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Abstract: Pine wilt disease (PWD) is one of the most concerning diseases in forestry and poses a
considerable threat to forests. Since the deep learning approach can interpret the raw images acquired
by UAVs, it provides an effective means for forest health detection. However, the fact that only PWD
can be detected but not the degree of infection can be evaluated hinders forest management, so it
is necessary to establish an effective method to accurately detect PWD and extract regions infected
by PWD. Therefore, a Mask R-CNN-based PWD detection and extraction algorithm is proposed in
this paper. Firstly, the extraction of image features is improved by using the advanced ConvNeXt
network. Then, it is proposed to change the original multi-scale structure to PA-FPN and normalize it
by using GN and WS methods, which effectively enhances the data exchange between the bottom and
top layers under low Batch-size training. Finally, a branch is added to the Mask module to improve
the ability to extract objects using fusion. In addition, a PWD region extraction module is proposed
in this paper for evaluating the damage caused by PWD. The experimental results show that the
improved method proposed in this paper can achieve 91.9% recognition precision, 90.2% mapping
precision, and 89.3% recognition rate of the affected regions on the PWD dataset. It can effectively
identify the distribution of diseased pine trees and calculate the damage proportion in a relatively
accurate way to facilitate the management of forests.
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1. Introduction

As one of the important tree species in forests, pine trees are extremely vulnerable
to pests and diseases during their growth, especially the parasitic attack of pine wood
nematode (Bursaphelenchus xylophilus, PWN), which is also the main killer of pine tree
wilting [1]. Pine trees affected by pine wood nematode attack are called Pine Wilt Disease
(PWD) [2]. PWNs can naturally infect at least 17 species in China, e.g., Pinus armandii,
P. bungeana, P. densiflora, P. elliottii, P. kesiya, P. koraiensis, P. luchuensis, P. massoniana. Statistics
show that during the 35 years from 1982 to 2017, due to the increase in China’s international
trade, PWD has also increased year by year [3], resulting in the death of nearly 50 million
pine trees. The death of pine trees has caused economic losses of tens of billions of dollars,
and PWD has caused significant damage to China’s forest resources and ecological environ-
ment [4]. The initial onset site of PWD is hidden, highly pathogenic, and spreads rapidly.
Once a pine tree is infected with PWD, it will die within a few months, and if not managed
in time, the entire pine forest will be severely damaged within 3–5 years [5]. Recognized
as the main worldwide quarantine target, PWD has caused irreparable damage to the
economy and forests [6]. Therefore, the question of how to effectively isolate and accurately
diagnose PWD has always been the top priority of forestry workers and researchers.

Currently, PWD’s prevention and control methods are mainly divided into two cate-
gories. The first category is defense. For example, customs and border defense conduct
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random inspections on imported wood to determine whether they carry alien species or
pathogenic sources. The second category is governance. When PWD is found, the diseased
pine trees are cut down and burned to prevent the PWD disease from infecting other pine
trees [7]. Since there is no practical method to control PWD, it can only be prevented and
controlled by the timely discovery of PWD and then cutting and burning the infected trees.
The premise of governance is to find PWD. The earlier the diseased pine trees are detected,
the sooner the larger-scale spread can be prevented, and the loss can be reduced. Therefore,
a large number of studies have focused on PWD detection.

Pine trees are evergreen in healthy conditions, but if diseased, the leaves will change
color [8]. Therefore, traditional PWD detection mainly relies on field surveys by pest
experts, visual observation, or collecting samples of suspected diseased trees for microscope
detection. After pine trees are infected with diseases, the yellowing symptoms first appear
at the top, and the withering speed is breakneck. It is difficult to identify the diseased
pine trees by observing from the bottom up in field investigation. Due to mountainous
constraints, the fieldwork approach is time-consuming and inefficient, which delays early
detection and response to the PWD pandemic [7,9]. With the development of resource
satellites, the difficulties of field inspections have been eased. Because of their wide
field of view and the ability to be digitized, resource satellites are used by researchers
to obtain remote sensing data for detecting PWD. After pine trees are attacked by pine
wood nematode disease, the chlorophyll and water content in the body will be abnormal,
resulting in the peak of the reflected wave in the green band. And the absorption valley in
the red band is reduced, so using the green-red difference index is found to be effective in
detecting diseased pine in multispectral data [10,11]. Due to the diversity of forest species,
different plants will also produce similar spectra, which will lead to misidentification in the
detection process of the green–red difference index method. To solve the problem wherein
different objects have similar reflections, a spatial-temporal variation-based index method
is proposed to improve the accuracy of identifying sick pines [12]. This kind of color index
method has certain significance for the detection of diseased pines. However, it has the
shortcomings of low automation and poor generalization performance.

With the development of technology and the improvement of forestry demand, higher
requirements are put forward for the detection of PWD. Although satellite remote sensing
images have a certain effect on large-scale forest disease surveys [13], satellite remote
sensing images are expensive to collect, have a long revisit cycle, and are easily affected by
weather. As a result, the way satellites acquire images is not suitable for accurate monitoring
of small forest areas and canopy diseases than drones. Therefore, UAVs are considered to
have great potential in exploring complex woodlands due to their good maneuverability,
low cost, and ability to carry a variety of sensors, and have gradually become the major
means of obtaining PWD monitoring data [14]. At the same time, in order to improve the
degree of automation, traditional machine learning methods are used for the detection of
PWD. Traditional machine learning methods first need to extract features from images,
such as using methods like Scale-invariant Feature Transform (SIFT) [15] and Histogram of
Oriented Gradient (HOG) [16]. Then, they identify PWD by using classification algorithms
which include Logistic Regression (LR), K-Nearest Neighbors (KNN), Random Forest (RF),
Support Vector Machine (SVM), etc. [17–20]. Traditional machine learning proves that
they can effectively improve the efficiency and accuracy of PWD detection [21,22], but this
requires manual participation in the design of feature factors, which means this method is
not more robustness.

In recent years, deep learning models combine low-level features into abstract high-
level features through complex neuron structures or multiple processing layers composed
of multiple nonlinear transformations. At the same time, they can overcome the defects
of manual feature extraction and have been widely concerned and used [23]. The deep
learning models are mainly used in the three major fields of object classification, object
detection, and image segmentation. Now the use of deep learning methods for PWD
detection mainly focuses on object classification and detection [24,25]. Faster R-CNN and
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YOLO series algorithms, as representatives of deep learning models, show better detection
results than traditional machine learning when used to detect diseased pine in multispectral
images obtained by drones. In terms of PWD detection accuracy, Faster R-CNN is higher
than Yolo. In terms of PWD detection speed, the Yolo algorithm is faster than Faster R-
CNN [26–28]. Since the deep learning model for PWD detection has not been thoroughly
developed, more researchers have begun to make improvements. The SCA-Net network
proposes to retain part of the spatial information in the multispectral image to improve
the identification of diseased pine trees [29], but this 2D-CNN cannot completely extract
spectral and spatial information at the same time. To solve this shortcoming, the 3D-CNN
model is proposed to combine spectral information with spatial information to improve
the PWD detection effect of multispectral images [30,31]. The proposals of these methods
have effectively proved that deep learning can effectively process multispectral images,
but multispectral images need to process many data bands and a lot of information, which
increases the calculation of deep learning models.

Compared with multispectral cameras, China’s forestry management is currently
focusing on drones equipped with digital cameras. When acquiring data of the same
area, the amount of data generated by taking pictures with a digital camera is less than
that generated by taking images with a multispectral camera, and the imaging time is
greatly reduced. Therefore, more studies focus on the use of visible light data for PWD
identification, and at the same time prove that visible light can be effectively used for
PWD detection. Considering that the original network has too many parameters, adding
CBAM attention to the MobileNet network can reduce the parameters and improve the
feature extraction ability, which is beneficial to improve the detection speed [32]. The scales
between each species in the forest are diverse. The problem of multiple scales occurs when
convolutional networks detect visible image data, leading to poor recognition of small-scale
diseased pines. Therefore, in order to improve the detection accuracy at different scales,
a multi-level fusion residual feature pyramid structure is proposed to solve this prob-
lem, which also leads to an increase in the required hardware resource consumption [33].
The attention mechanism mimics human vision to focus on hot information and ignore
irrelevant information, which is widely used in detection networks. Among them, the
MSSCN algorithm proposed by adding a multi-scale spatial attention module to the full
convolutional machine network is proven to be effective for obtaining improved detection
accuracy of PWD at different scales [34]. To balance the scale and speed problems, the
DDyoloV5 algorithm proposes the use of hybrid dilation convolution (HDC) with efficient
channel attention (ECA) for capturing contextual information of targets at different scales
to improve the PWD detection accuracy and detection speed effectively [35]. The existing
methods to classify and locate PWD can improve the forestry department’s ability to locate
diseased pine trees. However, they cannot extract and calculate the areas affected by PWD,
which hinders the forestry department’s evaluation and management of PWD. To be able to
evaluate the affected area while detecting PWD, we propose a multi-scale PWD detection
and evaluation algorithm. The algorithm is based on Mask R-CNN to improve the basic
framework and make the following contributions:

1. A UAV is used to take RGB images of the diseased area and make a PWD dataset.
2. Aiming at the problem that the original FPN has an extensive information exchange

span, the PA-FPN structure is introduced. At the same time, the GN and WS methods
are proposed for normalization operations to achieve effective feature extraction with
low resource consumption.

3. For the problem of PWD area extraction, the mask module is improved, and a branch
is added to improve the fineness of PWD area extraction.

4. A contour pixel extraction module is proposed to extract and evaluate PWD regions.
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2. Materials
2.1. Study Area

The study site is located in Hunan Province, China (24◦38′–30◦08′ N, 108◦47′–114◦15′ E,
shown in Figure 1a), which is rich in forest vegetation types, mostly mixed broadleaf-
coniferous forests. To ensure the generalization ability, we selected four areas suffering
from pine wilt disease as the sample areas for data collection (as shown in Figure 1b),
including Changsha (CS), Xiangtan (XT), Yiyang (YY), and Huaihua (HH) cities; there
are various types of pine trees in these areas, and the masson pine is the main one. The
experimental site has a humid subtropical monsoon climate with mild climate, four distinct
seasons, concentrated rainfall, and abundant heat and light resources, with an average
annual temperature of about 17 ◦C.
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Figure 1. (a) The study area is located in Hunan Province, the People’s Republic of China, where four
different colors represent the four collection sites. (b) Images collected by UAV. (c,d) Low-altitude
acquisition of trees in sample plots by UAV (including PWD).

2.2. Data Acquisition and Preprocessing
2.2.1. UAV Images Collection

In this paper, a UAV (DJI Matrice M300 RTK) equipped with a visible light camera
(DJI Zenmuse H20T) is used to collect image data, and the main parameters are shown in
Table 1. Due to the limited data available for a single region, four regions were selected as
data collection points to improve the model’s generalization capability. From 20 October to
25 October 2020, we chose sunny, no wind or light wind for data collection. Before the flight,
the flight parameters were set using the flight control software DJI pilot, in which the frontal
and lateral overlaps were set to 80% and 70%, respectively, and the flight altitude and photo
acquisition information of each acquisition point was recorded in Table 2. During the flight,
the GPS carried by the UAV was used for positioning, and detailed information on the
location and flight altitude of each image was recorded. Finally, the 565 RGB images in
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JPG format acquired throughout the flight were stitched together using Photoscan software
(Version number is v1.2.5) to generate an orthophoto image (DOM) of each acquisition
point. Geometric correction of the DOM was also performed on the ground with handheld
GPS to facilitate subsequent dataset production.

Table 1. Parameters for Data Acquisition Equipment (provided by the manufacturer).

Name Parameters Values

DJI Matrice
M300 RTK

Dimensions (L ×W ×
H)/mm 430 × 420 × 430

Weight/KG 6.3

Flight Time/min 55

DJI Zenmuse
H20T

Sensor 1/2.3′′ CMOS

Photo resolution 4056 × 3040

Table 2. Data collection parameters.

Plot 1 (YY) Plot 2 (CS) Plot 3 (XT) Plot 4 (HH)

Number 124 150 37 254
High 100 m ± 20 m
Size 4056 × 3040

2.2.2. Data Processing and PWD Dataset

We cropped the stitched magnitude images for better model training. Image copping
produces many background images that do not contain PWD, which were unsuitable for
training the model. Therefore, according to whether the pine trees contain PWD or not, a
forester with more than ten years of experience visually decoded the cropped images, as
shown in Table 3, and filtered out 1172 images containing PWD, with a size of 1024 × 1024
and the format of jpg. To verify the accuracy of the visual interpretation, we randomly
selected 100 images at four locations. Then, we used GPS coordinate points for field
detection to determine the presence of PWD by visual observation of needle color and sap
secretion, etc. At the same time, branches were cut for retention sample analysis. Finally,
99 of the 100 randomly selected images contained diseased pine trees, and the success rate
of the visual inspection was up to 99%. This also shows that visual recognition has high
accuracy and can be used in the production of data sets.

Table 3. The number of pictures for each collection point after cropping.

Plot 1 (YY) Plot 2 (CS) Plot 3 (XT) Plot 4 (HH)

After cropping 1539 1839 447 3120
After Select 390 374 50 358

Size 1024 × 1024

We randomly divided the screened images from the acquisition points into 70%
training set, 10% validation set, and 20% test set. Due to the small amount of filtered
training data, the model can be easily overfitted during training. Therefore, in this paper,
horizontal flipping, vertical flipping, random rotation, and random cropping were used to
enhance the images of the training set [36].

3. Methods
3.1. Overall Workflow

Pine trees go through three stages from disease to death: early, middle, and late. Early
diseased pines will only have a slight discoloration at the top, mid-stage diseased pines
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will have extensive yellowing, and late diseased pines will be wholly wilted and discolored.
Through visible light in the monitoring of the early diseased pine trees will be a largely
missed identification, and the time to mid-stage diseased pine trees is very short [37], so
the detection of this paper will focus on the detection and extraction of the affected area
in the middle and late stages. To improve the accuracy of detection with lower resource
consumption, this paper deals with three aspects from data acquisition and processing:
PWD production and detection model, respectively. The overall flow of our experiments
is shown in Figure 2. First, UAVs were used to acquire data in four experimental areas
selected to be attacked by PWD and actual sampling probes were conducted simultaneously
on the ground. Then, the acquired data were cleaned, cropped, and manually tagged as
JSON data type using ‘Lableme’ software (Version number is v3.16.5), and the PWD dataset
was produced. Finally, the existing segmentation model was improved to enhance the
recognition of PWD by the algorithm and the evaluation of the images was output by the
model with the detection effect.
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3.2. Improved PWD Detection Model

The basic framework used in this paper is Mask R-CNN, an advanced two-stage image
instance segmentation algorithm that can segment objects while recognizing them and is
used in several research fields [38]. Through experiments on Mask R-CNN, it was found
that the combination of Resnet and feature pyramid structure to extract the features of
diseased pine trees is ineffective, and the drawing of diseased pine areas was not good.
To effectively improve the recognition and extraction area of diseased pine trees by Mask
R-CNN, we propose an improved method based on Mask R-CNN for identifying diseased
pine trees and drawing the affected area in UAV images. The overall structure is shown
in Figure 3.
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3.2.1. Feature Extraction

The original Mask R-CNN uses Resnet to extract features, but as Transformer domi-
nates in images, the original residual network is gradually replaced or improved by the
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attention mechanism. Some researchers used the original ResNet and improved it by
borrowing the design of Swin-Transformer to generate a ConvNeXt network [39]. The
adjustment content of the ConvNeXt network includes stage compute ratio, activation
function, data processing method, and network structure. As shown in Figure 3, this paper
uses ConvNeXt to extract features, and the specific ConvNeXt Block is shown in Figure 4b.
The proposal of the ConvNeXt network has greatly improved the Resnet network and
surpassed the Swin-Transformer. Compared with Resnet’s standard convolution calcula-
tion, ConvNeXt uses depth-separable convolution, which has the advantages of a smaller
number of parameters and a smaller computational workload. At the same time, the reverse
bottleneck structure can partially reduce the model’s parameter scale and improve the
model’s overall performance while slightly improving the accuracy rate.

Figure 4. (a) Resnet Block. (b) ConvNeXt Block.

3.2.2. Multi-Scale Structure

Unlike multispectral data that use the spectral index method to map the disaster
area, this paper uses a deep learning segmentation algorithm to extract the disaster area.
Accurate segmentation of the PWD area using deep learning requires more accurate feature
information. Because low-level feature maps have high resolution and weak semantic
information, high-level feature maps have low resolution and reliable semantic information.
Therefore, the original Mask R-CNN uses a feature pyramid structure to solve the problem
of different advantages of feature maps at different levels. Although the feature pyramid
structure utilizes the information of different feature layers to achieve better feature extrac-
tion capabilities, the semantic information extraction is still insufficient for small objects in
the forest. In order to obtain better features and improve the prediction ability of the model,
the FPN was replaced with PAFPN in this paper. As shown in Figure 5, the PAFPN has
an additional bottom-up structure compared to the FPN, and the entire feature hierarchy
is augmented with the precise localization signals in the lower layers through bottom-up
path enhancement. Moreover, this structure can shorten the information path between the
lower and top layer features can be shortened to further improve the segment instances of
the model. Due to hardware limitations, only a smaller Batch-size could be used during
training. To further enhance the effect, this paper replaced the Batch Normalization (BN)
used in PA-FPN with a combination of Group Normalization (GN) and Weight Standard-
ization (WS). The training process is shown in Figure 6. The improved overall structure is
called GWP.
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Group Normalization (GN): As shown in Figure 7, this is a schematic diagram of BN
and GN. Because the calculation result of the BN layer depends on the current Batch-size,
when the Batch-size is small, the mean and variance of the batch data are less represen-
tative, so it has a greater impact on the final result. Group Normalization can perform
normalization in the same group of the same feature map, so that the normalization op-
eration has nothing to do with the Batch-size. The normalized formula of GN is shown
in Equations (1) and (2). where xi are the coordinates of the four dimensions, and x is the
feature computed by a layer, i = (iN , iC, iH , iW).

x̂i =
1
σi
(xi − µi) (1)

yi = γx̂i + β (2)

where
µi =

1
m ∑

k∈Si

xk (3)

σi =
√

1
m ∑

k∈Si

(xk − µi)
2 + ε (4)

Si =

{
KN = iN ,

⌊
kC
C
G

⌋
=

⌊
iC
C
G

⌋}
(5)

Here, kC and iC both denote channels, Si denotes the set of points for calculating the
mean and standard deviation, k denotes the four-dimensional point coordinates in the
case kC= iC, and G is a hyperparameter (G = 32 by default). C

G is the number of channels
per group.
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Figure 7. Batch normalization and Group Normalization.

Weight Standardization: Figure 8 shows a schematic diagram of Weight Standardiza-
tion. The original normalization is normalized after the convolution process and before
the activation function. The Weight Standardization directly processes the weight in the
convolution, which can better solve the dependence on the Batch-size during training. As
shown in Equations (6) and (7), assuming there are X convolution kernels, X channels will
be generated, and the Weight Standardization will perform X operations at this time.

Ŵ =

[
Ŵi,j

∣∣∣∣Ŵi,j =
Wi,j−µWi,·

σwi,·

]
(6)

y = ŵ ∗ x (7)

where

µWi,· =
1
I

I
∑

j=1
Wi,j (8)

σWi,· =

√
1
I

I
∑

j=1
W2

i,j − µ2
wi,· + ε (9)

where, Ŵ ∈ RO×I represents the weight in the layer, and * represents the convolu-
tion operation. For Ŵ ∈ RO×I , O is the number of output channels (Cout in Figure 9),
I = Cin ×Kernel_size. In Weight Standardization, instead of directly optimizing the loss
on the original weights Ŵ, we reparametrize the weights Ŵ as a function of W.
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3.2.3. Mask Branch

The original Mask R-CNN uses classification confidence to evaluate the segmentation
quality score, which will lead to poor segmentation quality. To improve the effect of
segmentation, we improved the Mask Branch to enhance the accuracy of segmentation. The
improved structure is shown in Figure 9. A yellow branch was added to perform the Concat
operation with the original feature layer, and then a new mask was generated. At the same
time, Batch Normalization (BN) is replaced by a combination of Group Normalization (GN)
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and Weight Standardization (WS), which can improve the segmentation accuracy in the
case of low Batch-size training.

Forests 2023, 14, x FOR PEER REVIEW 10 of 22 
 

 

 
Figure 8. Weight Standardization. 

 
Figure 9. Improved Mask. 

3.2.3. Mask Branch 
The original Mask R-CNN uses classification confidence to evaluate the segmentation 

quality score, which will lead to poor segmentation quality. To improve the effect of seg-
mentation, we improved the Mask Branch to enhance the accuracy of segmentation. The 
improved structure is shown in Figure 9. A yellow branch was added to perform the Con-
cat operation with the original feature layer, and then a new mask was generated. At the 
same time, Batch Normalization (BN) is replaced by a combination of Group Normaliza-
tion (GN) and Weight Standardization (WS), which can improve the segmentation accu-
racy in the case of low Batch-size training. 

3.2.4. Pixel Calculation Module 
The function of this module is to extract the segmented disaster region and calculate 

the pixels. Here we used pixel blocks to calculate the pixels of each infected pine tree in a 
single image, and then add them up to the total pixels of infected pine trees in a single 
image, and finally calculate the damage ratio of a single image and draw the affected area 
of a single image. At the same time, by stitching together the single images, the disaster 
area in the complete aerial image can be mapped. In order to facilitate the calculation and 
output of the position information of the diseased pine trees, we kept the GPS of the center 
point of each picture in the image. As shown in Figure 10, this is the process of extracting 
each diseased pine pixel after identifying the diseased pine. First, we extracted the pixel 
blocks of the PWD mask from the segmentation information, then we counted the number 
of pixel blocks, and finally we calculated the proportion in the image. After the infor-
mation of each small image was extracted, we stitched the individual image together, and 
then we could integrate the area of the entire flight region to obtain the proportion and 
location of the disaster in the entire region. 

Figure 9. Improved Mask.

3.2.4. Pixel Calculation Module

The function of this module is to extract the segmented disaster region and calculate
the pixels. Here we used pixel blocks to calculate the pixels of each infected pine tree in
a single image, and then add them up to the total pixels of infected pine trees in a single
image, and finally calculate the damage ratio of a single image and draw the affected area
of a single image. At the same time, by stitching together the single images, the disaster
area in the complete aerial image can be mapped. In order to facilitate the calculation and
output of the position information of the diseased pine trees, we kept the GPS of the center
point of each picture in the image. As shown in Figure 10, this is the process of extracting
each diseased pine pixel after identifying the diseased pine. First, we extracted the pixel
blocks of the PWD mask from the segmentation information, then we counted the number
of pixel blocks, and finally we calculated the proportion in the image. After the information
of each small image was extracted, we stitched the individual image together, and then we
could integrate the area of the entire flight region to obtain the proportion and location of
the disaster in the entire region.
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image with mask. (d) Pixel image of the target.

4. Results
4.1. Evaluation Metrics

In this paper, the four conventional metrics, precision, recall, F1-score, and AP, were
used to evaluate the model’s performance. Precision is mainly used to evaluate the clas-
sifier’s ability to mark samples as positive and negative. Recall is the ability to evaluate
the classifier to find all positive samples. F1-score is the harmonic mean of precision and
recall. The AP formula was calculated by the recall and the precision. The indicators are
calculated as follows.

Recall = TP
TP+FN (10)
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Precision = TP
TP+FP (11)

F1 = 2·Precision × Recall
Recall + Precision (12)

AP =
∫ 1

0
P(R)dR (13)

where, TP indicates true positive (positive label is correctly predicted as positive), FP
indicates false positive (negative label is incorrectly predicted as positive), and FN indicates
false negative (positive label is incorrectly predicted as negative).

4.2. Experimental Environment

The CPU used in this paper is Intel(R) Xeon(R) E5-2680 v4, the GPU is NVIDIA
GeForce RTX 3060, and the Computing Platform is CUDA11.3. First, we fed the Image-1k
dataset into the model for pre-training, and the pre-training loss and accuracy are shown
in Figure 11. Then, the PWD dataset was trained with the pre-trained weights, and the
details of the two pieces of training are recorded in Table 4. Finally, when the verification
loss function had not changed for 20 iterations, the training was stopped in time.
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Table 4. Train Parameters.

Model Dataset Batch-Size Learning Rate Optimizer Warmup

Pre Mask R-CNN ImageNet-1K 4 0.0001 AdamW Linear
Ours PWD 4 0.0001 AdamW Linear

4.3. Test Results of the Improved Model

As shown in Table 5, the F1-score of 88.5% and the PWD Extraction Accuracy of 89.3%
were obtained after training the PWD dataset with this algorithm. As shown in Figure 12,
this is the loss function and precision change during model training, where the loss part
includes box regression, category, mask, and overall loss function.

A visualization of the PWD regions detected by the model is shown in Figure 13.
Among them, Figure 13a is the image taken by the UAV, Figure 13b is the actual effect
image containing the PWD identified by the model, where each detection box has the
confidence level of the identification, and Figure 13c is the black and white image of PWD
extracted by the model. In the black-and-white image, the white area is the identified
high-weight PWD area, and the black area is the identified high-weight healthy forest
land. The model can stitch the identified single image into an overall affected region image,
as shown in Figure 14. Figure 14a is the original image, and Figure 14b is the affected
area containing PWD discriminated by the model. The actual size of this region is 1.73
hm2, and the model detects 23 suspected high-weight diseased pine areas in this region,
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containing a total of 3,352,925-pixel blocks. The actual area of PWD detected by the model
is 0.0458 hm2, and the actual area of marked PWD in this area is 0.0503 hm2. Compared
with the actual affected area, the affected area extracted by our algorithm is smaller due
to the forest environment’s complexity and the influence of light, causing some withered
parts to be hidden in other healthy areas, thus appearing in this situation.

Table 5. Test result.

Precision/% Recall/% F1-Score/% FPS/S Params/M Extraction Accuracy/%

91.9 85.5 88.5 8.3 67.47 89.3
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Figure 14. Overall damage situation. (a) Original images. (b) Extraction of PWD-affected images.

The model also has some recognition errors. In Figure 15a, the model identified the
loess as diseased pine tree because under the condition of light, the loess has texture, and
the color is very similar to diseased pine. Figure 15b shows that the loess was identified
as diseased pine tree because there are gaps between the branches and leaves of the pine
trees in the picture. The background of the gaps is the loess land, and the target area is
small, which caused the model to misidentify such a scene as PWD. Figure 15c is a result of
the branches falling on the loess. Figure 15d misidentifies the discolored broad-leaved tree
as a diseased pine tree because the texture of the discolored broad-leaved tree is not clear,
which is very similar to the texture of diseased pine tree. Figure 15e is misidentified due to
the shadow of pine trees in the lake. The above five situations are misidentifications that
occurred during the identification process of this model. Missing recognition occurs more
frequently in this algorithm because small targets are hidden in healthy trees, and the early
diseased pine features in visible light images are not obvious, resulting in this situation.
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4.4. Ablation Experiment

In order to test the effectiveness of each module in the improved algorithm, we
conducted the ablation experiments shown in Table 6 and obtained the corresponding
results. The experimental results show that compared with the Baseline (Mask R-CNN
before improvement), our improved algorithm had improved the precision of detection
by 11.4%, the recall by 1.8%, and the segmentation precision by 5.8%. There are obvious
improvements for all indicators.

Table 6. Results of ablation experiments.

ConvNeXt FPN GWP M Detection
Precision/% Recall/% F1-

Score/%
Segmentation
Precision/%

Baseline (Resnet + FPN) 80.5 83.7 82.07 84.4
X X 85.3 84.1 84.69 85.9
X X 91.1 84.9 87.8 87.7
X X X 86.1 82.5 84.3 86.5
X X X 91.9 85.5 88.5 90.2

The original Mask R-CNN uses the structure of Resnet + FPN for object detection and
segmentation. The precision of detection and segmentation was improved by replacing
the Resnet network with the ConvNeXt network. In particular, the recognition accuracy of
detection has increased by 4.8%. It effectively proves that ConvNeXt results in significant
improvement in PWD detection. FPN is a pyramid structure from top to bottom. In order
to improve the utilization rate of information exchange and features, we propose GWP
based on FPN. It can be seen from the experimental results that GWP effectively improves
the precision of detection, and it also proves that this improvement can effectively obtain
better results under low Batch-size training. The Mask branch is the part that outlines the
target. It can draw the mask of the object based on the detected target. Its drawing effect
determines the accuracy of the subsequent calculation of the proportion of diseased pine
and disaster. Through ablation experiments, it can be seen that the improved Mask can
effectively improve the Precision of segmentation.

4.5. Algorithm Comparison on the PWD Dataset

Instance segmentation can identify the content and location of the image and can also
distinguish different individuals under the same category to achieve more accurate target
information. In order to compare the detection effects and region extraction capabilities of
different advanced algorithms on the PWD dataset, we selected four instance segmentation
algorithms with better detection effects at this stage. Using pre-trained weights, the
experimental environment and parameter settings are the same for each algorithm.

Table 7 shows the evaluation results of the ability to detect PWD. At the same time,
Figure 16 shows the visualization of PWD detected by each algorithm. Mask R-CNN is
used as the baseline, the precision detected on the PWD dataset was 80.5%, and the recall
was 83.7%. Compared with other algorithms, the recognition accuracy of Mask R-CNN is
average. The first step in segmentation is to find the target. Accurate object recognition
can segment objects more effectively. However, the detection process is easily disturbed
by noise, resulting in inaccurate detection and positioning. Cascade Mask R-CNN [40] is
used to solve such problems, which utilizes different IOU thresholds and trains multiple
cascaded detectors to learn features. However, Cascade Mask R-CNN was tested on the
PWD dataset and found to be ineffective, with a precision of only 79.6% and a recall of 82.9%.
The proposal of Point_rend [41] solves the problem that the edge is not fine enough in the
instance segmentation task, and refines the points selected from the target contour area
in an iterative manner, thereby improving the quality of the target contour segmentation.
The precision tested on the PWD dataset was 84.6%, and the recall was 84.1%, which is
greatly improved compared to Mask R-CNN. These three algorithms are all RCNN types.
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In order to fill the lack of single-stage instance segmentation algorithms, Yolact [42] is
used for single-stage instance segmentation. Yolact adds a mask branch to the single-stage
detector without adding a feature localization step, achieving faster detection speed and
fine mask segmentation. Yolact has 81.7% for precision and 76.2% for recall in detecting the
PWD dataset. Finally, we choose the Swin-Transformer algorithm [43], a Transformer-type
algorithm with better target recognition and disaster-affected area extraction. Unlike other
instance segmentation methods, the Swin-Transformer algorithm divides the picture into
multiple small blocks, and then uses SW-MSA to extract feature. Compared with the
traditional Transformer, Swinformer has a smaller amount of calculation. The detection
precision was 84.4%, and the recall was 83% in the PWD dataset.

Table 7. Precision of identifying objects.

Point_Rend Cascade Mask R-CNN Yolact Swin-
Transformer

Mask
R-CNN Ours

Precision/% 84.6 79.6 81.7 84.4 80.5 91.9
Recall/% 84.1 82.9 76.2 83 83.7 85.5

F1-Score/% 84.3 81.2 78.9 83.7 82 88.5
FPS/s 7.6 6.6 10.6 8.4 8.6 8.3
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As shown in Figure 17, we have drawn the PR curves of each comparison algorithm.
The abscissa of the PR curve is recall, and the ordinate is precision. The larger the area is
under the curve, the more advanced the algorithm will be.

In order to test the accuracy of extracting the disaster-affected ratio, we carry out
related calculations. The entire test images contain 119.8 × 106 pixel blocks, and the pixel
block containing the PWD area was 9.72 × 106. We recorded the evaluation results of the
extracted disaster area in Table 8 and record the pictures of PWD masks extracted by each
algorithm in Figure 18. By calculation, Mask R-CNN extracted 7.21 × 106 pixel blocks,
and the segmentation accuracy rate was 74.2%. The improved algorithm proposed in this
paper extracted 8.68 × 106 pixel blocks, and the accuracy of segmenting the affected pixels
was 89.3%. The algorithm proposed in this paper improves the segmentation accuracy by
15.1% compared with Mask R-CNN. Yolact had the worst segmentation effect among the
comparison algorithms, and the PWD extraction accuracy was only 69.7%. Compared with
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other algorithms, the PWD extraction accuracy of this paper also has obvious advantages.
It can be seen from the mask extraction map that the details of the segmentation of the
affected area are better.
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5. Discussion
5.1. Performance of Faster R-CNN and YOLO V3 on the PWD Dataset

Some existing studies used Faster R-CNN and Yolo series algorithms to detect diseased
pine trees [44,45]. Compared with segmentation algorithms, target detection algorithms
can only identify and locate targets, but cannot draw the actual area of diseased pine trees.
Among them, Faster R-CNN focuses on recognition accuracy, and the Yolo series focuses
on recognition speed. As shown in Table 9, we used these two algorithms to train and
test the PWD dataset. Among them, Faster R-CNN adopts the FPN structure and ROI
align, and the optimization function is SGD. Through experiments, it can be found that the
recognition speed of Yolo v3 is significantly higher than that of Faster-RCNN. At the same
time, the recognition precision of Faster R-CNN is higher than that of YOLO V3. At the
same time, we used Darknet [45] and MobileNet [46] as the backbone network of YOLO
V3, respectively. The number of parameters of YOLO V3 with MobileNet as the backbone
network was greatly reduced to only 3.67 M. Therefore, YOLO V3 with MobileNet as the
backbone network can help drones detect diseases in real-time.

Table 9. The accuracy of different algorithms to extract PWD.

Models Backbone Precision/% Recall/% F1-Score/% FPS/s Params/M

Faster R-CNN Resnet 81.6 78.6 80.1 14.9 41.1

YOLO V3
Darknet 78.1 73.7 75.8 37.5 61.5

MobileNet v2 75.4 73.7 74.5 38.3 3.67

5.2. Image Segmentation and Object Detection

In the past, PWD detection mainly focused on classifying and locating PWD. Although
the management efficiency of PWD in the forestry department has improved, only classifi-
cation and localization methods ignore assessing the area size of disaster. The quantitative
index of the area size of disaster damage plays an essential role in managing PWD by the
forestry department and formulating corresponding treatment methods. Although the
area size can be assessed by using the spectral index method, this method does not have
accurate location information, making it impossible to implement specific measures. With
the development of convolutional neural networks, the instance segmentation network
can draw object outlines while obtaining positioning information, which is widely used in
various scenarios and has become a research hotspot [47].

In the current stage of PWD detection, because the development of the segmenta-
tion algorithm has the characteristics of high hardware requirements and complexity, the
segmentation algorithm has not been thoroughly developed in the detection of diseased
pine trees, and only a small number of studies have explored the segmentation method of
PWD detection. FCN, DeepLabv3+, and Unet, as representatives of semantic segmentation
networks, are developed for PWD detection [48,49]. Due to the different sizes of PWD, to
improve the recognition of small targets, MA-Unet proposes to add a multi-scale attention
module, so that PWD of different scales has a better recognition effect [50]. Although there
are few studies on the use of segmentation algorithms for PWD, existing studies have
proved the applicability of segmentation algorithms for PWD research [51,52].

5.3. Performance of Semantic Segmentation Algorithm on PWD Dataset

FCN, DeepLab, and U-net are commonly used semantic segmentation models [53–55].
The FCN (Fully Convolutional Networks) network is the first semantic segmentation network
which establishes a general network model framework for image semantic segmentation.

The FCN network replaces the fully connected layer after the CNN layer with a
convolutional layer and adds a skip-level structure to combine the prediction of global in-
formation and local information, and segment images while improving the detection effect
of details. The precision of the FCN network in the detection of the PWD dataset was 87.3%.
The DeepLab series of networks has undergone several iterations and has now developed
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to DeepLab V3+. Compared with the previous DeepLab network, DeepLap V3 + adopts
the structure of an Encoder and Decoder. The main body of the Encoder is DCNN with
hole convolution and ASPP with hole convolution. The Decoder will first convolve the
input shallow feature map and then perform Concat with the up-sampled ASPP feature
map. Finally, after convolution and up-sampling operations, the segmentation map of
the original size is output to achieve end-to-end fine-grained semantic segmentation. The
Precision recognized on the PWD dataset was 81.6%. The U-net algorithm is similar to
U-shape, adopts Encoder and Decoder structures, and was first used in medical image
processing. At this stage, many researchers have applied the U-net algorithm to various
aspects. Therefore, we also use this algorithm to test the PWD dataset. The precision of
U-net recognition can reach 84.6%.

As shown in Table 10, this is the specific detection result of the three algorithms on the
PWD dataset, and the FCN network has a relatively good performance.

Table 10. Precision of identifying objects.

Models Precision/% Recall/% F1-Score/% mIOU

FCN 87.3 75.9 81.2 80.31
DeepLab V3+ 81.6 65.36 72.58 77.45

U-Net 84.6 71.5 77.5 74.87

5.4. Comparison of the Improved Algorithm in HSV and RGB

Color space transformation techniques can be applied in many areas of UAV remote
sensing to extract more information from color band features, including HSV color space
and RGB color space. As shown in Figure 19, HSV, as a color space different from RGB,
consists of H, S, and V, representing hue, saturation, and lightness, respectively. The color
threshold model is an algorithm that relies on color features to detect PWD. Experiments
have found that the detection effect of the HSV color space is better than that of the
RGB color space [56]. When using traditional machine learning methods to detect PWD
in RGB and HSV color spaces, we find that most algorithms are better at recognizing
PWD in RGB than in HSV [17]. Different detection results emerged for the two types of
algorithms. At the same time, we also used the proposed improved algorithm to conduct
comparative experiments on the HSV type PWD dataset and the visible light PWD dataset.
The experimental results are shown in Table 11. The detection effect of the RGB type is better
than that of the HSV type, but the recognition speed of the RGB type is worse than that of
the HSV type. Figure 19b,d show the scatter diagrams of HSV and RGB, where the color
bands of HSV are more concentrated than the RGB color bands, which weakens the color
discrimination and causes the texture details of objects to become weaker. We find that the
color thresholding model uses only color features, while the other uses multiple features,
including color and texture, which may be one of the reasons why color thresholding and
the other two methods show very different results.
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Table 11. Test result.

Color Detection
Precision/% Recall/% F1-Score/% Segmentation

Precision/% FPS/S

RGB 91.9 85.5 88.5 89.2 8.3
HSV 88.2 81.3 84.6 87.1 8.9

6. Conclusions

In this paper, we collected remote sensing images of four regions by UAV, and made
a PWD dataset of visible light type. Due to the high hardware requirements of the seg-
mentation algorithm, to effectively improve the effect of recognizing multi-scale PWD
under low Batch-size training, we improved the Mask R-CNN network and proposed a
PWD extraction algorithm. The improved algorithm can not only detect PWD and extract
the PWD regions, but also evaluate the disaster situation. The experimental results show
that the precision of the method proposed in this paper was 11.4% higher than that of the
baseline algorithm, and the accuracy of the disaster area extraction is also 15.1% higher.
Compared with other methods, the method of this paper also has certain advantages. It can
help improve the interpretation of PWD in forestry, enrich the ways of managing diseased
pine trees in forestry departments, and provide a basis for subsequent work in this field.
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