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Abstract: The response of spatial and temporal vegetation changes to runoff is a complex process
involving the interaction of several factors and mechanisms. Timely and accurate vegetation and
runoff change information is an important reference for the water cycle and water resource security.
The Ebinur Lake Basin is representative of arid areas worldwide. This basin has been affected by
climate change and human activities for a long time, resulting in the destruction of the basin’s
ecological environment, and especially its vegetation. However, there have been few studies that
have focused on watershed vegetation and runoff changes. Therefore, we combined Generalized
Information System and remote sensing technology, used SWAT and InVEST models based on the
Google Earth Engine platform, and used the vegetation normalization index method to calculate
the spatial distribution of vegetation and water production from 2000 to 2020 in Ebinur Lake. Sen’s
trend analysis and the M–K test were used to calculate vegetation and runoff trends. The relationship
between vegetation and runoff variation was studied using bivariate spatial autocorrelation based on
sub-basins and plant types. The results showed that the Z parameter in the InVEST model spanned
from 1–2. The spatial distribution of the water yield in a watershed is similar to the elevation of
the watershed, showing a trend of higher altitude leading to a higher water yield. Its water yield
capacity tends to saturate at elevations greater than 3500 m. The local spatial distribution of the
Normalized Difference Vegetation Index(NDVI) values and water yield clustering in the watershed
were consistent and reproducible. Interannual runoff based on sub-basins correlated positively with
the overall NDVI, whereas interannual runoff based on plant type correlated negatively with the
overall NDVI.

Keywords: Ebinur Lake watershed; bivariate spatial autocorrelation; Google Earth Engine; InVEST
model

1. Introduction

Vegetation is an important component of terrestrial ecosystems and is a foundation for
the survival of other organisms [1,2]. In the context of global climate change, the frequency
of droughts, areas affected, and degree of damage are increasing annually [3,4]. Many
rivers worldwide are experiencing substantial declines in water flow, with some completely
drying. This has resulted in severe effects on humans and the environment [5,6]. Climate
change has had a direct impact on precipitation patterns, affected water and sand transport
systems, and had a considerable impact on regional ecological security [7]. Therefore,
understanding how vegetation responds to variations in runoff is crucial for determining
ecological changes.
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Vegetation serves as a link in the material cycle and plays an important role in surface
energy conversion, climate regulation, and water transfer [8–10]. Vegetation affects surface
runoff through land-based water cycle processes such as precipitation interception, surface
evaporation, and soil water infiltration [11,12]. The hydrological cycle in arid zones is
extremely vulnerable. Therefore, the response of runoff changes to human activity and
climate change is highly sensitive [13,14]. For example, simulations of runoff under different
scenarios have shown that the aridity of the Alwand Basin in Iran has increased [15]. Arid
locations typically have low population densities. Given the water resource limitations,
human activities in arid areas are often concentrated around areas that do have water
resources [16]. There are relatively few land-use types in dry zones, with land primarily
being used for agriculture or construction [17]. However, agricultural irrigation and urban
development require substantial amounts of water, making water resources increasingly
scarce [18]. Furthermore, some engineering projects aimed at water conservancy, such
as dam closures and cross-basin water diversions, may affect runoff. These projects alter
the distribution of natural runoff, thereby affecting hydrological processes [19]. In the
Minab River Basin of Iran, the increase in land use has led to a considerable reduction
in runoff [20]. When human activities involve water resource development and overuse,
water resources are more rapidly depleted [19,21]. As global climate change continues,
the shift in precipitation patterns has become most pronounced in arid zones, typified
by decreasing rainfall, increasing evaporation, decreasing soil moisture, and exacerbating
runoff decline [22,23]. Continuous climate change may lead to the collapse of entire
ecosystems in arid areas. Therefore, effective measures need to be taken to strengthen water
resource protection and management to address the challenges posed by human activities
and climate change.

The Ebinur Lake Basin is part of the “Silk Road Economic Belt”, and its soil and
water security are closely linked to the economy of China. The ecological environment of
the Ebinur Lake Basin is affected by human activity and climate change [24]. Grassland
degradation, water scarcity, and land desertification are becoming more prominent in this
basin [3]. Grassland deterioration is a critical issue, primarily due to overgrazing and
reclamation [25]. These activities have reduced grassland cover and caused vegetation
deterioration, which has hastened land desertification [26]. Furthermore, water resources
in the Ebinur Lake Basin are under increasing strain from economic expansion and rapid
urbanization [27]. Ebinur Lake Basin is a region with scarce hydrological data. There are
fewer hydrological stations within the watershed. Obtaining hydrological data is only
point data. In this context, many researchers have studied the internal causes of lake area
changes, runoff (channel flow) changes, land-use changes, and soil salinization to address
increasingly prominent water resource problems [27–29]. Water scarcity in the Ebinur Lake
Basin has been linked to a decrease in runoff caused by climate change and an increase in
water demand caused by increasing the expansion of cultivated land and plantation [28,30].
Different types of land use have different impacts on vegetation and runoff [19,27,30].
Compared to bare land, surface runoff covered by vegetation is more likely to exhibit
gradual characteristics, with runoff time concentrated over a longer period of time rather
than a brief peak [19]. The impact of different vegetation on runoff is also different. The
runoff of herbaceous plants and forests started significantly later than that of shrubs [31].
To date, the relationship between vegetation and runoff (overland flow) in the Ebinur Lake
Basin is not clear. For example, it is not yet known whether the temporal and spatial changes
in vegetation and runoff in the sub-basin are the same as those throughout the whole basin
and how each vegetation type affects runoff. The spatiotemporal changes of vegetation and
runoff (overland flow) are interdependent. Examining the spatial and temporal variations
between them can help develop strategies for the sustainable use of watershed water
resources. Therefore, ecological and environmental monitoring and scientific research have
become important tools for protecting the ecological and environmental security of the
Ebinur Lake Basin.
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In this study, we used the bivariate spatial autocorrelation method to study the rela-
tionship between vegetation and runoff changes from the perspective of sub-watersheds
and plant types. This research aimed to investigate three scientific questions: (1) how
runoff in the watershed varied in space and time; (2) how the vegetation in the watershed
changed over time and space; and (3) whether there is a link between vegetation and runoff
in watersheds.

2. Overview of the Study Area

The Ebinur Lake Basin (Figure 1) (44◦02′–45◦23′ N, 79◦53′–83◦53′ E) is a component of
the Xinjiang Uygur Autonomous Region’s Boltara Autonomous Prefecture. The area has a
northern temperate continental arid climate. The difference between the daily and annual
temperatures of the basin is large, with hot summers and cold winters. For several years, the
average annual precipitation has been 116–170 mm. The annual evaporation rate exceeds
1000 mm. The terrain of the watershed is complex, flanked by mountains on three sides, and
is a well-known wind outlet in China, with northwest winds dominating in all years [28].
The watershed vegetation is classified into seven types: alpine vegetation, coniferous forests,
agricultural fields, grasslands, meadows, shrubs, and deserts. The basin is relatively rich in
species, with up to 36 types of national first- and second-class protected animals. There
are 79 plant families and 413 plant species with medicinal potential, primarily Chinese
wolfberry, ephedra, licorice, and rare plants such as red Mentha [32].
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Figure 1. Ebinur Lake Basin.

3. Data and Methods
3.1. Data Sources

The interaction between vegetation and runoff has predominantly been investigated
by constructing sample plots [31]. However, to date, actual measured data gathered in
the experimental region have been limited. Therefore, we used easily accessible remote
sensing data in our study. The water production module of the InVEST model (Figure 2)
is a tool used for assessing natural capital management and the sustainable use of water
resources [27].
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Figure 2. InVEST model water production module.

The water production module was used to evaluate the quantitative and distribution
properties of water resources and the impact of factors such as hydrographic conditions,
precipitation, and evapotranspiration [33–35]. For this model, data on precipitation, refer-
ence evapotranspiration, land use, soil data, soil moisture content, a digital elevation model
(DEM), and biophysical tables are required. Table 1 summarizes the data used in the study.

Table 1. Dataset descriptions, processing, usage, and sources used in this study.

Type Data Description Processing and Usage Source

Hydrological Surface water
volume

Reflects the total amount of
surface water in the region
during the year

Used to calibrate data
and calculate water
production modulus

Bortala Autonomous Prefecture
Hydrological Bulletin 2000–2020

Remote
sensing

Precipitation Monthly precipitation data
with a spatial scale of 1 km
resolution

Exploring the spatial
distribution
differences of
precipitation for
calibrating InVEST

National Tibetan Plateau Data
Center (http://data.tpdc.ac.cn
(accessed on 18 April 2023)) [36]

Potential evapo-
transpiration

Monthly potential
evapotranspiration dataset
with a spatial scale of 1 km

Used for calibrating
InVEST

National Tibetan Plateau Data
Center (http://data.tpdc.ac.cn
(accessed on 18 April 2023)) [36]

Land use Landsat images generated
through manual visual
interpretation

Used for calibrating
InVEST

Google Earth Engine Remote
Sensing Cloud Computing
Platform Download Land Use
Classification Maps for Each Year
from 2000 to 2020 [37]

DEM Digital elevation model with a
resolution of 30 m

Calculating watershed
boundaries and
describing terrain
undulation data for
calibrating InVEST

National Tibetan Plateau Data
Center (http://data.tpdc.ac.cn
(accessed on 18 April 2023)) [36]

NDVI Maximum NDVI value
synthesized over 16 days
based on Terra satellite global
vegetation index at 250 m

Analyzing the
spatiotemporal changes
in NDVI and
discussing the
relationship between
runoff and vegetation
cover

Google Earth Engine Remote
Sensing Cloud Computing
Platform Calculate NDVI for Each
Year from 2000 to 2020

Soil Soil data Contains all attributes of soil
(HWSD) Dataset (v1.2)

Calculating soil water
content for calibrating
InVEST

National Tibetan Plateau Data
Center (http://data.tpdc.ac.cn
(accessed on 18 April 2023)) [38]

Other
data

Biophysical
table

Reflects the attributes of soil
coverage and LULC, including
LULC encoding, plant
evapotranspiration coefficient
(Kc), and root depth

Used for calibrating
InVEST

Literature [25] and InVEST user
guide [39]

http://data.tpdc.ac.cn
http://data.tpdc.ac.cn
http://data.tpdc.ac.cn
http://data.tpdc.ac.cn
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3.2. Data Analysis
3.2.1. InVEST Water Production Model

Vegetation and runoff data have been used to establish water balance models, Lorenz
curves, and Budyko data to explore the relationship between vegetation and runoff [40–42].
However, modeling using these methods only reflects the linear relationship between the
two and does not visualize their spatial relationship. Therefore, this study used the water
production module of the InVEST model, which is based on the water balance principle, to
determine the water production of each raster in the watershed and to obtain the spatial
distribution of runoff.

The equations used are as follows:

YXJ =

(
1−

AETXJ

PX

)
× PX , (1)

AETXJ

PX
=

1 + ωXRXJ

1 + ωXRXJ +
1

RXJ

, (2)

RXJ =
KXJ × ET0

PX
, (3)

ωX = Z
AWCX

PX
, (4)

where YXJ denotes the annual water yield of the study area, AETXJ is the average annual
actual evapotranspiration, PX is the average annual precipitation, and RXJ is the dimension-
less drying index obtained from the ratio of potential evapotranspiration to precipitation.
ET0 is the average annual potential evapotranspiration. KXJ is the vegetation evapotranspi-
ration coefficient corresponding to different land-cover types in the raster cell, whose values
can be obtained by consulting the data. Z is a seasonal parameter used to characterize the
seasonality of precipitation. AWCX is the available water content of the plant, and its value
is determined by soil depth, soil texture, and organic matter content. In this study, the
plant available water capacity (PAWC) calculated from soil data was used instead of the
AWCX [43]. The equation used is as follows:

PAWC = 54.509− 0.132 Sand− 0.003(Sand)2 − 0.055 Silt− 0.006(Silt)2

−0.738 Clay + 0.007(Clay)2 − 2.688c + 0.501(C)2,
(5)

where sand is the soil sand content, silt is the soil powder content, clay is the soil clay
content, and C is the soil organic matter content.

3.2.2. Correlation Analysis

Bivariate spatial autocorrelation analysis was used to describe the spatial correlation
and dependency characteristics of the two geographical features. Unlike traditional spatial
autocorrelation analysis, which considers only one variable, bivariate spatial autocorre-
lation analysis can more accurately show the spatial relationships between geographical
phenomena [44]. The specific equations are as follows:

I =
∑c

a=1 ∑c
b=1 Wab(xα − x)

(
yj − y

)
N2∑c

a=1 ∑c
b=1 Wαβ

(6)

where I is the global spatial autocorrelation index, c is the number of research units, Wab
is the spatial weight matrix, xa and ya are the values of the independent and dependent
variables in spatial units a and b, respectively, and N2 is the variance of all samples. The
specific equations are as follows:

Ia = za∑c
j=1 WabZb (7)
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where Ia represents the local spatial relationship between the independent and dependent
variables in study unit a. Za and Zb are the standardized values for the variance of the
observation values of study units a and c. The distribution map of local indicators of spatial
association (LISA) formed can show the clustering and differentiation characteristics of
independent and dependent variables in the local region. The SWAT model is widely
used in the field of hydrological research [15,20]. In this study, we only used DEM data
to generate watershed boundaries and sub-watershed boundaries through SWAT models.
This study refers to the nonparametric linear regression technology and uses Theil–Sen
trend analysis and the Mann–Kendall test method to study the spatial and temporal change
trend of NDVI and runoff in Ebinur Lake Basin from 2000 to 2020 [15,45]. We used ArcGIS
(version 10.2) to create images.

4. Results
4.1. Calibration and Validation of InVEST

The results obtained from the InVEST water production module represented the total
amount of water produced in the input catchment. Given that the area of the delineated
watershed was not the same as the catchment area of the measured data, the simulated
water production values could not be directly compared with the measured surface water
volume. The water production modulus was used to compare the differences between the
simulated and measured values (Figure 3). The sensitive factor affecting the model was
the parameter Z. Therefore, we calibrated the Z parameter based on the water production
modulus obtained from the hydrological bulletin of the Bortala Autonomous Prefecture
from 2000 to 2020. We used correlation coefficients for several tests between the simulated
and measured values to select the optimal Z value, as shown in Table 2. The correlation
coefficient between the simulated and measured values was 0.74. The results showed that
the larger the Z parameter, the smaller the value of water production. Most of the Z values
were in the range of 1–2. When precipitation tended to be stable, close to the multi-year
average, the Z value did not change significantly. When the precipitation exceeded the
average, Z increased.
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Figure 3. Simulation results and measured values.
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Table 2. Z parameters.

Name Value

Year 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010
Z 1 1.5 1 1 11 1.7 1 1.6 1 1.7 11

Year 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000
Z 2 1 1.1 1 1.2 1 1.5 1.6 1 1

4.2. Spatial Patterns of Interannual Water Content and NDVI

Based on the water production module of the InVEST model, the annual water yield of
the basin was estimated for 2000–2020 (Figure 4). Areas with higher water yields were in the
upper part of the basin, and smaller areas were in the lower part. The spatial distribution of
the water content in the basin was similar to the elevation of the basin. This indicated that
the higher the elevation, the higher the water content. The maximum water content from
2000 to 2020 was recorded in 2016, with a maximum value of 993.38 mm. The minimum
water content depth was recorded in 2008, with a value of 393.04 mm. The multi-year
average water production was 682.938 mm.
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The relationship between runoff production depth and elevation was further divided
based on the spatial distribution of water production and DEM elevation values from
2000 to 2020 (Figures 4 and 5). The study area was divided into three zones with low,
medium, or high values. The elevation of the low-value zone was 162–1250 m, which is in
the red area of the spatial distribution of water production (Figure 4). The elevation of the
middle-value zone was 1250–3000 m, which is within the red and light-blue zones of the
spatial distribution of water production (Figure 4). The high-value area was 3000–4603 m
above sea level and was within the light-blue and blue areas of the spatial distribution of
water production (Figure 4). There was a saturation point in the high-value area (Figure 5).
Its water production capacity tended to saturate at an elevation of 3500 m or more. The
water production capacity of the land type was higher because of the presence of snowy
mountains above 3500 m in elevation.

- - - - - - - - - - - - - - - - - - - -saturation linezone line

Figure 5. Relationship between runoff production depth and elevation values.

Based on the Google Earth Engine platform, NDVI was downloaded and calculated
for each year from 2000 to 2020 (Figure 6). We use red lines to divide the watershed into low
value areas, median areas and high value areas based on the trend of the data. The blue line
represents the saturation line of runoff at altitude. The maximum NDVI value was 0.6936
in 2003, and the minimum NDVI value was 0.6091 in 2020, with a multi-year average NDVI
value of 0.6193. The maximum NDVI values were spatially distributed in the northern
and southeastern mountainous areas of the basin, where the main vegetation types were
alkaline vegetation and coniferous forests. The minimum NDVI values excluding water
bodies were distributed in the marginal areas of the basin. There were large desert areas
between the arable land and grasslands, and the NDVI values for desert vegetation were
the lowest. The vegetation in the study area was characterized by the distribution of natural
plants around it and agricultural fields in the middle.



Forests 2023, 14, 1699 9 of 18

4
6
°

0
'
0
"
N

4
5
°

0
'
0
"
N

4
4
°

0
'
0
"
N

2000

4
6
°

0
'
0
"
N

4
5
°

0
'
0
"
N

4
4
°

0
'
0
"
N

2004

4
6
°

0
'
0
"
N

4
5
°

0
'
0
"
N

4
4
°

0
'
0
"
N

2008

4
6
°

0
'
0
"
N

4
5
°

0
'
0
"
N

4
4
°

0
'
0
"
N

2012

4
6
°

0
'
0
"
N

4
5
°

0
'
0
"
N

4
4
°

0
'
0
"
N

2016

83°20'0"E82°0'0"E80°40'0"E

4
6
°

0
'
0
"
N

4
5
°

0
'
0
"
N

4
4
°

0
'
0
"
N

2020

2001 2002 2003

2005 2006 2007

2009 2010 2011

2013 2014 2015

2017 2018

83°20'0"E82°0'0"E80°40'0"E

2019

83°20'0"E82°0'0"E80°40'0"E

Multi-year average

value

 0

0.6732

value

 0

0.6091

value

 0

0.6193

value

 0

0.6566

value

 0

0.6312

value

 0

0.6543

value

 0

0.6543

value

 0

0.6543

value

 0

0.6599

value

 0

0.6618

value

 0

0.6698

value

 0

0.6936

value

 0

0.6456

value

 0

0.6157

value

 0

0.6573

value

 0

0.6336

value

 0

0.6111

value

 0

0.6305

value

 0

0.6264

value

 0

0.6826

value

 0

0.6431

value

 0

0.6223

Ü
83°20'0"E82°0'0"E80°40'0"E

4
5
°

3
0
'
0
"
N

4
4
°

3
0
'
0
"
N

4
3
°

3
0
'
0
"
N

Vegetation  map

Vegetation type
Alpine vegetation

Coniferous forest

Cultivated plant

Desert

Grassland

Meadow

No vegetation Shrubs

0 200
Km
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4.3. Interannual Water Content and NDVI Trend Analysis

The temporal and spatial trends of interannual water content and NDVI from 2000 to
2020 were analyzed and tested for significance using the Theil–Sen median trend analysis
method (Figure 7a,b). The NDVI values in the middle of the watershed showed a significant
increasing trend (Figure 7a). Based on the plant type diagram, cultivated plants showed
a significant increase (Figure 5). A significant decrease in NDVI values occurred in the
northern part of the watershed. No significant changes were observed in the other areas. In
general, the spatial pattern of runoff did not change significantly (Figure 7b). Water content
decreased significantly in the central part of the watershed.

Figure 7. Schematic diagram of NDVI and water production changes from 2000 to 2020: (a) trend
change in NDVI; (b) trend change in runoff.
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4.4. Interannual Water Yield and NDVI Autocorrelation Analysis Based on Sub-Basins

A bivariate spatial autocorrelation analysis was performed between the interannual
water yield and NDVI values in the sub-basins (Figure 8). The Moran’s I was positive
from 2000 to 2020, with a range of 0.048–0.263. Its two variables showed a strong positive
spatial correlation, that is, the more water yielded, the greater the NDVI value within the
sub-basin. Moran’s I index in 2002 was the highest at 0.101. The Moran’s I index in 2010
was the lowest at 0.048. Most of the 24 sub-watersheds were distributed in quadrants 1, 2,
and 3.

Figure 8. Moran’s index based on interannual water yield and NDVI in sub-basins.

Combining the interannual water yield and NDVI (LISA) cluster analysis, high–high
clustering was found in sub-basins 3, 5, 8, and 20 (Figure 9). Sub-basin 8 was the area
where the maximum NDVI value was recorded, and the maximum water yield was also
recorded in that area. Therefore, the spatial autocorrelation between the two was relatively
high. The only area with low–high clustering was sub-basin 13, which was in the middle
reaches of the basin and had stable low–high clustering of NDVI and water yield over
the last 21 years. The low–low clustering areas were sub-basins 2, 6, and 12, which were
downstream of the study area. The high–high clustered sub-basins and low–low clustered
sub-basins had a contiguous distribution.

4.5. Interannual Water Yield and NDVI Autocorrelation Analysis Based on Vegetation Type

A bivariate spatial autocorrelation analysis was performed between the interannual
water yield of the vegetation types and NDVI values (Figure 10). Moran’s I index was
negative from 2000 to 2020, showing a strong dispersion trend. Moran’s I index was the
highest in 2008, at −0.116, and the lowest in 2018, at −0.340. Vegetation was divided into
seven types: alpine vegetation, coniferous forests, cultivated plants, grasslands, meadows,
shrubs, and desert (Figure 5). Given the discrete distribution of vegetation types, they were
divided into 162 vegetation areas. The samples were distributed across all four quadrants,
mainly in quadrants 2 and 4.
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NDVI and water production cluster

Figure 9. LISA clustering analysis of interannual water production versus NDVI based on sub-basins.

Figure 10. Moran’s index of interannual water yield and NDVI based on vegetation type.

Based on the LISA clustering analysis of interannual water yield and NDVI based
on vegetation types (Figure 11), the vegetation types with high–high clustering included
meadows and grasslands. Meadows in the north were highly clustered for the last 21 years.
The year with high–high clustering in grasslands was 2008, with one year of occurrence.
The grasslands in other years were generally in a low–high concentration state. Meadows
and alpine vegetation exhibited high–low clustering and low–low clustering, respectively,
and were located in the south and west of the watershed. The vegetation types with low to
high concentrations included grasslands and agricultural fields located in the middle of
the watershed.
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Figure 11. LISA cluster analysis of interannual water yield and NDVI based on vegetation type.

5. Discussion
5.1. Factors Potentially Affecting Changes in Vegetation and Runoff

The changes in vegetation and runoff were influenced by various natural and an-
thropogenic factors. The current study concluded that water production was positively
correlated with precipitation, PAWC, and DEM and negatively correlated with NDVI and
PET (Figure 12a). The positive correlation between water production and elevation is
the highest. Our results showed that the spatial distribution of water production in the
watershed was similar to the elevation of the watershed, with a trend of increased water
production at higher elevations. This is because of the presence of snow-capped mountains
at higher elevations and iceberg meltwater, which is the main source of water supply in the
basin [46,47]. The negative correlation between NDVI and elevation is strongest, as arable
land is generally located in plain areas. The proportion of arable land in annual NDVI
values is relatively high (Figure 12a). Melting icebergs can provide a large amount of water
resources. Climate is an important factor that influences vegetation change and runoff. Dif-
ferent climatic conditions affect vegetation growth and the rate of water evaporation, which
has an impact on runoff volume [7,44]. Different hydrological conditions, such as rainfall,
evapotranspiration, and soil moisture content, also affect vegetation and runoff [11,12,48].
The higher the effective rainfall, the more suitable the conditions for vegetation growth,
and the lower the runoff volume over shorter timescales [48]. The results of this study
also showed that precipitation is one of the main causes of regional runoff variability
(Figure 12b). There was no significant decrease in runoff in the upstream area, but a change
occurred owing to the different amounts of annual iceberg snow melt upstream and precip-
itation being significantly higher upstream than downstream (Figure 12b). Runoff from the
lakes and deserts in the lower reaches did not change. There was no significant increase in
runoff at the margins of the basin. However, changes occurred because of variations in snow
and ice melt in the high mountains caused by annual differences in precipitation [46,47].
The InVEST model is greatly influenced by precipitation. Among the 21 years analyzed,
2008 had the lowest water production and precipitation. The error between the simulated
and measured values was also the largest, indicating that precipitation had the most direct
effect on changes in runoff in the study area (Figure 3). The Z parameter is 1 because the
lowest adjustable parameter value can only be 1. Topographic conditions are key factors
affecting vegetation and runoff. There are differences in vegetation growth conditions and
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runoff distribution between mountainous and plain areas. The border between mountains
and plains is a large area of grasslands and meadows, which grow with a small grass blade
area and, therefore, have lower NDVI values, indicating that grasslands in arid areas are
more drought tolerant [49].
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Land-use patterns strongly influence vegetation change and runoff. Human activities
change the original state of the land and affect vegetation growth, therefore changing the
distribution and amount of runoff [19,20,49]. In the last 20 years, all the land-use types in
the watershed have changed, with the most significant changes occurring in grasslands and
bare ground (Figure 12c). Some grasslands have become bare land, and some have become
forests. Some cultivated land has been converted into grassland, which may be due to the
implementation of the Grain for Green project [50]. Shrublands have been transformed into
grasslands. Areas that usually contain permanent snow/water have been transformed into
bare land. Part of the grassland has become bare land, which could have been caused by
environmental damage [27]. Overall, the land types in the watershed are improving, with
bare land decreasing and grassland increasing. The results of our study showed that the
NDVI significantly increased in the watershed for cultivated plants (Figure 6). This may
be because the crops being cultivated differ each year and the cultivated area increased
(Figure 12c). The basin was found to be richer in cultivated land planted with crops such as
corn, wheat, and cotton. Around its perimeter, the NDVI values have significantly changed,
and the significant changes may be where the land-use type is changing to croplands.
Cultivated plants in the middle of the area also showed a few highly significant decreases,
which may have been caused by the conversion of cultivated land to residential land. The
NDVI values of grasslands and meadows changed but not significantly. The area where
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they changed was at the border between the mountains and plains. This may have been
from changes in vegetation growth caused by climate change.

5.2. Response of Vegetation Change to Runoff

The vegetation cover affects the entire hydrological cycle [51,52]. At different time
scales, changes in vegetation cover can have different effects on indicators such as water
production, flow production, and runoff coefficient [40,53]. Changes in vegetation cover
may affect rainfall infiltration and evapotranspiration [23,24]. Where significant decreases
in NDVI values occur in upper mountainous areas, they may be due to deforestation,
leading to soil erosion, which causes a decrease in NDVI values (Figure 7a). The reduction
in vegetation during the conversion of forested land to other land types may lead to
increased rainfall runoff, which, in turn, affects the availability of water resources [54]. In
the present study, excluding extreme years of precipitation, water production had continuity
in time when the vegetation did not change substantially. In contrast, changes in vegetation
cover also affected soil erosion, particularly in mountainous and hilly areas [55]. Under
the influence of global climate change, terrestrial water storage is likely to decrease and
increase with drought severity [56]. The vegetation response to water production varied
at different spatial scales. At small scales, vegetation can increase soil permeability and
water storage capacity through the root system, which can affect groundwater recharge
and circulation while at large scales [57]. Changes in vegetation cover may have an impact
on water balance and hydrological processes in the watershed [40].

Our study found a positive correlation between the interannual water yield of sub-
basins and the overall NDVI and a negative correlation between the interannual water yield
of vegetation types and the overall NDVI (Figures 8 and 10). From both perspectives, there
were continuity and reproducibility in the local spatial clustering of NDVI values and water
yield (Figures 9 and 11). From the sub-basin perspective, high–high clustering existed
in sub-basin 8 from 2000 to 2011, and high–high clustering disappeared in 2012, 2015,
2017, and 2020 in region 8 and reoccurred after its disappearance. High–high clustering
occurred in sub-basin 20 in 2011. After one year of continuity, the clustering state no
longer occurred, before reoccurring after 2015 and persisting until 2020. Sub-basins 2
and 12 had low–low clustering for 21 years. Sub-basin 6 also had low clustering in most
years because sub-basins 2, 6, and 12 also had relatively low NDVI in these areas when
interannual water production was low. This may indicate that hydrological processes
within the watersheds were influenced by the degree of surface vegetation cover and that
higher vegetation cover increased soil water retention capacity and, therefore, interannual
water production. Under different vegetation types, the high–high meadow aggregation
first occurred in 2000, continued in 2001 and 2002, changed in 2003, and was recorded again
in 2004. The meadow maintained low–high clustering, except for the extreme year (2008).
Over the last hundred years, precipitation has increased in northern North America where
vegetation has increased, whereas precipitation has decreased in central North America
and almost all of China [14]. Vegetation is particularly abundant at high northern latitudes
and in agricultural and afforested regions [58]. Therefore, the mechanisms of influence at
different scales need to be considered when studying the responses of spatial and temporal
vegetation changes to water production.

In arid zones, substantial amounts of surface water are transported to the atmosphere
via transpiration from vegetation or evaporation from the land [59]. Since the 1990s, drought
trends have increased in Central Asia owing to insufficient precipitation and increased
evapotranspiration [14]. The Ebinur Lake Basin is located in Central Asia and is sensitive to
vegetation and runoff changes [25]. From 2000 to 2020, the overall vegetation in the basin
showed a greening trend. This was due to an increase in cultivated land area in the basin.
Cultivated vegetation requires substantial amounts of water for cultivation, irrigation, and
fertilization. In recent decades, soil moisture has significantly decreased at the beginning
of the growing season due to the continuous increase in temperature and decrease in
precipitation, leading to an increase in agricultural droughts [13,60,61]. Meadows are in the
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transition zone between high- and low-water production areas, and NDVI values do not
vary significantly. Therefore, both values were high and had a high level of aggregation
(Figures 4 and 6). Meadows and alpine vegetation have high–low clustering and low–low
clustering, respectively, and were located in the south and west of the basin. The two
vegetation types differed in their ability to adapt to drought, resulting in relatively low
cover at high and low water levels (Figure 11). The low–high clustering vegetation types
were grasslands and cultivated plants located in the middle of the watershed. Grasslands
had low–high clustering owing to the dominance of dry herbaceous plants in the basin.
These are zonal vegetation types under semi-humid and semi-arid climatic conditions.
Therefore, when studying the response of spatial and temporal variations in vegetation to
runoff in arid zones, the effect of different plant types on runoff needs to be considered.

6. Conclusions

This study investigated the relationship between spatial and temporal changes in
vegetation and temporal changes in runoff in the Ebinur Lake Basin. The results showed
that the spatial distribution of runoff in the watershed was similar to that of elevation:
the higher the elevation, the higher the runoff volume. When the elevation was above
3500 m, the regional runoff capacity tended to saturate. The distribution of vegetation
was characterized by natural plants in the surrounding areas and cultivated plants in the
middle. The runoff trend in the basin was generally not highly variable. Interannual runoff
based on sub-basins showed a positive correlation with the overall NDVI. The interannual
runoff based on vegetation type showed a negative correlation with the overall NDVI.
There was continuity and reproducibility in the local spatial distribution of clusters of
NDVI values and runoff in the watershed.

The response of the spatiotemporal characteristics of vegetation to runoff is a complex
process that involves the interaction of multiple factors and mechanisms. Except for extreme
years (2008), the spatial distribution of water production in the model watershed is basically
similar to the real situation. However, the error for extreme years is still significant, and
further research should consider more influencing factors for improvement. This study
only focuses on vegetation types. We will select specific vegetation for future research.
The results of this study showed the relationship between the spatial distribution of water
production and vegetation in the study area, which can provide reference for water resource
utilization and land planning in the Ebinur Lake Basin. To achieve rational utilization of
water resources, local governments should control the scale of agricultural land.
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