confined to the winter season (December–February), with monthly
total precipitation being highest in December (38 mm) and lowest in June–August (6 mm
per month). Annual averages are 16.5 ◦C for mean air temperature and 245 mm for total
precipitation. According to recently interpolated graphics produced by the Consejo Insular
de Aguas de Gran Canaria, maximum average annual rainfall in the island of Gran Canaria
reaches 950 mm in areas where trade winds interact with topography to generate an almost
continuous presence of clouds (“mar de nubes”; http://www.aguasgrancanaria.com/
cartografia/tematica/precipitaciones.php, accessed on 2 August 2023).

2.2. Field and Laboratory Measurements

Field measurements and samples were collected in 2001 (Figure S4). Once a tree was
chosen as the center of a plot, the 14 trees closest to it were identified. The height of these
15 trees was measured with a double-needle hypsometer (precision of 0.25 m), their stem
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was measured with a diameter tape (precision of 0.5 cm), and bark thickness was measured
with an appropriate caliper (precision of 1 mm). A wood increment core was extracted at
breast height (~1.3 m from the ground) on the north-facing side of each tree using a 40 cm
Pressler borer. Existing information indicates that heartwood formation in Pinus canariensis
is fairly uniform around the stem (Figures S1 and S2); hence, coring maximized the number
of sampled trees without having to consider the core azimuth. Terrain slope and exposure
were measured at the plot center, whose geographical coordinates were obtained using a
GPS device. After measuring and coring the first 15 trees, the next 15 trees closest to the
plot center were identified. The linear distance (m) from the plot center to tree 15 (D15)
and tree 30 (D30), i.e., the furthest of the first 15 and the furthest of the last 15 trees, were
measured and used to calculate a stand density index as follows [45]:

10, 000
2π

(
15

D2
15

+
30

D2
30

)
(1)

where 10,000 is a conversion factor to express density as number of trees per hectare.
In the laboratory, the wood increment cores were analyzed to obtain the number of

rings and the extent of the heartwood. When the core did not include the stem pith, its
location was approximated using predetermined concentric circles [46], and the number of
rings between the pith and the beginning of the core was then estimated using the average
size of the innermost rings (Figure S5). Visible (and estimated) rings were used to calculate
cambial stem age. Cumulated ring widths were used to reconstruct stem radii at five-year
intervals (R5, R10, R15, R20, ...) with a precision of 0.5 cm. The heartwood radius and the
stem radius inside the bark were also measured on each core. We followed [40]’s statement
that “The sapwood–heartwood boundary is sharply defined by heartwood colour in Pinus
canariensis. Noncoloured heartwood is absent in this species, and thus, all heartwood traits
refer to coloured heartwood.”

2.3. Data Processing and Statistical Model

Because climate data were not available for the actual plot locations, we used to-
pographical features to estimate indices of site moisture and insolation. A 30 m digital
elevation model (DEM) was obtained using the OpenTopography DEM downloader plugin
of QGIS [47] and used to produce a map of topographic wetness index (TWI) and a map of
the Sky View factor. TWI is an index of where water will accumulate as a function of terrain
slope and of the upstream contributing area [48]. Topographic variables (elevation, slope,
and exposure, also in relation to the surrounding terrain) were further integrated into a
Sky View factor, which varies from 1 for completely unobstructed land surfaces (such as
horizontal surfaces or peaks and ridges) to 0 for completely obstructed land surfaces [49].

Frequency histograms, box plots, dot charts, and pairwise sample correlations (both
Pearson’s and Spearman’s) were used for exploratory data analysis and to investigate
relationships among plot and tree variables [50]. Whenever possible, relationships were
examined by plot as well as for the entire dataset. As geographical coordinates were only
available for the plot center, spatial autocorrelation of tree variables was geostatistically
estimated [51,52] for the whole dataset by assigning the same location to all trees within a
plot. The maximum pairwise Euclidean distance between the 30 plots was 17.1 km; 700
m distance intervals were used for variogram estimation and modeling because those
intervals included more than 10 paired distances up to ~13 km.

The statistical relationship between the “tea” radius and other measured variables
was estimated using a generalized linear mixed model (GLMM; [53–55]). To account
for the presence of nested data, i.e., the tree measurements that were taken within each
plot, we used a random effect for the sampled plot and a fixed effect for the tree stem
diameter, with an interaction with the plot that allowed both a random intercept and a
random slope so that the “tea”–diameter relationship could change from place to place.
The potential influence of additional tree variables was tested by adding them as fixed
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terms, one at a time, to this initial GLMM and then comparing the model formulations
using the Akaike information criterion (AIC; [56]). Spatial autocorrelation was modeled by
an exponential covariance structure, and each GLMM was fit using restricted maximum
likelihood estimation (REML; [57]).

Pine heartwood was often absent; hence, the “tea” radius (Rtea) was characterized by a
large frequency of zero values. Because no data transformation can ameliorate this issue, we
also used a binary response (1 for Rtea >0, and 0 otherwise) in order to apply mixed-effects
logistic regression [58]. Introducing a random effect for plot location into the standard
logistic regression model [59] generates a mixed-effects logistic regression. The advantage
of a random intercept model is that the probability of a tree having “tea” is correlated to
other trees on the same plot. It is worth noting that there is no random slope in this model,
and that the predictor (diameter) is a continuous, but truncated, variable because it cannot
be <0. Because of this, prior to model fitting, the diameter was “centered”, i.e., transformed
into deviations from the mean [57]; otherwise, the intercept would represent the probability
that a tree stem of zero diameter had “tea”, even though there cannot be a stem of zero
diameter. By centering the stem diameter, the intercept acquired the more meaningful
interpretation of the probability that a tree of average diameter had “tea”. All numerical
analyses were performed in the R computing environment [60]. The mixed-effects models
were fit using packages nlme [61], glmmML [62], and MASS [63].

3. Results
3.1. Sampled Trees and Exploratory Data Analysis

Sampled plots (Table S1, Figure 2) were distributed over an 880 m elevation interval,
from 995 to 1875 m above mean sea level. Both thinned (13) and unthinned (17) plots were
characterized by terrain that varied from almost flat (4%–9% slope) to steep (60%–70%
slope), with different exposures. The map of TWI (Figure 2a) was plotted using a pseudo-
color scheme, but it should be noted that because of the limited rainfall, there are no rivers
in the island of Gran Canaria, only continuous streams in three of the island’s ravines.

Stand density showed a very large outlier for one of the plots (Table S1), which was
considered to be correct, but its influence on correlations was reduced by log-transforming
(natural logs) these indices. Because the original plot numbers were found to be inversely
correlated with elevation and with the “easting” coordinate (X_UTM, Table S1) but directly
correlated with the “northing” coordinate (Y_UTM, Table S1), such geographical dependencies
were eliminated by reassigning plot numbers at random in subsequent analyses.

Tree-level variables showed reasonably bell-shaped frequency distributions with
the exception of heartwood radius (Rtea; Figures 3 and S6), which was highly skewed
because of a large number of zeros, i.e., stems where heartwood could not be identified.
Stem age for “tea” onset varied, with the earliest presence estimated at cambial ages of
19 years (Figure 4).

Among tree-level variables, stem diameter was the best predictor of heartwood
radius (Figures 3 and S6). Additional significant correlations between Rtea and other
tree-level variables were most likely influenced by their collinearity with stem diameter
(Figures 3 and S6). Some spatial autocorrelation in heartwood radius was suggested by the
variogram model (Figure S7).

3.2. Mixed-Effect Models

The generalized linear mixed model (GLMM), which was estimated with the nlme R
package using restricted maximum likelihood estimation (REML), included both a random
intercept and a random slope to account for plot-related differences in the relationship
between tree stem diameter and “tea”. It also included an exponential covariance structure
to account for spatial autocorrelation in the “tea”. Based on the model output (Table
S2a, Figure 5), the fixed effects, i.e., the intercept and slope for the relationship between
the stem diameter and the “tea” radius, were highly significant (p-value « 0). A high
negative correlation (−0.969) existed between the random intercepts and slopes. The
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Akaike information criterion (AIC) of this model (884; Table S2a) was slightly higher than
the AIC for the GLMM without spatially autocorrelated errors (880; detailed results for that
model are not included).
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Figure 4. Estimated stem age when heartwood could first be identified on 222 out of the 450 sampled pines.

After centering the stem diameter, a mixed-effects logistic regression model was fit to
the data without any error covariance structure. The R package glmmML, which estimated
the model parameters by maximum likelihood (Table S2b), showed that this model had a
much lower AIC (571), thereby suggesting that the relationship between stem diameter and
hardwood radius was more effectively modeled using the presence/absence of the “tea”
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rather than its measured size. Based on the model output (Table S2b), the probability (p)
that the stem of pine j on plot i had “tea” is given by

logit(pij) = −0.038 + 0.089 diamij + ai

with ai ∼ N(0, 0.9762).
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Figure 5. Relationship between stem size and heartwood radius in Pinus canariensis plantations.
The thick black line is the stem diameter–“tea” relationship on a typical plot as linear regression
parameters in the GLMM were estimated with respect to an individual plot (thin black lines) due to
the random intercept and slope (see text for details).

Because the random intercept ai was assumed to be normally distributed with mean 0
and variance 0.9762, 95% of ai values would be between −1.96 × 0.976 and 1.96 × 0.976,
which resulted in the 95% confidence interval of (−1.913, 1.913). GLMM-predicted prob-
abilities of “tea” presence with respect to (centered) stem diameter for pines at all plots
are shown graphically in Figure 6 using the logistic curves for a “typical” plot and for the
upper and lower limits of this 95% confidence interval.

Based on the model results, going to a typical plot and sampling a pine of average
stem diameter (the 0 value on the x-axis of Figure 6), the probability of finding “tea” would
be ~0.49, which is the y-axis value obtained from the population curve (thick red line in
Figure 6). Therefore, there is essentially a 50–50 chance of finding “tea” on an average pine
sampled on a typical plot. In addition, for 95% of plots, this probability can be anything
between 0.12 and 0.87 (i.e., the y-axis values obtained from the thin red lines in Figure 6),
pointing to a large degree of inter-site variation.

Further Testing of Fixed Effects

Further statistical testing focused on other potential predictors of stem heartwood
radius. Briefly, no other fixed effect appeared to contribute significantly to the predictive
power of the mixed-effects logistic regression model shown earlier, and we report here
two examples of those additional analyses. First, we investigated the impact of thinning
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by adding a categorical dummy variable (either 0 or 1) as a second fixed effect, together
with its interaction with the stem diameter. Based on the p-values, the treatment and its
interaction with stem diameter were not significant (p-value > 0.4), either in the GLMM
with spatial autocorrelation (Table S2c) or in the logistic GLMM (not shown).
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Figure 6. Logistic curves showing the estimated probabilities of “tea” presence for a range of stem
diameter anomalies (= centered values). The thick red line in the middle corresponds to a typical plot,
i.e., the predicted probability for the “population of locations”, or ai = 0. The other two red lines are
obtained by adding and subtracting 1.913 from the random intercept to the predictor function. Hence,
95% of the plots have logistic curves between these two extremes, and the space between these two
curves represents the variation of predicted values per plot.

The second example reported here deals with the tree initial radial growth rate, rep-
resented by the cumulated size of the first five annual rings (R5 in Figures 3 and S6).
As shown by smoothed scatterplots (red lines in Figure S6), this variable was positively
correlated with stem diameter (linearly), height (nonlinearly), and the size of the heart-
wood (slightly). The (centered) R5 had a negative and barely significant (p-value = 0.0397)
coefficient in the logistic GLMM (not shown), but its interaction with the stem diameter
was not significant (p-value = 0.665). The mixed-effects logistic regression model was,
however, slightly improved by adding this second fixed term, as shown by a minimally
lower AIC (569.8). Because the interaction term was not significant, the model was refitted
without it, and the AIC decreased a bit more (568; Table S2d). Because the output from the
glmmML package did not include the estimated correlations between fixed effects, we used
the glmmPQL function from the MASS package to obtain that information (Table S2e). The
interaction term between the two fixed effects was confirmed to be nonsignificant (results
not shown); hence, the model was refit without the interaction, and a high negative corre-
lation (−0.607) was found between the two fixed effects, i.e. stem diameter and five-year
cumulative growth.

Based on the model output (Table S2e), the probability (p) that the stem of pine j on
plot i had “tea” is given by

logit(pij) = −0.033 + 0.122 diamij − 0.344 R5ij + ai (2)

with ai ∼ N(0, 1.0342).
A graphical representation of GLMM-predicted probabilities that pine j on plot i had

“tea” would require a 3D plot to include the “stem diameter anomaly” axis (Figure 6) as well
as the new “R5 anomaly” axis. In addition, one can derive from the logit equation that there
is still essentially a 50–50 chance of finding “tea” on an average pine sampled on a typical
plot, with 95% of plots having probability between 0.11 and 0.88. Overall, introducing the
R5 variable as a fixed effect improved the model relatively little, even though measuring
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R5 requires considerable extra effort both in the field (to collect increment cores) and in the
laboratory (to analyze growth rings).

4. Discussion

In our study, the presence of heartwood or “tea” in Pinus canariensis stands that were
planted in the island of Gran Canaria was most efficiently predicted by stem diameter
measured at breast height. Based on the GLMM with exponential error covariance structure,
some spatial autocorrelation occurred up to a linear distance of about 500 m, but there was
no statistical advantage for including this model component. In other words, a random
slope and intercept of the DBH–“tea” relationship already accounted for most of the
spatially related variability in heartwood radius. Furthermore, the GLMM model became
more effective when the relationship between stem diameter and heartwood was modeled
using the presence/absence of the “tea” rather than its measured size.

Stem diameter was also the best estimator of heartwood radius for seven Chinese
species in temperate climates [64]. The connection between heartwood formation and tree
diameter was found to be stronger than the one with age in other species too, including
Tectona grandis [65], Acacia melanoxylon R. Br. [66], and Eucalyptus globulus Labill. [67].
However, stem age was found by other authors to predict the amount of heartwood in
Pinus canariensis [40,68] and in other species [16,27,28]. As the maximum estimated tree
age at our study plots was 46 years (Figure 4), which is quite low due to the artificial
regeneration of these stands, it is possible that the relationship between stem age and “tea”
was masked by the connection between stem age and size, which is usually stronger at
younger ages.

It should be noted that the onset of “tea” formation was found to be at about 30 years
of age in naturally regenerated stands of Canary Island pine [40,68], whereas in the sampled
plantations, it was about 2/3 of that at ~19 years (Figure 4). The earlier appearance of
“tea” in these artificial stands could be linked to lower competition for resources because of
understory removal at the time of planting and fairly regular spacing among pines. Pinus
canariensis is a shade-intolerant species; hence, its natural regeneration occurs mostly after
disturbances, such as wildfires or tree falls, which open forest gaps where regeneration is
abundant, and growth is then slowed down by competitive interactions.

Initial stem growth, when cambial age is low, has been found to have a positive
influence on the development of heartwood in natural stands of Pinus canariensis [35] and
Pinus radiata [41,69]. In our study, cumulated wood increments during the first five years
of cambial age (the “R5” variable), while statistically significant, added comparatively
little to the performance of the GLMM. Furthermore, the sign of the fixed-effect coefficient
for R5 was negative, which is the opposite of what was observed in previous studies.
While we cannot exclude a numerical artifact caused by computational instabilities that
are inevitable under collinearity of predictors [57,70], it is conceivable that larger tree
rings would imply larger cell lumens, which in turn could favor sap flow, prevent lumen
occlusion, and thereby delay the formation of heartwood. Future research should be aimed
at investigating chemical and anatomical characteristics of Pinus canariensis heartwood to
test such an intriguing hypothesis.

The lack of a significant difference in the relationship between stem diameter and
heartwood formation between plots that were thinned and those that were not may be
linked to several factors. It is interesting to note that a similar lack of reaction to pruning
was reported for Pinus sylvestris [71], which experienced a negative defoliation impact
in terms of stem growth rates but no significant connection to heartwood size. Because
heartwood formation was not favored by thinning and firewood obtained from intermediate
silvicultural treatments of Canary Island pine has no economic value, our study suggests
that reforestation should be carried out at final densities or close to them so that thinning is
not necessary.

While we estimated climatic conditions at the sampled plots using topographically
derived variables, and found no significant correlations, other studies have indicated that
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climate can influence heartwood formation in both conifers [72,73] and angiosperms [74].
For teak (Tectona grandis) grown in India, wet sites yielded larger heartwood than dry
sites [75], whereas the opposite case was found for teak planted in Ghana [76]. In the boreal
forest, black spruce (Picea mariana (Mill.) BSP) heartwood was greater under wet conditions
than under dry ones [77], whereas in natural stands of Pinus canariensis, humid climates
corresponded to lower amounts of heartwood than dry climates [40]. Future research
should further test the impact of climatic variability on heartwood formation because there
is a possibility that our sampled plots were located in areas with higher moisture compared
to the entire range of climatic conditions that are naturally experienced by Pinus canariensis
in its native habitat.

The heartwood (“tea”) of Pinus canariensis has been used for economic and cultural
activities as a highly prized material because of its color, density, and durability. There is
archeological evidence that even pre-Hispanic societies used “tea” for constructing barns
and for funeral practices [78]. Intensive exploitation of the pine forest in the Canary Islands
started in the 15th century with Spanish colonization as quality wood was required to build
furniture and ships and very large pines were present in the islands, most likely exceeding
the height and diameter of any currently remaining pine [35].

The percentage of heartwood in mature trees is an essential characteristic for both
wood quality and carbon sequestration [79]. Carbon absorbed from the atmosphere is
deposited for a long time in the living tissue of woody plants, but there are differences in
carbon amounts between heartwood and sapwood, which are usually inconsistent between
species and within taxonomic groups [80]. As carbon stocks in forest ecosystems play a
fundamental role in global management of natural resources in a changing world [81,82],
future research should then be aimed at clarifying the factors that control heartwood
formation in this species as well as others with the goal of designing the most carbon-
conscious forest policies.
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the cross-sectional decay resistance of heartwood compared to sapwood in Pinus canariensis; Figure S3:
Walter–Lieth climate diagram for a representative station [83]; Figure S4: The first author coring a
Pinus canariensis on one of the study plots; Figure S5: The Applequist estimator for average ring
width of 2.5 mm; Figure S6: Paired-sample linear correlations between plot and tree variables;
Figure S7: Omnidirectional sample variogram and fitted exponential model for heartwood radius;
Table S1: Summary information for sampled plots; Table S2. Output of mixed-effects models estimated
using R packages.
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