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Abstract: UAV multispectral technology is used to obtain leaf area index (LAI) and aboveground
biomass (AGB) information on Cinnamomum camphora (C. camphora) and to diagnose the growth
condition of Cinnamomum camphora dwarf forests in a timely and rapid manner, which helps improve
the precision management of Cinnamomum camphora dwarf forests. Multispectral remote sensing
images provide large-area plant spectral information, which can provide a detailed quantitative
assessment of LAI, AGB and other plant physicochemical parameters. They are very effective tools
for assessing and analyzing plant health. In this study, the Cinnamomum camphora dwarf forest in the
red soil area of south China is taken as the research object. Remote sensing images of Cinnamomum
camphora dwarf forest canopy are obtained by the multispectral camera of an unmanned aerial vehicle
(UAV). Extreme gradient boosting (XGBoost), gradient boosting decision tree (GBDT), random forest
(RF), radial basis function neural network (RBFNN) and support vector regression (SVR) algorithms
are used to study the correlation and estimation accuracy between the original band reflectance,
spectral indices and LAI and AGB of Cinnamomum camphora. The results of this study showed the
following: (1) The accuracy of model estimation based on RF is significantly different for different
model inputs, while the other four models have small differences. (2) The accuracy of the XGBoost-
based LAI model was the highest; with original band reflectance as the model input, the R2 of the
model test set was 0.862, and the RMSE was 0.390. (3) The accuracy of the XGBoost-based AGB
model was the highest; with spectral indices as the model input, the R2 of the model test set was
0.929, and the RMSE was 587.746 kg·hm−2. (4) The XGBoost model was the best model for the LAI
and AGB estimation of Cinnamomum camphora, which was followed by GBDT, RF, RFNN, and SVR.
This research result can provide a theoretical basis for monitoring a Cinnamomum camphora dwarf
forest based on UAV multispectral technology and a reference for rapidly estimating Cinnamomum
camphora growth parameters.

Keywords: Cinnamomum camphora; leaf area index; aboveground biomass; multispectral; band
reflectance; spectral indices

1. Introduction

Cinnamomum camphora (Linn.) Presl, a broad-leaved evergreen tree of the camphor
family, is mainly distributed in subtropical and tropical regions of southern China, Korea,
Japan, and Vietnam [1]. Various parts of Camphoraceae (leaves, branches, trunks, fruits,
etc.) are rich in fragrance substances, which are the primary raw materials in the fields
of flavor and fragrance, medicinal hygiene and food [2–4]. The C. camphora essential oil
industry has become one of the leading industries of forestry in the southern region [5]. The
leaf area index (LAI) and aboveground biomass (AGB) are important indicators to evaluate
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plant growth and nutrient status, among which leaf area index mainly characterizes the
canopy structure of crops and is closely related to the plant processes of photosynthesis,
respiration and transpiration [6]. Biomass is a crucial parameter that determines plants’
light energy use, growth trend, and yield [7]. Based on the LAI and AGB, the plant
health and nutrient status can be monitored for timely water and fertilizer management.
The growth condition of C. camphora affects the leaf oil yield, affecting the quality and
efficient production of the C. camphora industry. Thus, rapid, non-destructive and accurate
monitoring of the LAI and AGB of C. camphora is essential for guiding the planting and
management of C. camphora forests.

The current method of obtaining the LAI and AGB of plants uses field sampling
through manual field measurements, destructive sampling, etc., which is often time-
consuming, laborious and less time-efficient, limiting its large-scale application [8]. In
recent years, remote sensing technology has been widely used in agriculture. Studies have
used satellite remote sensing data to estimate the LAI and biomass of various crops better.
Zhao et al. used HJ-1A satellite remote sensing images to estimate rice yield in the Jiangsu
region [9]. Morain et al. obtained remote sensing images through the ERTS-1 satellite to
estimate winter wheat yield [10] in addition to estimated crops such as cotton [11] and
soybean [12]. However, satellite remote sensing images are susceptible to atmospheric
influence and limited by spatial and temporal resolution and real time, resulting in the
inability to obtain high-quality satellite remote sensing images suitable for precision agri-
culture [13,14]. For example, Landsat series satellites have a minimum repetition period
of 16 days and mainly use optical sensors to acquire remote sensing images; when the
signal propagation route is affected by clouds or rainfall, the images will not be applied
to the accurate monitoring of plant physiological parameters [15]. Zhao et al. estimated
the aboveground biomass of alpine grassland quickly and efficiently using the RF algo-
rithm based on MODIS and SRTM data [16]. Li et al. used Sentinel-2 MSI imagery and
two ensemble algorithms effectively to estimate AGB in the Shengjin Lake wetland [17].
However, satellite remote sensing is still not able to meet the needs of small-scale field trials
due to more complex processing steps and insufficient spatial resolution. Hyperspectral
imagers have the advantages of a wide spectral band range, high resolution and narrow
bands and have been studied to predict the physiological and biochemical parameters
of crops (wheat [18], maize [19], etc.) using hyperspectral remote sensing. However, the
popular application of hyperspectral imagers is limited by its extensive data, redundant
information that cannot be quickly processed, and high equipment prices. Compared with
satellite remote sensing and hyperspectral instruments, UAV multispectral remote sensing
is relatively less costly and more flexible. Multispectral remote sensing has three and more
specific spectral bands, which can contain the red-edge bands important for monitoring
the information of agronomic parameters, and thus, they are of great interest to the field of
quantitative remote sensing in agriculture.

Many scholars have conducted much research on monitoring crops’ physiological and
biochemical parameters based on UAV multispectral remote sensing. For example, Qi et al.
selected eight vegetation indices based on UAV multispectral images and established
simple regression and artificial neural network models for estimating the leaf area index
of peanuts. The results showed optimal artificial neural network estimation results [20].
Zheng et al. evaluated thirteen models for estimating the N content of winter wheat
leaves using a five-band multispectral camera with nineteen vegetation indices as model-
independent variables. They found that the random forest algorithm model had the
highest estimation accuracy [21]. Su et al. used a UAV with a five-band multispectral
camera to acquire multispectral remote-sensing images of wheat. They applied the ratio
vegetation index (RVI), normalized difference vegetation index (NDVI) and optimized
soil-regulated vegetation index (OSAVI) to the monitoring of yellow wheat rust with
good monitoring results [22]. Feng et al. selected model inputs such as vegetation index,
canopy cover and plant height to estimate cotton yield at different periods [23]. An
analysis of existing research results revealed that several variables, such as spectral bands,
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spectral indices and plant heights, can be used as input variables for modeling. The
study demonstrated the importance of selecting the appropriate input quantities for LAI
and AGB modeling estimation. The multispectral technique can acquire multiple bands
of information simultaneously, and several images of different spectral bands can be
obtained. Compared with soils, water bodies and rocks, etc., green plants have distinct
spectral reflectance characteristics, which are mainly determined by their chemical and
morphological characteristics and closely related to vegetation health. In the visible band,
its spectral reflectance is mainly influenced by pigments, most visible light is absorbed by
plant leaves, and the reflectance is small; in the near-infrared region, it is mainly controlled
by the internal structure of plant leaves, the reflectance is large, and the absorption is
low [24]. The reflectance rises sharply between the visible and near-infrared bands, forming
a “red edge”, the most apparent spectral feature of the plant curve and a focus of attention
for vegetation remote sensing. Spectral indices are mathematical combinations based on
information from different wavelengths, mainly reflecting the difference between vegetation
reflectance in the visible and near-infrared wavelengths and the soil background. They
can be used to quantify the growth of vegetation under certain conditions, and they are
usually used to analyze parameters such as plant water content [25], leaf area index and
chlorophyll [26]. In estimating the leaf area index or biomass of plants, selecting model
inputs is one of the essential steps in modelling. Most of the independent variables of the
estimation models were chosen as vegetation spectral indices without discussing them
in the context of the original spectral reflectance. The comparison of original spectral
reflectance and spectral indices in the simulation accuracy of the same inversion model
rarely appears. Therefore, the analysis of band reflectance and spectral indices as model
inputs for estimation accuracy must be further explored in modeling plant physiological
and biochemical index estimation.

In addition to the selection of model inputs, the selection of models is also crucial. In
recent years, machine learning algorithms have been widely used in precision agriculture
with their superiority to invert the physicochemical parameters of plants. Pham et al.
estimated the aboveground biomass of mangroves by comparing five models based on sup-
port vector regression, random forest regression, CatBoost regression, gradient augmented
regression tree and extreme gradient augmented decision tree, and the results showed that
the optimal model was based on extreme gradient augmented decision tree and genetic
algorithm [27]. Yuan et al. estimated SPAD values for tropical endangered tree species
slopes and concluded that the random forest model had the highest prediction accuracy
by comparing different algorithms [28]. Siegmann et al. compared the model quality of
three algorithms, support vector regression, random forest regression, and partial least
squares regression, in estimating the wheat LAI and showed that the model results based
on support vector regression estimation were optimal for individual years as well as for
cross-validation of the entire data set [29]. Zhang et al. used stepwise regression, random
forest regression and the XGBoost regression model to estimate the aboveground biomass
of maize in Jilin Province, and they proposed that the XGBoost regression model had the
best estimation results [30]. It has been shown that the performance of plant LAI and
AGB models based on random forest, support vector regression, gradient boosted decision
tree, and polar gradient augmented decision tree estimation is better, and the quality of
different models applied to the estimation of different plant physicochemical parameters
varies [27,31,32]. In addition, the artificial neural network is one of the common machine
learning algorithms for estimating plant leaf area index and aboveground biomass, and
the radial basis function neural network is one of them. The radial basis neural network
learning process converges quickly and has strong robustness. Therefore, it is necessary to
acquire the multispectral remote sensing images of the C. camphora canopy by UAV and
study the influence of different models and model input selection on the inversion accuracy
of C. camphora growth covariates. In addition, the monitoring of the growth condition of
C. camphora using UAV multispectral remote sensing technology has rarely been reported.
In this study, the UAV six-band multispectral camera was used to obtain multispectral
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images of the C. camphora canopy and to study the correlation between the original band
reflectance, spectral indices and LAI and AGB of camphor trees and the estimation accuracy.
The extreme gradient boosting (XGBoost), gradient boosting decision tree (GBDT), random
forest (RF), radial basis function neural network (RBFNN) and support vector regression
(SVR) estimation models are constructed, respectively. The aim is to investigate the effects
of different models and model inputs on the estimation of the LAI and AGB of C. camphora
and to find the best inversion model for the LAI and AGB of C. camphora dwarf forests.
Through accurate estimation of the LAI and AGB of C. camphora, we can achieve rapid
monitoring of the growth of C. camphora dwarf forests and provide timely guidance for
forest planting and management as well as provide scientific reference to promote the
development of the C. camphora dwarf forest industry.

2. Materials and Methods
2.1. Research Area and Test Design

The experimental field of the C. camphora dwarf forest is located at the biotechnol-
ogy experimental base of Nanchang Engineering College in Nanchang, Jiangxi Province
(28◦41′33′′ N, 116◦1′19.37′′ E) (Figure 1). It has a subtropical humid monsoon climate with
an average annual rainfall of 1600 mm, an average annual temperature of about 17 ◦C, an
extreme high temperature of 42 ◦C and an extreme low temperature of −10 ◦C, and an
average annual sunshine time of 1800 h with sufficient light. The soil texture of this test
area was red loam with a pH of about 5.47, organic matter content of 6.39 g·kg−1, total
nitrogen content of 0.62 g·kg−1, total phosphorus content of 0.30 g·kg−1, total potassium
content of 13.00 g·kg−1, alkaline nitrogen content of 47.74 mg·kg−1, fast-acting phosphorus
content of 1.49 mg·kg−1 and fast-acting potassium content of 61.10 mg·kg−1. The test
C. camphora were cultivated in dwarf forest; the species was “Ganfang No.1”, which was
from the same asexual line cuttings. It was transplanted in March 2020, planted in March
2021, and staked at the end of September 2022, when the growth of the C. camphora dwarf
forest was basically in the harvest state and its dry matter accumulation reached its peak,
and the growth condition was representative. There was a total of 66 sample plots, each
with a range of 3 m× 3 m, and the planting row spacing and plant spacing were 1 m × 1 m.
The fertilization treatment in the experimental field is shown in Table 1. The nitrogen
fertilizer, phosphate fertilizer, and kalium fertilizer treatments were repeated twice, while
the manure fertilizer and biochar fertilizer treatments were repeated three times. No drugs
were used, and the grass was pulled manually.
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Table 1. Fertilization treatment of Cinnamomum camphora.

Treatment District Serial Number and Fertilization Amount (kg/hm2)

Nitrogen fertilizer N0 N1 N2 N3 N4 N5
0 45 90 135 180 225

Phosphate fertilizer P0 P1 P2 P3 P4 P5
0 45 90 135 180 225

Kalium fertilizer
K0 K1 K2 K3 K4 K5
0 45 90 135 180 225

Manure fertilizer
M0 M1 M2 M3 M4
90 67.5 45 22.5 0

Biochar fertilizer
B0 B1 B2 B3 B4
0 2500 5000 7500 10000

2.2. Data Collection
2.2.1. UAV Remote Sensing Image Acquisition

Select a clear and windless day (26 September 2022) at approximately 12:00 p.m.
to obtain the UAV remote sensing images, which reduces the handling of shadowing.
The DJIM300RTK quadrotor UAV is equipped with a MS600 PRO multispectral camera,
which integrates six multispectral sensor channels: blue light (central wavelength 450 nm,
bandwidth 35 nm), green light (central wavelength 555 nm, bandwidth 25 nm), red light
(central wavelength 660 nm, bandwidth 20 nm), red edge light 1 (central wavelength
720 nm, bandwidth 10 nm), red edge light 2 (central wavelength 750 nm, bandwidth
15 nm) and near-infrared light (central wavelength 840 nm, bandwidth 35 nm). The UAV is
equipped with a six-way positioning and obstacle avoidance as well as visual flight aid
interface. The multispectral camera includes “double red-edge” vegetation-sensitive bands
to effectively enhance the spectral characteristics and morphological features of vegetation.

In general, the lower the flight altitude, the smaller the ground sampling distance,
the higher the resolution of ground objects, and the clearer they can be seen, but the total
flight time will be extended. Therefore, it is necessary to choose the optimal flight altitude
according to the subject and purpose of the shooting. Considering the effect of UAV flight
altitude on the accuracy of crop LAI inversion, Liu Tao et al. [33] set different flight altitudes
(30, 60 and 120 m) to estimate the wheat LAI using a multispectral camera, and the results
showed that the optimal estimation of LAI was obtained at an altitude of 30 m.

Based on previous inversion studies of crop parameters, this experiment sets the flight
altitude to 30 m under the conditions of ensuring flight safety, general absence of obstacles,
ensuring image clarity, and the UAV wind field not disturbing the crops. We set the flight
path according to the scope of the test area and made whiteboard corrections, set the speed
to 2.5 m·s−1, chose the automatic capture mode, and the overlaps of the forward and side
direction were both 75%. The resolution of the corresponding multispectral camera was
2.04 cm, and a total of 2766 images were captured (Table 2).

Table 2. The UAV system parameters.

Parameters Numerical and Descriptive Parameters Numerical and Descriptive

UAV models DJIM300RTK Infrared sensing of obstacle
range/m 0.1–8 m

Flight height 30 m Image sensors 6 × 1/3′′ CMOS; 1.2 million
effective pixels

Forward overlapping 75% Photograph resolution/pixels 4000 × 3000 (4:3)
Forward overlapping 75% Spatial resolution/cm 2.04 cm

2.2.2. Measurement of LAI and AGB

The C. camphora LAI was measured using the LAI-2200C Plant Canopy Analyzer
(LI-COR, Lincoln, NE, USA). Compared with direct measurement methods, canopy data
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measurement using a LAI-2200C Plant Canopy Analyzer can avoid the damage to veg-
etation caused by direct measurement methods. Moreover, the measurement operation
using the instrument has the advantages of being convenient and not limited by time. It
is very suitable for modern agricultural research. Three representative C. camphora were
selected from each sample plot. For each tree, four directions (east–west, north–south) were
selected to measure and record the LAI value, and the average of the four measurements
was taken as the LAI value of the tree. Finally, the average of three trees was taken as
the LAI value of the plot. After bringing all the C. camphora in each sample plot back to
the laboratory, the samples were first placed in the oven to kill at 105 ◦C for 30 min, then
dried at 80 ◦C for more than 48 h until constant weight, and finally, the sample mass was
weighed, and the mean value was taken for each plot to measure the aboveground biomass.
The ground measurement time is adopted as the same step date as the remote sensing
image imaging time.

The data of 66 C. camphora LAI and AGB samples were obtained in this experiment,
respectively. The maximum, minimum, mean, standard deviation and coefficient of varia-
tion of the LAI were 4.29, 1.26, 2.91, 0.61, and 0.21, respectively. The maximum, minimum,
mean, standard deviation and coefficient of variation of AGB were 8720.09 kg·hm−2,
2095.28 kg·hm−2, 6398.92 kg·hm−2, 1.63, and 0.25, respectively.

2.3. Data Processing
2.3.1. Multispectral Data Processing

In this paper, Yusense MapV2.2.3, which is custom data processing software of the
MS600 PRO multispectral camera, was used to process remote sensing images of the
C. camphora dwarf forest canopy. Image band calibration, stitching composition, and radia-
tion correction are performed by Yusense Map. In ENVI5.3 software, the region of interest
function was used for region of interest interception. Through the steps of extracting
canopy information and masking removal of shadow and soil background, the average
reflectance of C. camphora dwarf forest canopy pixel points in the area of interest under six
bands can be finally obtained separately, and the original band reflectance of C. camphora
canopy in this sample plot can be obtained.

2.3.2. Construction and Selection of Spectral Indices

Spectral indices are linear or non-linear combinations of the original band reflectance.
The multispectral camera selected for this experiment has a total of six bands. In order to
ensure the consistency of the number of model inputs, a total of six spectral indices were
selected as inputs to the model in this experiment. The details are described below.

According to the available literature [34], the Difference Spectral Index (DSI) between
any two bands is calculated separately, and the formula is shown in (1):

DSI = Ri − Rj (1)

where Ri and Rj represent the band reflectance of blue, green, red, red edge 1, red edge 2
and any two different bands in the near-infrared band, respectively. The above spectral
indices were correlated with the C. camphora LAI and AGB, and finally, three differential
spectral indices were selected as DSINIR,R (near-infrared light–red light), DSIRE1,B (red
edge light1–blue light), and DSIRE2,E (red edge light2–blue light). DSI is the difference
between the reflectance of two bands, which is mainly used to distinguish vegetation from
soil background information [35]. In addition, in this paper, three empirical vegetation
indices were selected by correlating a large number of spectral indices with the C. camphora
LAI and AGB in a comprehensive comparative analysis, namely soil-regulated vegetation
index (SAVI) [36], triangular vegetation index (TVI) [26], and overgrown vegetation index
(EXG) [37].
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2.3.3. Data Analysis and Model Accuracy Evaluation

Based on the Python 3.7 software platform, the correlation coefficients between the
original band reflectance and the C. camphora LAI and AGB were displayed as a heatmap
by the heatmap function in the seaborn library, respectively (Figure 2). The correlation
coefficients between the spectral indices and the C. camphora LAI and AGB were displayed
as a heatmap by the heatmap function in the seaborn library, respectively (Figure 3).
Building the C. camphora LAI, the AGB estimation model was based on XGBoost and GBDT,
using the Python 3.7 software platform. The RF, RBF, and SVR-based models for LAI and
AGB estimation of C. camphora were developed using the Matlab2020a software platform.
Origin2021 software was used to plot the fit of each estimation model.
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A total of 66 sets of sample data were randomly divided into 50 sets as the model
training set and the remaining 16 sets as the test set. The coefficient of determination (R2)
and root mean square error (RMSE) were used to assess the predictive power of different
algorithmic models:

R2 =

n
∑

i=1
(ŷi − y)2

n
∑

i=1
(yi − y)2

(2)

RMSE =

√
1
n

n

∑
i=1

(ŷi − y)2 (3)

where the measured value of the C. camphora LAI or AGB is the model estimated value of
the C. camphora LAI or AGB, and it is the arithmetic mean of all measured values of the
C. camphora LAI or AGB. The higher the R2 value, the smaller the RMSE value, indicating a
better model estimation performance.
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3. Results
3.1. Correlation Analysis of Original Band Reflectance with LAI and AGB of C. camphora

The raw band reflectance of the C. camphora canopy of 66 sample plots was obtained
by processing and analyzing the multispectral images. A data set was formed with the
corresponding 66 C. camphora LAI and AGB, respectively, and correlation analysis was
performed. The results showed that the reflectance of blue, green, red, red edge 1, red edge
2 and NIR bands were positively correlated with the LAI and AGB (Figure 2), and the corre-
lation coefficients were above 0.6. Among them, the correlation coefficient between the red
edge 2 band reflectance and LAI is the highest at 0.731. The correlation coefficient between
the green light band reflectance and LAI is the lowest at 0.659. The results sorted by corre-
lation coefficient value from high to low were as follows: RE2 > NIR > B > R > RE1 > G.

The correlation coefficient between red edge 1 band reflectance and AGB is the highest
at 0.761. The correlation coefficient between NIR band reflectance and AGB is the lowest
at 0.664. The results sorted by correlation coefficient value from high to low were as
follows: RE1 > B > RE2 > G > R > NIR. In addition, the leaf area index of C. camphora was
significantly correlated with aboveground biomass with a correlation coefficient of 0.731.
The correlation between the leaf area index of C. camphora and the original band reflectance
was generally lower than that between AGB and the original band reflectance. The above
analysis shows that the original band reflectance has a significant and stable correlation
with the C. camphora LAI and AGB.

3.2. Correlation Analysis of Spectral Indices with LAI and AGB

Correlations between six selected spectral indices and the C. camphora LAI and AGB
were analyzed by plotting a heatmap. The results showed that DSINIR,R, DSIRE1,B, DSIRE2,B,
TVI, SAVI, and EXG significantly and positively correlated with the LAI and AGB (Figure 3),
and the correlation coefficients were all above 0.6. Among them, the correlation coefficient
between the DSIRE2,B and LAI is the highest at 0.728. The correlation coefficient between
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EXG and the LAI is the lowest at 0.603. The results sorted by correlation coefficient from
high to low were as follows: DSIRE2,B > TVI > SAVI > DSINIR,R > DSIRE1,B > EXG.

The correlation coefficient between DSIRE1,B and AGB is the highest at 0.737. The correlation
coefficient between SAVI and AGB is the lowest at 0.626. The results sorted by correlation
coefficient from high to low were as follows: DSIRE1,B > DSIRE2,B > TVI > EXG > DSINIR,R > SAVI.
The above shows that the correlation levels of the C. camphora LAI and AGB with spectral
indices are not very different, respectively. The above analysis shows that the selected
spectral indices have a significant and stable correlation with the C. camphora LAI and AGB.

3.3. Construction of LAI and AGB Estimation Model Based on Band Reflectance and
Spectral Indices

From Figures 2 and 3, it can be seen that this paper can use six original band reflectance
and six spectral indices as the input quantities of the C. camphora LAI and AGB inversion
models, respectively. Modeling using XGBoost, GBDT, RF, RBFNN and SVR algorithms,
respectively, the results based on the XGBoost model are shown in Figure 4. The model
prediction accuracy comparison results are shown in Table 1.
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Figure 4. Prediction results of the training and test sets of the XGBoost-based Cinnamomum camphora
LAI and AGB estimation models. (a) The estimated LAI input variable is band reflectance; (b) the
estimated AGB input variable is band reflectance; (c) the estimated LAI input variable is spectral
indices; (d) the estimated AGB input variable is the spectral indices.

This paper uses network search and five-fold cross-validation to tune the model
parameters of XGBoost, GBDT and RF. The RBFNN and SVR models are manually tuned
using a for-loop and cross-validation strategy. Based on the XGBoost algorithm to estimate
the C. camphora LAI and AGB, the optimal parameters are refined by a grid search to
find the best parameters and then delineate more detailed intervals. In the final model
parameters, the number of weak learners (n_estimators) are set to 100, the shrinkage step
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(learning_rate) is set to 0.03, 0.02, and the maximum depth of the decision tree (max_depth)
is set to 5. Based on the GBDT algorithm to estimate the C. camphora LAI and AGB, the
model parameters n_estimators were set to 100, and the learning_rates were set to 0.03 and
0.02, respectively, while the max_depth was set to 3. Based on the RF algorithm to estimate
the LAI and AGB, the model parameter trees were set to 100, and the minimum number of
leaves was set to 1 and 2, respectively. For the estimation of the C. camphora LAI and AGB
based on RBFNN, with LAI spectral indices and band reflectance as independent variables
and the expansion rate of radial basis function (rbf_spread) set to 90 and 120, respectively,
with AGB spectral indices and band reflectance as independent variables, the expansion
rate of the radial basis function was set to 50 and 70, respectively. For the estimation of the
C. camphora LAI and AGB based on SVR, with LAI spectral indices and band reflectance
as independent variables, penalty factor (C) values were set to 4 and 8, and radial basis
parameters (g) were set to 0.0625 and 0.0313, respectively. The AGB spectral indices and
band reflectance were used as independent variables; the penalty factor (C) values were set
to 1 and 16, and the radial base parameters (g) were set to 4 and 2, respectively.

From Table 3, among the five models, the R2 values of the model’s training and test
sets for estimating the C. camphora LAI and AGB are above 0.6 and up to 0.927, indicating
that the model can be used for the estimation of C. camphora LAI and AGB. Based on the
RF estimation of the LAI and AGB, the R2 of the test set of the model with the spectral
indices as the independent variable is higher than the band reflectance, under which the
spectral indices contain more information on the spectral features related to the C. camphora
LAI and AGB. The R2 of the model test set with different input quantities of the remaining
four models of the estimated C. camphora LAI was similar, and the RMSE values were all
lower. Overall, the model estimation accuracy was similar between different models with
different inputs to estimate the same index (LAI or AGB).

Table 3. Comparison of precision results of estimation models.

Item Model Input Variable Training Set Testing Set
R2 RMSE R2 RMSE

LAI

XGBoost
spectral indices 0.918 0.257 0.862 0.390
band reflectance 0.899 0.260 0.872 0.506

GBDT
spectral indices 0.922 0.193 0.856 0.347
band reflectance 0.915 0.265 0.852 0.264

RF
spectral indices 0.918 0.191 0.855 0.400
band reflectance 0.927 0.184 0.823 0.445

RBFNN
spectral indices 0.724 0.331 0.701 0.695
band reflectance 0.778 0.270 0.716 0.522

SVR
spectral indices 0.621 0.375 0.619 0.440
band reflectance 0.628 0.379 0.609 0.453

Model Input Variable R2 RMSE
(kg·hm−2) R2 RMSE

(kg·hm−2)

AGB

XGBoost
spectral indices 0.954 550.041 0.929 587.746
band reflectance 0.947 576.856 0.913 557.974

GBDT
spectral indices 0.917 597.758 0.894 509.739
band reflectance 0.915 577.032 0.909 725.561

RF
spectral indices 0.873 598.332 0.862 827.374
band reflectance 0.873 628.086 0.845 667.928

RBFNN
spectral indices 0.749 845.087 0.717 941.614
band reflectance 0.751 863.428 0.729 708.960

SVR
spectral indices 0.751 844.610 0.749 712.076
band reflectance 0.763 801.306 0.741 801.233

The XGBoost model outperformed other algorithmic models in estimating the LAI and
AGB of C. camphora with different models. The XGBoost model estimated the C. camphora
LAI best with the band reflectance as the input quantity; the R2 values of the model training
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set and test set were 0.899 and 0.872, and the RMSE values were 0.260 and 0.506, respectively.
The XGBoost model has the highest accuracy in estimating the AGB of C. camphora with the
input quantity, and the R2 values of the model training set and test set were 0.954 and 0.929,
and the RMSE values were 550.041 kg·hm−2 and 587.746 kg·hm−2, respectively, indicating
that the XGBoost model is the best model for estimating the LAI and AGB of C. camphora.
In addition, the GBDT model was modeled extremely fast (within 0.037 s) under Python
3.7, which was better than the remaining four models.

4. Discussion

The leaf area index and aboveground biomass are essential indicators of the growth
of C. camphora dwarf forests, and determining the sensitive spectral indices of the two
parameters is the key to achieving rapid and non-destructive spectral monitoring. In
this study, we analyzed the correlation between the reflectance of blue light, green light,
red light, red edge 1, red edge 2, and near-infrared bands and the leaf area index and
aboveground biomass of C. camphora. The study’s results found that the leaf area index
and aboveground biomass of C. camphora had the highest correlation with the red edge
band. Fan et al. concluded that the leaf area index of oilseed rape at different fertility
stages was more significantly correlated with NIR band reflectance, which is different from
the present study results, indicating that different plants are sensitive to different spectral
bands [38]. The red-edge band is a sensitive band to characterize the growth of green plants,
which is closely related to important biochemical parameters such as plant chlorophyll,
biomass and leaf area index [39]. In existing studies, a large number of spectral indices
have been applied to quantitative remote sensing in agriculture to monitor plant growth,
such as wheat [40], peanut [20] and maize [41]. The different spectral indices selected in
this paper were significantly correlated with the leaf area index and biomass of C. camphora,
especially the spectral indices with the addition of red-edge band reflectance. Dong et al.
studied the effect of red-edge reflectance-based and visible reflectance-based vegetation
indices for the leaf area index estimation of spring wheat and oilseed rape, and they found
that red-edge reflectance-based spectral indices can be used to develop more general LAI
estimation models for different crops, similar to the results of this study [42]. Mutanga et al.
predicted biomass in vegetation-intensive wetland areas based on narrow-band spectral
indices calculated in the red-edge and near-infrared bands, effectively improving estimation
accuracy [43]. The result is that the red-edge band reflectance and the spectral indices based
on the red-edge band reflectance strongly correlate with the C. camphora LAI and AGB.

Among the five models used in this study, the R2 of the model test set for estimating
C. camphora AGB was higher than that of the LAI, indicating that the accuracy of the
C. camphora AGB estimation model was generally higher than that of the LAI estimation
model under the same modeling approach, probably because the aboveground biomass
was more intuitive, which is consistent with the findings of Bascon et al. [44]. The RMSE
values of the estimated C. camphora AGB models were all much greater than those of the LAI
because the RMSE values were more sensitive to the magnitude, and the AGB values were
of a larger order of magnitude. The models’ RMSE values are smaller than the C. camphora
AGB sample data range 2096 to 8721.

In this paper, through correlation analysis, six spectral indices (DSIRE2,B, TVI, SAVI,
DSINIR,R, DSIRE1,B, EXG) and six band reflectance values are selected as model-independent
variables. Based on GBDT, RF, and SVR estimation models for the LAI, using spectral
indices as model-independent variables can better estimate the C. camphora LAI; based
on XGBoost and RBFNN estimation models, the accuracy of the LAI estimation is better
with the band reflectance as the model input. For C. camphora AGB, based on XGBoost,
GBDT, RF, and SVR estimation models, the spectral indices as the model-independent
variable can better estimate C. camphora AGB; based on the RFNN estimation model, the
better model independent variable is the band reflectance. In the same model, the best
independent variable for LAI and AGB estimation was the spectral indices, which was
probably because the spectral indices are a linear or non-linear combination of multiple
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band reflectance, which can better characterize the spectral information of the LAI and AGB
of C. camphora. In addition, based on the RF estimation models, the differences between
different independent variables were more apparent. The remaining four models had
differences but were few, indicating that the variable selection had different effects on the
model estimation accuracy.

To estimate the leaf area index of C. camphora, the RFNN model outperforms the SVR
model; to estimate the aboveground biomass of C. camphora, the SVR model outperforms
the RFNN model, and the R2 of the two model test sets ranges from 0.60 to 0.75. The
accuracy of SVR to estimate C. camphora AGB is higher than that of the LAI, but the R2

of the model is still lower, which may be the limitation of the model kernel function and
penalty factor C and other parameters themselves [40]. The reason for the low accuracy of
the RFNN estimation C. camphora AGB model may be that the model has too many initial
values central in the LAI or AGB input sample set, and the central values of the selected
hidden layer basis functions are complex to reflect the actual output relationship of the
system in most cases [45]. The R2 values of the RF, GBDT, and XGBoost-based models
for estimating the leaf area index and aboveground biomass of C. camphora were above
0.8, which indicated the excellent estimation ability of the three models for estimation.
The accuracy of RF, GBDT, and XGBoost-based AGB estimation models for C. camphora is
generally higher than that of LAI estimation models, and all three algorithms belong to
decision tree-based machine learning algorithms, which have been shown to have more
obvious advantages in estimating plant biomass [31,32]. It was found that the RF-based
model is second only to XGBoost and GBDT in estimation accuracy and also has a better
estimation effect (R2 of 0.82 or more). RF is not easy to overfit, has good resistance to
noise and has the advantages of being able to perform variable importance calculation
and ranking due to its few adjustable parameters, including the speed, efficiency, and
ability to perform variable importance calculation and ranking. However, its complexity
makes the training time longer than other similar algorithms [46]. The GBDT-based model
estimation accuracy is slightly second to XGBoost, with a model R2 of 0.85 or more, and the
performance of GBDT is a step up from RF, which is more suitable for the low-dimensional
data used in this paper and has a higher estimation accuracy with relatively less tuning
time [47]. The XGBoost-based model had the highest accuracy in estimating the leaf
area index and aboveground biomass of C. camphora (Table 1), which was better than
other algorithmic models, which is consistent with the findings of Zhang et al. [48], who
used hyperspectral images of drones to estimate the leaf area index of winter wheat, and
Li et al. [49], who used satellite images to estimate the forest biomass of different types in
the Xiangjiang River basin in Hunan Province. The estimation accuracy of GBDT-based
models is slightly lower than that of XGBoost, which is probably because XGBoost further
optimizes the loss function for GBDT, and XGBoost can automatically employ CPU multi-
threading for parallel computation, simplifying the model while improving prediction
accuracy [50]. The XGBoost algorithm is currently the fastest open-source boosting tree
toolkit with good processing speed and accuracy for low and medium-dimensional data.
Researchers have widely used it in many fields [51–54], but its potential has yet to be fully
exploited in forestry.

In addition, “Ganfang No. 1” planted in this experiment is an excellent variety of spice
C. camphora declared by the Jiangxi Camphor Breeding and Development and Utilization
Engineering Research Center, which performs well in crucial indices such as oil yield and
linalool content. The findings of this study cannot be directly applied in different spatial
and temporal C. camphora dwarf forest plantations because the LAI and AGB may reflect
different spectral characteristics in multispectral remote sensing images under the influence
of different varieties, different times and the same geographical conditions. Therefore,
the modeling estimation can be carried out separately under different conditions in the
subsequent study to improve the broad applicability of the model.
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5. Conclusions

In this study, the correlation coefficients between the spectral indices, band reflectance
and leaf area index and biomass of C. camphora were calculated separately using Pearson
correlation analysis, and the results showed that the correlations were significant. Among
the selected band reflectance and spectral indices, the C. camphora LAI had the highest corre-
lation with red edge 2 band reflectance and DSIRE2,B, respectively, and the C. camphora AGB
had the highest correlation with red edge 1 band reflectance and DSIRE1,B, respectively. The
spectral indices based on the red edge band correlated better with the LAI and AGB. Five
algorithms were used to estimate the C. camphora leaf area index and aboveground biomass
using spectral indices and the original band reflectance as model inputs, respectively.
Through a comprehensive comparative analysis, there were more apparent differences in
the accuracy of the RF-based estimation models with different model inputs. The remaining
four models had differences, but there were few. Under the same modeling method, the
accuracy of the AGB estimation model was generally higher than that of the LAI estimation
model. After testing different modeling methods, the XGBoost model estimation accuracy
was the highest, with the model test set R2 value of 0.862 and RMSE value of 0.390 using
the band reflectance as the model input, and the model test set R2 value of 0.929 and RMSE
value of 587.746 kg·hm−2 using the spectral indices as the model input. The study showed
that based on the UAV, the estimation of LAI and AGB of C. camphora dwarf forest based
on multispectral remote sensing images by XGBoost has a good prediction effect, which is
a guide for the management of C. camphora dwarf forest.
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