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* Correspondence: yosio.shimabukuro@inpe.br

Abstract: This work aims to develop a new method to map Land Use and Land Cover (LULC)
classes in the São Paulo State, Brazil, using Landsat-8 Operational Land Imager (OLI) data. The
novelty of the proposed method consists of selecting the images based on the spectral and temporal
characteristics of the LULC classes. First, we defined the six classes to be mapped in the year
2020 as forest, forest plantation, water bodies, urban areas, agriculture, and pasture. Second, we
visually analyzed their variability spectral characteristics over the year. Then, we pre-processed
these images to highlight each LULC class. For the classification, the Random Forest algorithm
available on the Google Earth Engine (GEE) platform was utilized individually for each LULC class.
Afterward, we integrated the classified maps to create the final LULC map. The results revealed that
forest areas are primarily concentrated in the eastern region of São Paulo, predominantly on steeper
slopes, accounting for 19% of the study area. On the other hand, pasture and agriculture dominated
73% of all São Paulo’s landscape, reaching 39% and 34%, respectively. The overall accuracy of the
classification achieved 89.10%, while producer and user accuracies were greater than 84.20% and
76.62%, respectively. To validate the results, we compared our findings with the MapBiomas Project
classification, obtaining an overall accuracy of 85.47%. Therefore, our method demonstrates its
potential to minimize classification errors and offers the advantage of facilitating post-classification
editing for individual mapped classes.

Keywords: Land Use and Land Cover (LULC); forest; forest plantation; agriculture; pasture; urban;
Linear Spectral Mixing Model (LSMM); spectral indices

1. Introduction

Important techniques for mapping and monitoring Land Use and Land Cover (LULC)
changes are based on Geographic Information Systems (GIS) and remote sensing products
obtained by orbital platforms. In recent decades, remote sensing has become an important
tool to monitor the Earth’s natural resources, since it provides data over large geographical
extensions and in a temporal frequency that allows for the monitoring of the processes that
occur in these areas [1].

Remote sensing images have greatly expanded the horizons of their applications in
recent years due to the improvement of several factors such as number of satellites, sensor
quality (radiometric and spatial resolutions), computational capacity, and higher availability
of images freely distributed, allowing us to observe the Earth’s surface in more detail and
with higher frequency. The integration of these images with other spatial data sources (GIS)
and the Geographic Database (GD) has significantly expanded the possibilities of spatial
analysis of the Earth’s surface data [2].
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The mapping and monitoring of LULC are of great importance and there is an effort
from the scientific community to provide and improve the accuracy of these products [3–5].
These studies aim to understand changes due to natural and anthropic factors [6,7] and
improve efficiency in the elaboration of natural resource management plans [8,9], as well
as the delimitation of priority areas for conservation [10]. LULC classification has a great
impact on ecosystem management and has become an important base for much research
into environmental hot topics worldwide [11–14].

In Brazil, the state of São Paulo is widely known as the largest national economic
and industrial hub. In addition, it is a global leader in agribusiness, accounting for 13.5%
of Brazilian crop production, while maintaining the largest number of Atlantic forest
remnants [15,16]. The natural vegetation of the São Paulo State is mainly defined by the
Atlantic Forest and Cerrado biomes, which have been massively removed since 1500 but
have increased again in the last two centuries [16]. According to data from the Secretary of
State for the Environment and Forest Inventory of São Paulo, it is estimated that São Paulo
state has 24% remaining of the native vegetation of the Atlantic Forest and only 17% of the
native vegetation of the Cerrado [16,17].

Long-term LULC data for the state of São Paulo and consequently those to quantify
changes are important to understand current patterns of LULC and to improve planning
and management of state resources and governance [3,18]. In addition, in order to un-
derstand the patterns and phytophysionomic diversity of the remaining vegetation, it is
paramount to identify historical patterns and which factors, including relief shapes and
topography, it might be related. The removal of native vegetation, mainly for agricultural
purposes, has well-known alteration patterns, as well as the relief, water availability, and
soil fertility, among other factors. Urban expansion also shows characteristic expansion
patterns, with future expansion arcs in regions that are already urbanized.

In this way, understanding the historical characteristics of each LULC and linking them
with the spectral and temporal responses of satellite images on available machine learning
methods are the key to gathering reliable information for LULC management on different
scales. On the other hand, there are many classification algorithms available in the literature
for LULC mapping [19], from low computational costs such as machine learning [20] to
deep learning [20,21]. Among them, the Random Forest (RF) algorithm [22] has been widely
used in the context of LULC classification methods, favored for its robustness, the relatively
low cost of the computational process, and because it does not require many parameters and
data to obtain high-accuracy results [23]. RF excels at handling complex datasets, mitigating
overfitting with higher accuracy compared to other methods (e.g., Support Vector Machines
and Artificial Neural Networks [24]), and allows the use of a variety of datasets (e.g.,
vegetation indexes, fraction images, and spectral bands) to improve LULC classification.
This algorithm does not consider a priori statistic distribution and it also combines a set of
features randomly to create trees with bootstrapped samples of the training data [25], also
presenting the estimated importance of the variables for classification [26–28]. Then, many
decision trees are generated, and an unweighted selection is used to assign an unknown
pixel to a specific class. With the advance of cloud computing platforms like Google
Earth Engine (GEE) large datasets can be processed [13,29], especially with the addition
of algorithms such as RF in the platform. For instance, large-scale data at state, country,
or continental levels can have great results after a short processing time to combine the
multiple datasets available on the GEE platform [30].

The Brazilian Annual Land Use and Land Cover (LULC) Mapping Project (Map-
Biomas) initiative was formed in 2015 to develop an annual time series of the Brazil’s
LULC maps from 1985 to present with a spatial resolution of 30 m. The project is or-
ganized by biomes (such as the Amazon, Atlantic Forest, Caatinga, Cerrado, Pampa,
and Pantanal) and cross-cutting themes (such as pasture, agriculture, forest plantation,
coastal zone, mining, and urban area). The imagery dataset used in the MapBiomas
project for collections 1 to 7 is composed by the Landsat Thematic Mapper (TM), En-
hanced Thematic Mapper Plus (ETM+), and the Operational Land Imager and Ther-
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mal Infrared Sensor (OLI-TIRS) sensors onboard of Landsat 5, Landsat 7 and Land-
sat 8, respectively, due to the long-term data available at medium spatial resolution
(https://mapbiomas-br-site.s3.amazonaws.com/ATBD_Collection_7_v2.pdf, accessed on
10 June 2023). Despite MapBiomas being widely used in Brazil, its complex data pre-
processing and algorithms may hinder its full reproducibility in other areas. In contrast, the
proposed method introduces a novel approach that enhances reproducibility and accuracy.
By selecting images based on the spectral and temporal characteristics of the LULC classes
and sorting them according to complexity, from the most uniform to the most complex,
the classification process becomes more systematic and controlled. Classifying one LULC
class at a time in that order allows for a more focused and accurate classification, reducing
potential errors and ensuring better mapping results. This method promotes transparency
and replicability, making it easier for researchers to apply the same approach to different
regions with similar characteristics.

Therefore, this work aims to map the LULC in the state of São Paulo using the Landsat-
8 Operational Land Imager (OLI) images acquired mainly during the year 2020, based on
the classification of individual LULC classes: forest, forest plantation, pasture, agriculture,
urban areas, and water. For forest plantation exclusively we also used images from Landsat-
8 OLI from the years 2013 to 2020 due to its rotation age [31]. First, we identified the
individual classes and then we highlighted these classes by deriving synthetic images such
as spectral indices and fraction images. Finally, we applied the RF algorithm, available
on the GEE platform, to classify each LULC class separately, using the best set of visually
selected images, and then compose the LULC map of São Paulo State.

2. Materials and Methods
2.1. Study Area

The state of São Paulo (Figure 1) is located in the Southeast Region of Brazil, with an
approximate area of 248,209 km2, between the parallels 19◦43′18′′ and 25◦22′55′′ south and
the meridians 44◦7′38′′ and 53◦8′10′′ west. This study area was chosen because it presents
a wide variety of LULC classes with spatial, spectral, and temporal variability, resulting
in a landscape with great complexity. The vegetation types observed in the São Paulo
State are dense ombrophilous forest, mixed ombrophilous forest, semi-decidual seasonal
forest, restinga, savanna, and mangrove. They vary accordingly to climate, soil, relief,
and distance from the Atlantic coast, and also have mosaics of occupation and anthropic
uses [32].
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Much of São Paulo State’s original vegetation cover was intensely devastated by
logging, the economic cycles of coffee, sugarcane, orange, cattle, and urban growth. In
the last survey of vegetation cover (2020), 5.6 million hectares of native vegetation were
mapped, representing 22.9% of the territory [16]. Currently, approximately 70% of the São
Paulo State’s territory is occupied by agriculture (pasture and crops) [11], emphasizing that,
economically, São Paulo is the most important state for sugarcane and orange cultivation
in Brazil, corresponding to 55.1% and 63.9%, respectively, in relation to the national total
planted area [33,34].

2.2. Remote Sensing Data

The multi-temporal Landsat 8 OLI images, converted to top-of-atmosphere (TOA)
reflectance by USGS (Product: Landsat Surface Reflectance) [35] were used to develop the
proposed method. From the original spectral bands, we generated fraction images derived
from the Linear Spectral Mixing Model (LSMM) [36] and spectral indices to highlight the
LULC classes that were used as input variables in the classification process. In addition, we
used the Shuttle Radar Topography Mission (SRTM) data to help the classification [37,38].

The period defined for generating the image mosaics was based on the characteristics
of the LULC classes and the lower presence of clouds (<40%) in the image, for example, a
unique mosaic from January to June 2020, as shown in Figure 2. Different periods were
used in the classification to consider the characteristics of the LULC classes. For water
classification an annual mosaic showing the water extent in 2020 was used; for urban and
forest the period was from May to September (dry season); and for agriculture from January
to June 2020 (the growth season). We also used images from Landsat-8 OLI from the May
to September of 2013 to 2020 time period to detect longer rotation cycles to classify forest
plantation (most Eucalyptus plantations have around a 7-year rotation cycle).
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2.2.1. Spectral Indices

As described in Table 1, we have considered six spectral indices during the classifica-
tion procedure.

Table 1. Spectral indices used to classify LULC and their equations based on Landsat spectral bands.

Index Equation Reference

Normalized Difference Vegetation Index
(NDVI)

NIR − Red
NIR + Red [39]

Enhanced Vegetation Index (EVI) 2.5 NIR − Red
NIR + 6 × Red − 7.5 × Blue + 1 [40]

Green Normalized Difference Vegetation
Index (GNDVI)

NIR − Green
NIR + Green [41]

Normalized Difference Water Index (NDWI) NIR − SWIR1
NIR + SWIR1 [42]

Normalized Burn Ratio (NBR) NIR − SWIR2
NIR + SWIR2 [43]

Normalized Difference Urban Index (NDUI) NTL − NDVI
NTL + NDVI [44]

NTL = normalized Operational Linescan System (OLS) on the Defense Meteorological Satellite Program (DMSP)
nighttime light data.
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2.2.2. Fraction Images

To obtain fraction images, we applied the LSMM method [36], which assumes that
pixel values are linear combinations of reflectance from the pixel’s components, called
endmembers:

Ri = ∑n
j=i firi,j + εi (1)

where Ri represents the spectral reflectance in the ith spectral band; ri,j is the spectral
reflectance of the jth component in ith spectral band (endmember); fi is the proportion of
the jth component within the pixel; and εi is the residual for the ith spectral band.

The spectral endmembers (vegetation, soil, and shade/water) were selected by an-
alyzing the spectral and temporal characteristics of these endmembers in the images
(endmember value extracted directly from the images analyzed). The vegetation endmem-
ber was selected in areas of dense vegetation cover, the soil endmember was selected in
areas of exposed soil without vegetation cover, and the shade endmember was selected
in areas occupied by water since shade and water have similar lower spectral responses
than the other two endmembers considered in this study [45]. Then, vegetation, soil, and
shade fraction image mosaics were generated, discriminating from the abundance of each
endmember inside the pixels.

2.3. Methodological Approach

The classes of forest, forest plantation, pasture, agriculture, urban areas, and water
were classified according to their complexity when analyzed using Landsat 8 OLI images.
In this way, first we classified water, followed by urban area, forest, agriculture, and lastly
forest plantation. We assumed that all remaining areas were covered by pasture. This is
shown in the flowchart of the methodological approach used to classify the LULC classes
in the state of São Paulo for the year 2020 (Figure 3).
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2.3.1. Landsat-8 OLI Image Analysis

For this study, we used a mosaic for the January to June 2020 period (Figure 4A)
composed of 379 images, mostly comprising the end of wet season and the beginning of
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dry season and another for the July to September 2020 period (Figure 4B) composed of
212 images. The first image mosaic shows the green vegetation (wet season) and the second
one shows a higher number of bare soil areas (dry season).
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Figure 4. The image cloudless mosaics used in this work: (A) January to June 2020 and (B) July to
September 2020 of Landsat-8 OLI sensor data (RGB color composites) of the São Paulo State.

Based on the mosaics, we investigated which time period was more suitable for the
classification of each class and found that an annual mosaic (January to December 2020)
improves the water classification; for the urban and forest classes, the better classification
results were achieved based on the period from May to September 2020 (the dry season);
for the agriculture classification, we used mosaic images from January to June (the growing
season), that highlighted this class area. We also used images from Landsat-8 OLI from
May to September of the period from 2013 to 2020 to detect longer rotation cycles to classify
forest plantations (most Eucalyptus plantations with a rotation cycle of approximately
7 years). Then, we generated several derived images for each class period such as vegetation
indices (Table 1), fraction images (vegetation, soil, and shade/water), and some statistical
information (e.g., ratio and percentiles). The LSMM was applied to each image and then
we calculated the maximum and standard deviation of the fractions. The LSMM was also
applied in the medians of the two periods. The Normalized Difference Urban Index (NDUI),
for example, was applied to the image mosaics to highlight the urban areas (Figure 5).
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2.3.2. Image Classification

To perform the image classification, we applied the RF classifier algorithm. RF requires
a set of parameters, such as the number of trees and subsampling, that influence the
classification results. The classifications were performed individually for each LULC class.
All the data and input variables used to classify each LULC using the RF classification are
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described in (Table 2). We considered each data used for the RF classification according to
the spectral response of each LULC target, therefore we had previously selected the OLI
bands and generated spectral indices to filter the input data for RF classification.

Table 2. Input variables used for classifying the LULC classes in the study area.

LULC Classes Data Input Variables

Water
B5 Percentiles 10, 25, 50, 75, 90;
B6 Percentiles 10, 25, 50, 75, 90;

Shade fraction Percentiles 10, 25, 50, 75, 90;

Urban areas

B4 Percentiles 10, 25, 50, 75, 90;
B7 Percentiles 10, 25, 50;

Soil fraction Percentiles 10, 25, 50, 75, 90;
Vegetation fraction Percentiles 10, 25, 50, 75, 90;

NDUI Percentiles 50, 75, 90;

Forest

B7 Percentiles 50, 90;
NBR Percentiles 50, 75;

NDVI Percentiles 50, 90;
Soil fraction Percentiles 25, 50;

Vegetation fraction Percentiles 50, 75, 90;

Forest plantation

B3 Percentiles 25, 50;
B5 Percentile 90;

NDVI Percentiles 50, 90;
GNDVI Percentiles 50, 75, 90;

NBR Percentiles 25, 75, 90;
NDWI Percentile 50;

Shade fraction Percentiles 10;
Vegetation fraction Percentiles 50, 75, 90;

Agriculture

B4 Percentiles 10, 25, 50, 75, 90;
B5 Percentiles 10, 25, 50, 75, 90;
B6 Percentiles 10, 25, 50, 75, 90;

Soil fraction Percentiles 10, 25, 50, 75, 90, and
standard deviation;

Vegetation fraction Percentiles 10, 25, 50, 75, 90, and
standard deviation;

NDVI Percentiles 10, 25, 50, 75, 90;

Initially, the classification for the water was performed because it is considered the
easiest class to identify compared to the other classes in this study. However, some chal-
lenges were identified when analyzing the results such as, for example, the shade of the
slopes were misclassified as water. To minimize this effect, SRTM data [37,38] was used to
calculate the slope and to exclude those areas classified as water with a slope greater than
17%. The input variables selected to classify the water were the percentiles of shade fraction
and spectral bands 5 (NIR) and 6 (SWIR 1) of the January–June image mosaic and SRTM.

For the urban areas classification, the percentiles of vegetation and soil fraction images,
spectral bands 4 (red) and 7 (SWIR 2), NDUI, and NBR were selected. Also, we used night-
time lights information obtained from VIIRS/DNB (Visible Infrared Imaging Radiometer
Suite/Day&Night band) [46] as ancillary data to highlight the urban areas.

For the agriculture areas classification, we selected spectral bands 4 (red), 5 (NIR), and
6 (SWIR), NDVI, vegetation and soil fractions, maximum value and standard deviations of
the vegetation and soil fractions from the January–June time period considered as the rainy
season when the main crops grow. We considered the initial classification for agriculture in
the most-planted cultures in São Paulo State using the following works as bases: soybeans
and annual cultures [47]; coffee and citrus [48]; and sugarcane [49]. They represent most of
São Paulo’s agriculture area. Then, we compiled all the crops in the agriculture class.
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For the forest areas classification, we selected the spectral band 7 (SWIR 2), NDVI,
NBR, vegetation and soil fraction images from the July–September time period considered
as the dry season [50]. For the forest plantation areas, the classification method was based
on a previous study using time-series mosaic products from 2013 to 2020 [31]. The images
selected for classification were the shade and vegetation fractions, spectral band 3 (green),
NDVI, GNDVI, NBR, and NDWI of annual image mosaics. We used the temporal series of
images because it allows us to capture the cutting cycle of the main cultivated species, with
an emphasis on Eucalyptus. After those classifications, we added the pasture class. It was
classified as the remaining area of São Paulo State, based on the difference in mosaicking
from the previous LULC classes.

For the RF algorithm, we set parameters for each class (N◦ of trees, nodes, subsampling)
(Table 3). We set 101 trees for each classification as we were testing the best number for
the classification, and 50 trees for the agriculture class. For all classes we used a sampling
factor of 0.8. Then, after running the classification the number of nodes for each class and
the out-of-bag error estimate (OOB error) were presented. The OOB error evaluates the
misclassification error unbiasedly, considering the bootstrap out-of-bag samples [22,24,51].

Table 3. Random Forest parameters used for each class.

Classes Water Urban
Areas Forest Agriculture Forest

Plantation

N◦ of trees 101 101 101 50 101
Subsampling 0.8 0.8 0.8 0.8 0.8
N◦ of nodes 1320 2849 10684 21,228 8843

out-of-bag error estimate 0.001 0.045 0.007 0.032 0.002

2.4. Validation of the Classification

To validate the results, we created 500 random polygons for each LULC class based
on visual interpretation of Sentinel-2 images for the year 2020 across the São Paulo State.
We selected images from January, February, March, April, November, and December. To
ensure that the classes had no changes, we validated the collected samples in December.
Also, time series of EVI and NDVI indices were used to visualize the spectral patterns of
each class and support the decision-making. We selected the centroid of each polygon to
extract the class and to perform a confusion matrix for cross-validation [52]. For each class,
we collected the samples based on the heterogeneity of the classes according to the visual
interpretation described in Table 4 and shown in Figure 6.

We also compared our classification results with the MapBiomas collection 6.0 LULC
map for the year 2020 [15]. The project generated 35 annual LULC maps for Brazil processed
using the GEE with a three-level classification legend [15]. The first level of the classification
legend is primarily focused on distinguishing land cover vegetation types (e.g., vegetation,
farmlands, non-vegetated areas, water, etc.). The second level distinguishes between
natural forest, newly planted forest, grasslands, wetlands, urban infrastructure, plantations,
ranchlands, and livestock and agricultural farms. The third level was specifically focused
on forest formation [15]. Based on the levels of classification legend, the MapBiomas LULC
product was reclassified and grouped into classes similar to the classification performed
by our method. Then, the kappa value was calculated to verify the agreement of those
classification results.
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Table 4. Description of the criteria used to collect the samples in the Sentinel-2 images to validate the
LULC classification.

LULC Criteria Used to Collect the Samples

Water We used the NIR-SWIR-Red to highlight the water in dark shades and colors.

Urban areas We used the RGB natural composition to maintain a spatial resolution of 10 m and a mosaic of
high-resolution images from Google Earth was also used to confirm the collected samples.

Forest
We selected the NIR-SWIR-Red composition to enhance the textures commonly used to identify this class
by visual interpretation. Its rough texture and no changes in the time allow its identification on satellite
images.

Agriculture
The agriculture samples had an analysis of the crop’s development, ensuring the class’s assertiveness. We
selected the NIR-SWIR-Red composition, to characterize the spectral response of crops along the rotation
cycle of soybean, corn, bean, and sugarcane.

Forest plantation
We selected the NIR-SWIR-Red composition to enhance the textures commonly used to identify this class
by visual interpretation. This class presents smooth texture, long cycles, and bright spectral response for
recently planted forestry.

Pasture We used the RGB natural composition, given the spectral response of the pasture in light green tones. In
addition, due to the spatial resolution of 10 m, it is also possible to identify the paths taken by the cattle.
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Figure 6. Sentinel-2 images of the samples collected to validate each class in true color composition:
(A.1–A.3). Water; (B.1–B.3). Urban area; (C.1–C.3). Forest; (D.1–D.3). Agriculture; (E.1–E.3). Forest
Plantation; (F.1–F.3). Pasture. Three images for each LULC class acquired during 2020 year were
analyzed to select the samples used for the classification evaluation.

3. Results

Figure 7 shows the LULC map of São Paulo State for the year 2020 produced by the
method proposed in this work. We observed that most of the forest areas are in the eastern
region of São Paulo, mostly linked to the steeper slopes. It covers 47,056 km2 (18.96%), and
most of it is in the Atlantic Rain Forest biome. Only small and sparse patches of Cerrado
forests still remain as natural vegetation, mostly located in protected areas. Pasture is
the class with the largest proportion of the study area, representing 96,808 km2 (39%) of
the total area. Pastures are found throughout the state, but the east and west are the two
most representative regions. The agriculture class comprised 85,243 km2 (34.34%), located
around the Tiete river (the big river at the center), and the southern and central northern
parts of São Paulo State. Forest plantation covers 9034 km2 (3.64%) and is particularly
located in the central south region. The São Paulo metropolitan area is the largest urban area
in South America and the state has 4785 km2 (1.93%) of its area classified as urban. Almost
the same amount (5277 km2) is covered by water, representing 2.12% of the state’s area.
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Figure 7. Land Use and Land Cover map of the São Paulo State for the year 2020. The classification
was based on Landsat-8 OLI sensor data.

The importance variables obtained from the RF algorithm can be used to identify
which variables were most important for classifying each class after our visual pre-selection.
For the water class, band 6 (SWIR), shade fraction, and band 5 (NIR) in specific percentiles
represented the three most important variables for RF with the input data used (Figure 8).
The urban area class’s three most important variables were based on image fractions
(vegetation and soil) and spectral index (NDUI). The forest class had as its most important
input the NDVI, vegetation fraction, and NBR index. For the forest plantation class, the
spectral indices (GNDVI, NBR, and NDVI) presented a higher importance. The importance
variables for the agriculture class were not obtained because the class was classified by a
combination of cultures. Also, there are no importance variables for pasture since it was
considered the remaining area of São Paulo State after classifying the other LULCs.

Table 5 shows the confusion matrix of the LULC classification, based on the collected
samples, to evaluate the accuracy of the classification (prediction). The user and producer
accuracies for each LULC class varied from 77% to 100% and 84% to 98%, respectively. The
kappa value was 0.891 and the overall accuracy was 89.10%. The agriculture class presented
the highest omission error since it is often misclassified as pasture and forest plantation
due to the spectral similarities of these classes depending on the phenological response,
and their spatial attributes (e.g., landscape fragmentation). On the other hand, the highest
commission error was presented in the pasture class, which is often misclassified with other
classes due to its heterogeneity, and temporal and spatial complexities.
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Table 5. Confusion matrix for the LULC classification in 2020 (prediction) and collected samples
(reference).

Reference

Forest Pasture Agriculture Urban Areas Water Forest
Plantation

User’s
Accuracy

Forest 446 36 9 1 3 35 84.15%

Pasture 51 421 52 0 20 4 76.82%

Agriculture 2 43 399 9 5 16 84.18%

Urban Areas 0 0 0 490 0 0 100.00%

Water 0 0 0 0 472 0 100.00%

Forest
Plantation 1 0 40 0 0 445 91.56%

Total 500 500 500 500 500 500

Producer’s
Accuracy 89.20% 84.20% 79.80% 98.00% 94.40% 89.00%

Kappa = 0.8692 Overall accuracy = 89.10%

The confusion matrix for the MapBiomas LULC classification was cross-validated with
the same collected samples shown in Table 6. Although this data is already published and
has an overall accuracy for level 2 data of 87.4% [15,18], we used the same collected samples
to validate and resemble our results with the same reference data. The user and producer
accuracies for each mapped class varied from 78% to 100% and 79% to 100%, respectively.
The kappa value was 0.926 and the overall accuracy was 93.90%, based on the validation



Forests 2023, 14, 1669 13 of 17

using our collected samples. For this data, the highest errors are in the agriculture and
pasture classes (Table 6).

Table 6. Confusion matrix for the MapBiomas LULC classification in 2020 (prediction) and collected
samples (reference).

Reference

Forest Pasture Agriculture Urban Areas Water Forest
Plantation

User’s
Accuracy

Forest 492 0 0 1 4 2 98.60%

Pasture 7 394 34 0 1 3 89.75%

Agriculture 1 106 464 0 0 21 78.38%

Urban Areas 0 0 2 499 1 0 99.40%

Water 0 0 0 0 494 0 100.00%

Forest
Plantation 0 0 0 0 0 474 100.00%

Total 500 500 500 500 500 500

Producer’s
Accuracy 98.40% 78.80% 92.80% 99.80% 98.80% 94.80%

Kappa = 0.9268 Overall accuracy = 93.90%

In this manner, we performed the confusion matrix using the same sample points to
evaluate the agreement of our result with the MapBiomas product that uses more a complex
method (Table 7). The user and producer accuracies for each mapped class varied from 62%
to 100% and 63% to 98%, respectively. The kappa value was 0.83 and the overall accuracy
was 85.47% showing an excellent agreement [52]. Again, the agriculture class presented the
highest omission error, and was often misclassified as pasture, forest plantation, and forest.
For the commission error here, the pasture also presented the highest error.

Table 7. Confusion matrix for the LULC classification in 2020 (prediction) and MapBiomas (reference).

Reference (MapBiomas)

Forest Pasture Agriculture Urban Areas Water Forest
Plantation

User’s
Accuracy

Forest 445 29 41 0 3 12 83.96%

Pasture 52 340 139 1 15 1 62.04%

Agriculture 1 69 373 10 5 16 78.69%

Urban Areas 0 0 0 490 0 0 100.00%

Water 0 0 0 1 471 0 99.79%

Forest
Plantation 1 1 39 0 0 445 91.56%

Total 499 439 592 502 494 474

Producer’s
Accuracy 89.18% 77.45% 63.01% 97.61% 95.34% 93.88%

Kappa = 0.8257 Overall accuracy = 85.47%

4. Discussion

The aim of this study was to generate a LULC map for the state of São Paulo for
the year 2020, based on 13 variables and their respective attributes derived from remote
sensing indices, fraction images, and spectral bands used in RF models. The novelty of the
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proposed method is the performance of a preliminary analysis to select the features that
enhance the individual LULC classes in the OLI images. In addition, it defines the period
of production of the cloud-free image mosaics to be processed. Then, the LULC classes
were classified individually using specific spectral bands, spectral indices, and fraction
images. Another factor that was considered was the temporal resolution. For example,
for agriculture classification the image mosaic was composed of images acquired during
the rainy season; for forest and forest plantation classifications, the image mosaic was
composed of images acquired during the dry season. Multiannual mosaics were also used
for the forest plantation class, taking into account the forest rotation age; we used mosaics
from 2013 to 2020 [31]. These pre-processing steps highlighted the LULC classes for the
classification step. In this study we used an RF classifier that is available in the GEE platform.
RF is commonly used for LULC classification, due to its efficiency in achieving higher
accuracy compared to other algorithms, and as the cost of the computational process is
relatively low and does not require many parameters or much data to obtain high-accuracy
results [23,53].

Classification errors between the agriculture and pasture classes occur mainly in areas
of managed pasture. The rural producers who aim to increase the amount of food for
cattle invest in pasture management destined for animal feeding [54,55]. In this sense, the
vegetation indices and spectral responses from the satellite images could be similar between
pasture and agricultural areas, with a significant gain in vegetation vigor at the beginning
of the rains and a sudden loss of vegetation vigor at the end of the rainy season. For the
selection of training points for the agriculture class, we selected images that consider the
agriculture patterns based on the development of crops throughout the time series. In São
Paulo State, the main crops are soybeans, sugarcane, corn, and beans [15,48,49].

Classification errors between agriculture and forest plantation classes occurred, in
most cases, in areas with teak (Tectona grandis) and rubber tree (Hevea brasiliensis) plantations.
These species lose their leaves during the dry period leading to a drop in the vegetation
indices and consequently the spectral response is influenced by the soil spectral mixture,
which can lead to confusion in the classifier. The RF classifier interprets this behavior
as the beginning and end of a cycle, but it is the seasonality of the vegetation itself. The
reference dataset used to assess the mapping accuracy was collected based on the visual
interpretation of Sentinel-2 color composites and ancillary spectral indices.

The results obtained by the proposed method were compared to the existing LULC
products from MapBiomas, which performs a more complex classification procedure [15,18].
In general, MapBiomas classification presented better results (Table 6) compared to our
method (Table 5). However, our proposed method presented lower omission error for
the pasture class (84%) compared to MapBiomas (79%) and lower inclusion error for the
agriculture class (84%) in comparison (78%). The differences observed between the results
of the proposed method and the MapBiomas project can be attributed to several factors,
for example, the classification algorithm, the variables and training dataset used in the
classification process, and the data processing are some of the main factors that impact the
classification results between the LULC maps analyzed. Our proposed method was trained
and applied specifically for the state of São Paulo and achieved an overall accuracy of 89%
based on the 13 variables and their respective attributes used in the classification. The
pre-selection of variables can reduce data volume without losing important information,
supporting the discrimination of classes and also improving classification accuracy. This
study also analyzed the importance of the variables in the RF models, however, further
investigation is necessary to understand the characteristics of each class of LULC in the
study area.

5. Conclusions

In this study we selected the images from sensors onboard Landsat satellites to classify
each class individually and produce a LULC map for the state of São Paulo, located in
the Southeast Region of Brazil. For all classes, except forest plantation, we used images
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acquired during 2020. For forest plantations, we used images acquired over a long period
(2013–2020) due to its rotation growth. The pre-processing performed highlights the LULC
classes prior to the classification step. The proposed method facilitates post-classification
editing for each class individually to ensure the high accuracy of the map. The validation
process showed that the user and producer accuracies for each mapped class varied from
76.62% to 100% and 84.20% to 98%, respectively, the kappa value was 0.8692, and the
overall accuracy was 89.10%. The comparison with the MapBiomas LULC map for the
same year from collection 6.0, which uses a more complex classification process, showed
an agreement of a kappa value equal to 0.8257 and an overall accuracy of 85.47%. The
advantage of our method is that it is more flexible to apply for any region and any time
period with different LULC classes.
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